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Why I care

Not out of an intrinsic interest in

▶ (directed) algebraic topology,

▶ synthetic (∞, ∞)-category theory.

Consequences

▶ Types stratified by finite dimensions.
(Cf. Haskell but less weird.)

▶ I’m not afraid of strict equality.
I am afraid of coherence obligations.

▶ I don’t mind if my model doesn’t present
spaces. But I want it to compute!

▶ Factorization systems are not my native
language.

I want better languages for verified
functional programming!

Programs should be categorically structured.

With native support for
relations/morphisms/isomorphisms:

▶ Parametricity for free!

▶ Functoriality for free!
. . . and not just for Type → Type

▶ Naturality for free!

▶ Variance of dependent multi-argument
functions sorted out for free!
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So how is Directed TT relevant to
verified functional programming?

An example problem
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M N Monad

A

f

��

ListA WriterT(ListA)M WriterT(ListA)N

B

∈

ListB WriterT(ListB)M WriterT(ListB)N

Monad

Type Monoid ×
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In plain DTT
Functoriality of List : Type → Monoid:

▶ Object action: (ListA, [],++)
▶ Functorial action:

▶ List f : ListA → ListB (by recursion)
▶ List f is a monoid morphism:

▶ List f preserves [] (trivial)
▶ List f preserves ++ (by induction)

+ functor laws (by induction)

Functoriality of
WriterT : Monoid → MonadTrans
▶ Object action: WriterTW ∈ MonadTrans

▶ Object action: WriterTW M ∈ Monad
▶ Object action: Define WriterTW M A
▶ Functorial action WriterTW M f

+ functor laws
▶ return & bind + naturality

. . . Object action: WriterTW ∈ MonadTrans
▶ Functorial action WriterTW g

▶ Respects return & bind

+ functor laws
▶ lift : M → WriterTW M + naturality

▶ Respects return & bind

▶ Functorial action:
WriterTh : WriterTV → WriterTW
▶ WriterTh M A

▶ Respects return, bind & lift
▶ naturality w.r.t. A
▶ naturality w.r.t. M

+ functor laws
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M N ∈ Monad

A ListA WriterT(ListA)M

?

WriterT(ListA)N
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In HoTT (assuming f , g and h = List f are isos)
Functoriality of List : Type → Monoid:

▶ Object action: (ListA, [],++)
▶ � Functorial action:

▶ � List f : ListA ∼= ListB (by recursion)
▶ � List f is a monoid morphism:

▶ � List f preserves [] (trivial)
▶ � List f preserves ++ (by ind.)

+ � functor laws (by induction)

Functoriality of
WriterT : Monoid → MonadTrans
▶ Object action: WriterTW ∈ MonadTrans

▶ Object action: WriterTW M ∈ Monad
▶ Object action: Define WriterTW M A
▶ � Functorial action WriterTW M f

+ � functor laws
▶ return & bind + � naturality

. . . Object action: WriterTW ∈ MonadTrans
▶ � Functorial action WriterTW g

▶ � Respects return & bind

+ � functor laws
▶ lift : M → WriterTW M + � naturality

▶ Respects return & bind

▶ � Functorial action:
WriterTh : WriterTV ∼= WriterTW
▶ � WriterTh M A

▶ � Respects return, bind & lift
▶ � naturality w.r.t. A
▶ � naturality w.r.t. M

+ � functor laws
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In Naturality TT
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Variance and modalities

WriterTW M A := M(A×W ) is covariant
w.r.t.

▶ W : Monoid

▶ M : Monad

▶ A : Type

ReaderTR M A := R → MA is contravariant
w.r.t.

▶ R : Type

return : A → WriterTW M A is natural w.r.t.

▶ W : Monoid

▶ M : Monad

▶ A : Type

Ignoring variance

▶ HoTT: only consider isomorphisms
⌢ Not everything is an isomorphism.

▶ Param’ty: relations, not morphisms
⌢ Don’t know how to compute fmap.

Naturality TT

▶ Preserve isomorphisms

▶ Preserve relations

▶ Keep track of action on morphisms

Hence:

▶ Use functoriality/naturality when possible

▶ Use HoTT when applicable

▶ Use param’ty when necessary
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Hence:

▶ Use functoriality/naturality when possible
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▶ Use param’ty when necessary
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Pretypes: A Note on Fibrancy
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A note on fibrancy

A presheaf model of DTT can account for:

▶ The existence of shapes
(point, path, morphism, bridge, . . . )

▶ Unary operations on shapes (src, rfl)

▶ Unary equations on shapes
(src◦ rfl = id)

Fibrancy allows for:

▶ Other arities (composition, . . . )

▶ Specific geometries (transport, . . . )

HoTT
Kan Comp. of & transp. along paths

Directed
functorial Transport along morphisms
Segal Composition of morphisms
Rezk Isomorphism-path univalence

Param’ty
discrete Homog. bridges express equality

. . . . . .
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A note on fibrancy

Naturality Pretype Theory

We ignore fibrancy for now:

▶ Functoriality & Segal fibrancy are brittle
⇒ need to consider pretypes anyway

▶ There are promising techniques for
defining fibrancy internally:
▶ Contextual fibrancy [BT17, Nuy20]
▶ Amazing right adjoint [LOPS18] &

Transpension [ND24]
▶ Internal fibrant replacement monad

[Nuy20, other?]

HoTT
Kan Comp. of & transp. along paths

Directed
functorial Transport along morphisms
Segal Composition of morphisms
Rezk Isomorphism-path univalence

Param’ty
discrete Homog. bridges express equality

. . . . . .
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(Aside) Actually, I’d like your feedback

Definition

A CwF is locally democratic if every arrow σ : ∆→ Γ is isomorphic to some π : Γ.T → Γ.

Internalizing an AWFS [§8.5 of my PhD thesis]

▶ A CwF is exactly a model of the structural rules of DTT.
▶ On a locally democratic CwF, the following correspond:

▶ Defining an AWFS whose right replacement monad RR preserves pullbacks,
▶ Modelling an internal monad RR on types

with a functorial action on dependent functions (+ equations):

Γ, rx : RRA ⊢ T type
Γ ⊢ f : (x : A)→ T (ηRR(x))

Γ ⊢ RR f : (rx : RRA)→ (RRT )(rx)
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(Back to NatPT)
Model-first Approach

Separation of concerns:

We need modalities to keep track of variance.

 Instantiate MTT (Multimodal Type Theory) [GKNB21]

⌣ The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

 Instantiate MTraS (Modal Transpension System) [ND24]

⌣ The syntax is their problem!

⌣ Interaction with MTT is their problem!

Our concern: the semantic requirements for instantiating MTT and MTraS.
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Towards MTT (Multimod[e/al] Type Theory)

Let R : C → D be a functor.

Γctx@C

RΓctx@D

τ : Γ→ Γ′@C

Rτ : RΓ→ RΓ′@D

Γ ⊢ T type@C

RΓ ⊢ RT type@D

Γ ⊢ t : T @C

RΓ ⊢ Rt : RT @D

Ok, so how do we check
?

∆ ⊢ RT type

We check Γ ⊢ T type@C and substitute with σ : ∆→ RΓ.
BUT: Don’t bother the user. Synthesize Γ and σ .

Γ ∈ C should be the universal context Γ such that σ : ∆→ RΓ exists.
I.e. if σ ′ : ∆→ RΓ′ then we should have Γ→ Γ′.

+ some sensible laws ; L ⊣ R.
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MTT (Multimod[e/al] Type Theory)

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

▶ modes p, q, r , . . .

▶ modalities µ : p → q

Γctx@q

Γ,µµ ctx@p

Γ,µµ ⊢ T type@p

Γ ⊢ ⟨µ | T ⟩ type@q

Γ,µµ ⊢ t : T @p

Γ ⊢ modµ t : ⟨µ | T ⟩@q

▶ (2-cells α : µ ⇒ ν).

Semantics:
▶ JpK is a (often presheaf) category modelling all of DTT,

▶ JµK is a (weak) dependent right adjoint (DRA) [BCMMPS20] to
q
µµ

y
,

Note: If codomain D is democratic, then DRA = right adjoint that is a CwF morphism.
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Γ ⊢ modµ t : ⟨µ | T ⟩@q

▶ (2-cells α : µ ⇒ ν).

Semantics:
▶ JpK is a (often presheaf) category modelling all of DTT,

▶ JµK is a (weak) dependent right adjoint (DRA) [BCMMPS20] to
q
µµ

y
,

Note: If codomain D is democratic, then DRA = right adjoint that is a CwF morphism.
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Semantics of MTraS (Modal Transpension System) [ND24]
Idea: Treat

∃(u : U) ⊣ Ⅎ[u] ⊣ ∀(u : U) ⊣ ≬[u]
Σ(u : U) ⊣ Ω[u] ⊣ Π(u : U)

as modalities.

Problem: They bind / depend on variables.
(Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

▶ Ξ ∈ Psh(W )

▶ Pick any old functor ⌞⌟⋉U : W → W

▶ Shape context extension is
(⌞⌟⋉U)! : Psh(W )→ Psh(W )

▶ ∃
∫
Ξ

U ⊣ Ⅎ
∫
Ξ

U :
∫
W Ξ→

∫
W (Ξ,u : U)

(∃
∫
Ξ

U )! ⊣ (∃
∫
Ξ

U )∗ ⊣ (∃
∫
Ξ

U )∗

∥ ≀ ∥ ≀

(Ⅎ
∫
Ξ

U )! ⊣ (Ⅎ
∫
Ξ

U )∗ ⊣ (Ⅎ
∫
Ξ

U )∗

∃ΞU ⊣ ℲΞU ⊣ ∀ΞU ⊣ ≬ΞU

r
µ∃u
Ⅎu

z
⊣

r
µℲu
∀u

z
⊣

r
µ∀u
≬u

z

JℲuK ⊣ J∀uK ⊣ J≬uK
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Introduction: Wrapping up

▶ We want to preserve relations, morphisms and isomorphisms.

▶ We need variance  MTT

▶ We need intervals  MTraS

▶ We need fibrancy  future work (internal)
▶ For now, we care about:

▶ a mode theory,
▶ a presheaf model for each mode,
▶ an adjunction for each modality,
▶ a functor for each interval.
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Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness

(RelDTT)
[ND18]

directify
oo
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Tamsamani & Simpson’s
model of n-Categories

Tamsamani (1999)
Simpson (1997)
see Cheng & Lauda (2004)
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A reflexive graph Γ has:

▶ A set of nodes Γ0

▶ A set of edges Γ1

▶ Γsrc,Γtgt : Γ1 → Γ0 and Γrfl : Γ0 → Γ1

It is a diagram in Set:

Γ0

}}

Γsrc

aa

Γtgt

Γ1//
Γrfl

A simplicial set Γ has:

▶ For each n, a set of n-simplices Γn

(nodes, edges, triangles, tetrahedra, . . . )

▶ For each monotonic f : {0..m} ↪→{0..n},
a face map Γf : Γn → Γm

(vertices of, edges of, faces of, . . . )

▶ For each monotonic f : {0..m}↠ {0..n},
a degeneracy map Γf : Γn → Γm

(flat tetrahedra)

It is a diagram in Set:

Γ0

}}

Γ07→0

aa

Γ07→1

Γ1//
Γ 7→0

}}
oo
aa

Γ266
(( · · ·
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Simplex category ∆

∆ is a skeleton of NonEmptyFinLinOrd
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Nerve N(C ) of a category C

Simplicial set whose:

▶ nodes are objects

▶ edges are morphisms

▶ triangles are commutative diagrams

▶ (n ≥ 3)-simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a
category?

A: If every chain of n edges

• // • // · · · // • // •

is the spine (Hamiltonian path) of a unique
n-simplex. I.e. if compositions uniquely exist.

Categories ≃ Segal simplicial sets
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Let (V , I,⊗) be a monoidal category.

A V -enriched category C has:

▶ A (big) set of objects
▶ For each x ,y ∈ Obj(C ), a Hom-thing

Hom(x ,y) ∈ Obj(V ),

▶ idx : I → Hom(x ,x)

▶ ◦ : Hom(y ,z)⊗Hom(x ,y)→ Hom(x ,z)

Strict n-category

▶ A 0-category is a set.
▶ An (n+1)-category is a category

enriched over n-categories.

Q: Can we understand higher categories via
simplicial sets?

Cheng & Lauda’s Guidebook: [CL04]
A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99]
One such time yes!
 using double / n-fold categories
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A double category C has:

▶ objects

▶ horiz. arrows / (1)-arrows (1-cells)

▶ vertical arrows / (2)-arrows (trivial)

▶ squares (2-cells)

and can be defined as a bisimplicial set
C ∈ Psh(∆×∆) satisfying the
Segal condition in each dimension.

A T&S 2-category is:

a double category whose vertical arrows
are trivial.

• • // •

•

��

• //

��

•

��
• • // •
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Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness

(RelDTT)
[ND18]

directify
oo
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Pro-arrow
Equipments

Richard J. Wood (1982, 1985)
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(Pro-arrow) Equipment

An equipment C is a double category with

▶ objects

▶ arrows (→)

▶ pro-arrows (↛)

▶ squares

such that every arrow ϕ : x → y has “graph”
pro-arrows

ϕ
‡ : x ↛ y , ϕ

† : y ↛ x

such that (. . .).

Example (Set)

Set is an equipment with:

▶ sets

▶ functions
▶ relations

▶ identity relation: equality
▶ (R;S)(x ,z) =

∃y .R(x ,y)∧S(y ,z)

▶ proofs that R(a,b)⇒ S(f a,g b)

A

f
��

�R // B

g
��

C �
S
// D
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Example (Cat)

Cat is a T&S 2-category with:

▶ categories

▶ functors

▶ trivial (2)-arrows

▶ nat. transformations
end
∀ a.Hom(F a,G a)

i.e.
end
∀ a,b.Hom(a,b)⇒ Hom(F a,G b)

A

F
��

�Hom // A

G
��

C �
Hom

// C

To get heterogeneous nat. transformations:
drop T&S’s triviality condition!

Example (Cat)

Cat is an equipment with:
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Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness

(RelDTT)
[ND18]

directify
oo
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Higher
Pro-arrow

Equipments
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Higher Pro-arrow Equipments

Set is . . .

⌢ A large set

À A category

⌣ An equipment

Cat is . . .

⌢ A category

À A 2-category

⌣ An equipment

Eqmnt is . . .

⌢ An equipment

⌣ A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:
Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:
Contain pro-arrows

Squares . . .

Cubes . . .

Higher Equipment

An n-equipment is an n-fold category (. . . )

⇒ C ∈ Psh(∆n
†,‡)
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 “Equipment pro-profunctors”!?
Are you making this up?

Ë Only partially.

Hofmann-Streicher Universe [HS97]

For any category W ,
Psh(W ) models DTT, with a universe UHS.

Let W ∈ Obj(W ).
A proW -cell of UHS contains:

▶ a notion of dependent W -cells

▶ for all V ∈ Obj(W /W ),
a notion of dependent V -cells

Looking at this differently

Define Ẇ :∼= W .
If W ∈ Obj(W ), then proW ∈ Obj(Ẇ ).

Consider UHS
W ∈ Psh(Ẇ ).

proW -cells have a different meaning:

▶ Param’ty: U of discrete types is not
discrete.
 Edges express het. equality;
pro-edges express relations.

▶ Directed: U of Segal types is not Segal.
 Arrows express morphisms;
pro-arrows express profunctors.
 Triangles express commutativity;
pro-triangles are boundary predicates.
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proW -cells have a different meaning:

▶ Param’ty: U of discrete types is not
discrete.
 Edges express het. equality;
pro-edges express relations.

▶ Directed: U of Segal types is not Segal.
 Arrows express morphisms;
pro-arrows express profunctors.
 Triangles express commutativity;
pro-triangles are boundary predicates.

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 31 / 58



 “Equipment pro-profunctors”!?
Are you making this up?

Ë Only partially.

Hofmann-Streicher Universe [HS97]

For any category W ,
Psh(W ) models DTT, with a universe UHS.

Let W ∈ Obj(W ).
A proW -cell of UHS contains:

▶ a notion of dependent W -cells

▶ for all V ∈ Obj(W /W ),
a notion of dependent V -cells

Looking at this differently

Define Ẇ :∼= W .
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▶ Param’ty: U of discrete types is not
discrete.
 Edges express het. equality;
pro-edges express relations.

▶ Directed: U of Segal types is not Segal.
 Arrows express morphisms;
pro-arrows express profunctors.
 Triangles express commutativity;
pro-triangles are boundary predicates.
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Against self-classification

By nature, classifiers (typically) do NOT contain themselves:

▶ All of mankind is not an example of a human.

▶ The world’s literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

▶ Set is more than a (large) set.

▶ Cat is more than a (large) category.

It’s not because you can truncate to achieve self-classification, that you should!

 Provide the user with the unscathed classifier and the truncation modality.
 Use multimode type theory.

⌣ Fixpoints: ∞Grpd is a (large) ∞-groupoid.
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. . . and while I am ranting . . .
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Against the Grothendieck Construction as “the” Σ-type for categories

Grothendieck Construction

Given a category C and
a functor D : C → Arws(Cat),
i.e. eqmnt functor H : FPro(C )→ Cat,
the category

∫
C D has:

▶ objects (c,d ∈ D(c))

▶ morphisms(
c1

γ−→ c2,D(γ)(d1)
δ−→ d2

)

Arws(Cat) ∈ Cat is truncated.

FPro ⊣ Arws : Eqmnt → Cat

Arws Discards pro-arrows

FPro Freely adds “graph” pro-arrows

Pros Discards arrows

Let’s generalize from FPro(C ) to E ∈ Eqmnt.∫
C D Pros(

∮
FPro(C )H )

Pros(Fst)
��

C Pros(FPro(C ))
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Against the Grothendieck Construction as “the” Σ-type for categories

“Equipment of elements”

Given an eqmnt E and
an eqmnt functor H : E → Cat,
the category

∮
E H has:

▶ objects (c,d ∈ H (c))

▶ morphisms(
c1

γ−→ c2,d1 7→H (γ) d2

)
▶ pro-arrows(

c1
p↛ c2,d1

δ−→H (p) d2

)
≈ cat. of elements internal to Psh(∆)

Arws(Cat) ∈ Cat is truncated.

FPro ⊣ Arws : Eqmnt → Cat

Arws Discards pro-arrows

FPro Freely adds “graph” pro-arrows

Pros Discards arrows

Let’s generalize from FPro(C ) to E ∈ Eqmnt.∫
C D Pros(

∮
FPro(C )H )

Pros(Fst)
��

C Pros(FPro(C ))

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 34 / 58



Against the Grothendieck Construction as “the” Σ-type for categories

“Equipment of elements”

Given an eqmnt E and
an eqmnt functor H : E → Cat,
the category

∮
E H has:

▶ objects (c,d ∈ H (c))

▶ morphisms(
c1

γ−→ c2,d1 7→H (γ) d2

)
▶ pro-arrows(

c1
p↛ c2,d1

δ−→H (p) d2

)
≈ cat. of elements internal to Psh(∆)

Arws(Cat) ∈ Cat is truncated.

FPro ⊣ Arws : Eqmnt → Cat

Arws Discards pro-arrows

FPro Freely adds “graph” pro-arrows

Pros Discards arrows

Let’s generalize from FPro(C ) to E ∈ Eqmnt.∫
C D Pros(

∮
FPro(C )H )

Pros(Fst)
��

C Pros(FPro(C ))

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 34 / 58



Against the Grothendieck Construction as “the” Σ-type for categories

“Equipment of elements”

Given an eqmnt E and
an eqmnt functor H : E → Cat,
the category

∮
E H has:

▶ objects (c,d ∈ H (c))

▶ morphisms(
c1

γ−→ c2,d1 7→H (γ) d2

)
▶ pro-arrows(

c1
p↛ c2,d1

δ−→H (p) d2

)
≈ cat. of elements internal to Psh(∆)

Arws(Cat) ∈ Cat is truncated.

FPro ⊣ Arws : Eqmnt → Cat

Arws Discards pro-arrows

FPro Freely adds “graph” pro-arrows

Pros Discards arrows

Let’s generalize from FPro(C ) to E ∈ Eqmnt.∫
C D Pros(

∮
FPro(C )H )

Pros(Fst)
��

C Pros(FPro(C ))

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 34 / 58



Against the Grothendieck Construction as “the” Σ-type for categories

“Equipment of elements”

Given an eqmnt E and
an eqmnt functor H : E → Cat,
the category

∮
E H has:

▶ objects (c,d ∈ H (c))

▶ morphisms(
c1

γ−→ c2,d1 7→H (γ) d2

)
▶ pro-arrows(

c1
p↛ c2,d1

δ−→H (p) d2

)
≈ cat. of elements internal to Psh(∆)

Arws(Cat) ∈ Cat is truncated.

FPro ⊣ Arws : Eqmnt → Cat

Arws Discards pro-arrows

FPro Freely adds “graph” pro-arrows

Pros Discards arrows

Let’s generalize from FPro(C ) to E ∈ Eqmnt.∫
C D Pros(

∮
FPro(C )H )

Pros(Fst)
��

C
ϕ 7→ϕ‡

// Pros(FPro(C ))

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 34 / 58



Against the Grothendieck Construction as “the” Σ-type for categories

“Equipment of elements”

Given an eqmnt E and
an eqmnt functor H : E → Cat,
the category

∮
E H has:

▶ objects (c,d ∈ H (c))

▶ morphisms(
c1

γ−→ c2,d1 7→H (γ) d2

)
▶ pro-arrows(

c1
p↛ c2,d1

δ−→H (p) d2

)
≈ cat. of elements internal to Psh(∆)

Arws(Cat) ∈ Cat is truncated.

FPro ⊣ Arws : Eqmnt → Cat

Arws Discards pro-arrows

FPro Freely adds “graph” pro-arrows

Pros Discards arrows

Let’s generalize from FPro(C ) to E ∈ Eqmnt.∫
C D //

��

Pros(
∮

FPro(C )H )

Pros(Fst)
��

C
ϕ 7→ϕ‡

// Pros(FPro(C ))

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 34 / 58



Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness

(RelDTT)
[ND18]

directify
oo

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 35 / 58



Degrees of Relatedness
(RelDTT)

Nuyts and Devriese (2018) @ LICS

▶ Relational version of what NatTT intends to be
▶ Perhaps alienating:

▶ Goes beyond Reynolds’ parametricity
▶ Much less than higher category theory

▶ Explains several known relational modalities
▶ Has the virtue of existence as a type system
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Degrees of Relatedness: Overview

▶ Parametricity is about relations,
▶ Equip types with multiple, proof-relevant relations s ⌢i t indexed by degree i :

▶ Just one for small types (Bool, N→ N, . . . ),
▶ More for larger types (U0 → U0, Grp, . . . ).
▶ Proofs called i-edges.

▶ Describe function behaviour by saying how functions influence degree of
relatedness,

▶ This explains
▶ parametricity
▶ ad hoc polymorphism
▶ . irrelevance
▶ .. shape-irrelevance
▶ aspects of algebra, unions, intersections, Prop, . . .
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▶ ad hoc polymorphism
▶ . irrelevance
▶ .. shape-irrelevance
▶ aspects of algebra, unions, intersections, Prop, . . .
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Degrees of Relatedness: Four Laws

▶ Reflexivity: (a : A)⌢A
i (a : A)

(Semantically, prop. eq. = def. eq.)

▶ Degradation: ((a : A)⌢R
i (b : B))→ ((a : A)⌢R

i+1 (b : B))

▶ Dependency: (a : A)⌢R
i (b : B) presumes R : A ⌢U

i+1 B

▶ Identity extension: (a : A)⌢A
0 (b : A) means a = b : A.

; heterogeneous ⌢0 serves as heterogeneous equality.
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Understanding degrees

(a : A)⌢A
0 (b : A) Equality.

(a : A)⌢R
0 (b : B) Heterogeneous equality along . . .

R : (A : U0)⌢
U0

1 (B : U0) Any relation R.

P : (G : Grp)⌢Grp
1 (H : Grp) Any logical/algebraic relation P.

Q : (G : Grp)⌢V
1 (M : Monoid) Any logical/algebraic relation Q along . . .

V : (Grp : U1)⌢
U1

2 (Monoid : U1) V could specify that Q must respect e and ∗
(but it could ask Q to be anything).
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Understanding modalities: Parametricity

par : types → values

if : (par p X : U0)→ B X

X = Y //

��

ifX = ifY

��

R : X ⌢
U0

0 Y

��

R : X ⌢
U0

1 Y

��

// ifX ⌢B R
0 ifY

��

⊤ // ⊤

con : types → types

B : U0 → U0

B X = Bool → X → X → X

X = Y //

��

B X = B Y

��

X ⌢
U0

0 Y

��

B X ⌢
U0

0 B Y

��

X ⌢
U0

1 Y

��

B X ⌢
U0

1 B Y

��

⊤ // ⊤
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The Mode Theory

▶ Modes are depths p ∈ Z≥−1

▶ Modalities µ : p → q are

functions {0 ≤ . . .≤ q}→ {(=)≤ 0 ≤ . . .≤ p ≤⊤} : i 7→ i ·µ

where f : (µ p x : A)→ B(x) sends

(r : x ⌢A
i·µ y) → f (x)⌢B(r)

i f (y).

Modal types:
modµ x ⌢

⟨µ|A⟩
i modµ y = x ⌢A

i·µ y

▶ 2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.
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Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness

(RelDTT)
[ND18]

directify
oo
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Higher Pro-arrows:
Directifying

Degrees of Relatedness

▶ Equip types with multiple, proof-relevant relations s _i t indexed by degree i
▶ Proofs called i-jets (proi−1-arrows).

▶ Describe function behaviour by saying how functions influence degree and
orientation of jets.
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Degrees of Relatedness: Four Laws
▶ Reflexivity: (a = b : A)→ ((a : A)⌢A

i (b : A))
(Semantically, prop. eq. = def. eq.)

▶ Degradation: ((a : A)⌢R
i (b : B))→ ((a : A)⌢R

i+1 (b : B))

▶ Dependency: (a : A)⌢R
i (b : B) presumes R : A ⌢U

i+1 B

▶ Identity extension: (a : A)⌢A
0 (b : A) means a = b : A.

; heterogeneous ⌢0 serves as heterogeneous equality.

Pretypes!

Higher equipments: Three Laws
▶ Reflexivity: (a = b : A)→ ((a : A) _A

i (b : A))

▶ Companion ϕ‡ / conjoint ϕ†: ((a : A) _J
i (b : B))→ ((a : A) ]J

i+1 (b : B))

▶ Dependency: (a : A) _J
i (b : B) presumes J : A _U

i+1 B
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Understanding degrees

(a : A) _f
0 (b : B) a maps to b along . . .

f : (A : U0) _U0

1 (B : U0) Any function f.

ϕ : (G : Grp) _Grp
1 (H : Grp) Any morphism ϕ .

ψ : (G : Grp) _P
1 (M : Monoid) Any heterogeneous morphism ψ along . . .

P : (Grp : U1) _U1

2 (Monoid : U1) Any profunctor P
e.g. P = HomMonoid(UGrp⌞⌟,⌞⌟)
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P : (Grp : U1) _U1

2 (Monoid : U1) Any profunctor P
e.g. P = HomMonoid(UGrp⌞⌟,⌞⌟)
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Understanding modalities: Limits

lim⊕

e : (lim⊕ p X : Grp)→ |X |

G = H //

��

eG = eH

��

p : G _idGrp
0 H

‡
��

ϕ : G _HomGrp
1 H

��

// eG _|ϕ|
0 eH

��

⊤ // ⊤

ftr⊕

|⌞⌟| : (ftr⊕ p Grp)→ U0

G = H //

��

|G|= |H|

��

G _idGrp
0 H

‡
��

|G| _
idU0

0 |H|

‡
��

G _HomGrp
1 H

��

|G| _
HomU0

1 |H|

��

⊤ // ⊤
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Understanding modalities: Limits

lim⊖

hd : (lim⊖ p X : CoalgN×⌞⌟)→ |X | → N

X = Y //

��

hdX = hdY

��

p : X _
idCoalgN×⌞⌟
0 Y

‡
��

ϕ : X _
HomCoalgN×⌞⌟
1 Y

��

⊖
// hdX ^⌞⌟◦|ϕ|

0 hdY

��

⊤ // ⊤

ftr⊖

λX .(|X | → N) : (ftr⊖ p CoalgN×⌞⌟)→ U0

X = Y //

��

N|X | = N|Y |

��

X _
idCoalgN×⌞⌟
0 Y

‡
��

N|X | _
idU0

0 N|Y |

†
��

G _HomGrp
1 H

��

N|X |^
HomU0

1 N|Y |

��

⊤ // ⊤
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The mode theory

NatPT instantiates MTT (Multimode Type Theory) with:

▶ Modes are dimensions p ∈ N (+ you can mark a degree i < n as symmetric)

▶ Modalities µ : p → q are certain functions

{0, . . . ,q−1}→ {(=),0, . . . ,p−1,⊤}×{⊛,⊕,⊖,⊗}
where f : (µ p x : A)→ B(x) sends

(r : x _A
i·µ y) → f (x) _B(r)

i f (y).

Modal types:
modµ x _⟨µ|A⟩

i modµ y = x _A
i·µ y

▶ 2-cells are degree-wise inequalities.
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Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness

(RelDTT)
[ND18]

directify
oo
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The Model
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The Twisted Prism Functor

∆ is a skeleton of (hence ≃) NEFinLinOrd.

Twisted Prism Functor [PK20]

⌞⌟⋉I : NEFinLinOrd → NEFinLinOrd :
W 7→ W op ⊎< W

a // b 7→

(a,0)

��

(b,0)oo

��

(a,1) // (b,1)

MTraS shape modelled by ⌞⌟⋉I reconciles:

▶ Hom as a contra-/covariant bifunctor,
▶ Hom as a constrained function type.

I as an MTraS-shape is better behaved on 1:

Twisted Cube Category 1 [PK20]

(Roughly) the subcategory of NEFinLinOrd
(or ∆) generated by ⊤ and ⌞⌟⋉I.

 Use 1 instead of ∆.

 Pinyo & Kraus carve 1 out of graph
category.
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Jet Set of dimension n

Set equipped with n Prop-valued jet-relations _i such that:

▶ _i is reflexive
▶ _i implies ]i+1

▶ Intervals L_iM = {0 _i 1}
▶ Twisted prism functor ⌞⌟⋉ L_iM only ops degree i
▶ Jet cubes are generated by ⊤ and ⌞⌟⋉ L_iM

? What is a morphism of jet cubes?

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 52 / 58



Jet Set of dimension n

Set equipped with n Prop-valued jet-relations _i such that:

▶ _i is reflexive
▶ _i implies ]i+1

▶ Intervals L_iM = {0 _i 1}
▶ Twisted prism functor ⌞⌟⋉ L_iM only ops degree i
▶ Jet cubes are generated by ⊤ and ⌞⌟⋉ L_iM

? What is a morphism of jet cubes?

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 52 / 58



Jet Set of dimension n

Set equipped with n Prop-valued jet-relations _i such that:

▶ _i is reflexive
▶ _i implies ]i+1

▶ Intervals L_iM = {0 _i 1}
▶ Twisted prism functor ⌞⌟⋉ L_iM only ops degree i
▶ Jet cubes are generated by ⊤ and ⌞⌟⋉ L_iM

? What is a morphism of jet cubes?

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory 52 / 58



The Category of Jet Cubes

JetCuben

))

ForgetDeg

��

• JetSetn

U

��

Cube◊M Endpoints
// Set

▶ What interval operations do you want?  Cube�
M
∼= Kleisli(M)op

▶ Do you want diagonals?  ◊ ∈ {2,�}
▶ Turns out only Cube20,1,¬ and Cube2FreeBoolAlg really work.
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? When is a morphism of cubes a morphism
of jet cubes?
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Semantic Modalities

 In progress. . .
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Three Approaches to the Model

Tamsamani & Simpson’s
model of 2-categories

(2-simplicial sets)
heterogenize

//

higher
dimension

��

Pro-arrow
(pre-)equipments
[Woo82,Woo85]

higher
dimension

��

Bridge/path
cubical sets
(ParamDTT)

[NVD17]
directify
oo

higher
dimension

��

Tamsamani & Simpson’s
model of n-categories

(n-simplicial sets)
[CL04,Tam99,Sim97]

heterogenize
// Naturality
(Pre)type Theory

Degrees of
Relatedness
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Depth n types

▶ i-edge relations ⌢i

▶ Dependency:
r : a ⌢R

i b presumes R : A ⌢U
i+1 B

▶ Degradation:
a ⌢i b ⇒ a ⌢i+1 b

▶ Modalities change indices:

a ⌢0 b

��

fa ⌢0 fb

��

a ⌢0 b

��

// fa ⌢0 fb

��
a ⌢1 b

��

::

fa ⌢1 fb a ⌢1 b

��

// fa ⌢1 fb

��
a ⌢2 b

::

lim⊕
a ⌢2 b //

ftr⊕
fa ⌢2 fb

n-equipments

▶ i-jet (proi−1-arrow) relations _i

▶ Dependency:
j : a _J

i b presumes J : A _U
i+1 B

▶ Companion / conjoint:
(‡,†) : a _i b ⇒ a ]i+1 b

▶ Modalities change indices & orientation:

a _0 b

⊛

��

fa _0 fb

⊛

��

a _0 b

⊛

��

⊕
// fa _0 fb

⊛

��
a _1 b

⊛

��

⊕
::

fa _1 fb a _1 b

⊛

��

⊖
// fa _1 fb

⊛

��
a _2 b

⊕
::

lim⊖
a _2 b

⊕
//

ftr⊖
fa _2 fb
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Understanding modalities: Irrelevance

irr : values → values

[ ] : (irr p n : N)→ Listn A

m = n //

��

[ ]m = [ ]n

��

r : m ⌢N
0 n

��

[ ]m ⌢List• A
0 [ ]n

��

• :⊤

77

⊤

shi : values → types

λn.Listn A : (shi p n : N)→ U0

m = n //

��

Listm A = Listn A

��

Listm A ⌢
U0

0 Listn A

��

m ⌢N
0 n

��

Listm A ⌢
U0

1 Listn A

��

⊤ ⊤
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