Higher Pro-Arrows: Towards a Model for Naturality Pretype Theory

Andreas Nuyts

HoTTEST May 2, 2024

https://anuyts.github.io/files/2024/natpt-hottest-pres.pdf

Introduction

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

With native support for relations/morphisms:

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free! and not just for Type ---- Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ...and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions. (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free! ...and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions. (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free! ...and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions. (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free! ...and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- synthetic (∞ , ∞)-category theory.

Consequences

- Types stratified by finite dimensions. (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free! ...and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

So how is **Directed TT** relevant to **verified functional programming**? **An example problem**

 \square \square

Α

f

 $\overset{+}{B}$

Monad

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List $A \rightarrow$ List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

- Object action: WriterT $W \in$ MonadTrans
 - Object action: WriterT $WM \in$ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- \dots Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : $M \rightarrow$ WriterT WM + naturality
 - Respects return & bind
- ► Functorial action: WriterT h : WriterT V → WriterT W
 - WriterT h M A
 - Respects return, bind & lift
 - naturality w.r.t. A
 - naturality w.r.t. M
 - + functor laws

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List $A \rightarrow$ List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

WriterT : Monoid \rightarrow MonadTrans

- Object action: WriterT $W \in$ MonadTrans
 - Object action: WriterT $WM \in$ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in$ MonadTrans
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : $M \rightarrow$ WriterT W M + naturality
 - Respects return & bind
 - Functorial action: WriterT h : WriterT $V \rightarrow$ WriterT W
 - ► WriterT*hMA*
 - Respects return, bind & lift
 - naturality w.r.t. A
 - naturality w.r.t. M
 - + functor laws

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List $A \rightarrow$ List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

- Object action: WriterT $W \in$ MonadTrans
 - Object action: WriterT $WM \in$ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- \dots Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : $M \rightarrow$ WriterT WM + naturality
 - Respects return & bind
- ► Functorial action: WriterT h : WriterT V → WriterT W
 - WriterT h M A
 - Respects return, bind & lift
 - naturality w.r.t. A
 - naturality w.r.t. M
 - + functor laws

In parametric DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List $A \rightarrow$ List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

- Object action: WriterT $W \in$ MonadTrans
 - Object action: WriterT $WM \in$ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + in naturality

- \dots Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT Wg
 - Respects return & bind
 - + functor laws
 - ▶ lift : $M \rightarrow$ WriterT WM + m naturality
 - Respects return & bind
- ► Functorial action: WriterT h : WriterT V → WriterT W
 - WriterT h M A
 - Respects return, bind & lift
 - maturality w.r.t. A
 - 🕨 🋍 naturality w.r.t. M
 - + functor laws

In HoTT (assuming f, g and h = List f are isos)

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - ▶ W List f : List A ≅ List B (by recursion)
 - $\mathbf{\tilde{w}}$ List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by ind.)
 - + 🛍 functor laws (by induction)

Functoriality of

- Object action: WriterT $W \in$ MonadTrans
 - Object action: WriterT $WM \in$ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + 🋍 functor laws
 - return & bind + in naturality

- \dots Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + 🋍 functor laws
 - lift : $M \rightarrow WriterT W M + 1$ naturality
 - Respects return & bind
- Functorial action: WriterT h: WriterT $V \cong$ WriterT W
 - WriterT hMA
 - Bespects return, bind & lift
 - maturality w.r.t. A
 - 🕨 🋍 naturality w.r.t. M
 - + 🋍 functor laws

In Naturality TT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - \mathbf{U} List f : List $A \rightarrow$ List B (by recursion)
 - $\mathbf{\tilde{w}}$ List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by ind.)
 - + 🛍 functor laws (by induction)

Functoriality of

- Object action: WriterT $W \in$ MonadTrans
 - Object action: WriterT $WM \in$ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + 🋍 functor laws
 - return & bind + in naturality

- \dots Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + 🋍 functor laws
 - ▶ lift : $M \rightarrow$ WriterT WM + 1 naturality
 - Respects return & bind
- Functorial action: WriterT h: WriterT $V \rightarrow$ WriterT W
 - WriterT hMA
 - Bespects return, bind & lift
 - maturality w.r.t. A
 - 🕨 🋍 naturality w.r.t. M
 - + 🋍 functor laws

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- ► *A* : Type

ReaderT $RMA := R \rightarrow MA$ is **contravariant** w.r.t.

► *R* : Type

return : $A \rightarrow$ WriterT WMA is **natural** w.r.t.

- W : Monoid
- M : Monad
- ▶ А : Туре

gnoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

► R : Type

return : $A \rightarrow$ WriterT WMA is **natural** w.r.t.

- ► W : Monoid
- M : Monad
- ▶ А : Туре

gnoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
 - Param'ty: relations, not morphisms
 Oon't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

► R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

- W : Monoid
- M : Monad
- 🕨 А : Туре

gnoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
 - Param'ty: relations, not morphisms
 Oon't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use Holl I when applicable

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

► R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

- W : Monoid
- M : Monad
- 🕨 А : Туре

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

► R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

- W : Monoid
- M : Monad
- 🕨 А : Туре

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- ► A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

► R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

- W : Monoid
- M : Monad
- 🕨 А : Туре

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is covariant w.r.t.

- W : Monoid
- M : Monad
- A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

► R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

- W : Monoid
- M : Monad
- 🕨 А : Туре

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary
Pretypes: A Note on Fibrancy

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Naturality Pretype Theory

We **ignore** fibrancy for now:

- Functoriality & Segal fibrancy are brittle ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT17, Nuy20]
 - Amazing right adjoint [LOPS18] 8 Transpension [ND24]
 - Internal fibrant replacement monad [Nuy20, other?]

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Naturality Pretype Theory

We **ignore** fibrancy for now:

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT17, Nuy20]
 - Amazing right adjoint [LOPS18] 8 Transpension [ND24]
 - Internal fibrant replacement monad [Nuy20, other?]

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Naturality Pretype Theory

We **ignore** fibrancy for now:

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT17, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension [ND24]
 - Internal fibrant replacement monad [Nuy20, other?]

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Definition

A CwF is locally democratic if every arrow $\sigma : \Delta \to \Gamma$ is isomorphic to some $\pi : \Gamma . T \to \Gamma$.

Internalizing an AWFS [§8.5 of my PhD thesis]

- A CwF is exactly a model of the structural rules of DTT.
- On a locally democratic CwF, the following correspond:
 - Defining an AWFS whose right replacement monad RR preserves pullbacks,
 - Modelling an internal monad RR on types with a functorial action on dependent functions (+ equations):

 $\Gamma, \alpha : \operatorname{RR} A \vdash T \text{ type} \\
\Gamma \vdash f : (x : A) \to T(\eta_{\operatorname{RR}}(x)) \\
\Gamma \vdash \operatorname{RR} f : (\alpha : \operatorname{RR} A) \to (\operatorname{RR} T)(\alpha)$

Definition

A CwF is locally democratic if every arrow $\sigma : \Delta \to \Gamma$ is isomorphic to some $\pi : \Gamma . T \to \Gamma$.

Internalizing an AWFS [§8.5 of my PhD thesis]

- A CwF is exactly a model of the structural rules of DTT.
- On a locally democratic CwF, the following correspond:
 - Defining an AWFS whose right replacement monad RR preserves pullbacks,
 - Modelling an internal monad RR on types with a functorial action on dependent functions (+ equat

 $\begin{array}{l} \Gamma, rx : \operatorname{RR} A \vdash T \text{ type} \\ \Gamma \vdash f : (x : A) \to T(\eta_{\operatorname{RR}}(x)) \\ \hline \Gamma \vdash \operatorname{RR} f : (rx : \operatorname{RR} A) \to (\operatorname{RR} T)(rx) \end{array}$

Definition

A CwF is locally democratic if every arrow $\sigma : \Delta \to \Gamma$ is isomorphic to some $\pi : \Gamma . T \to \Gamma$.

Internalizing an AWFS [§8.5 of my PhD thesis]

- A CwF is exactly a model of the structural rules of DTT.
- On a locally democratic CwF, the following correspond:
 - Defining an AWFS whose right replacement monad RR preserves pullbacks,
 - Modelling an internal monad RR on types with a functorial action on dependent functions (+ equations):

$$\begin{array}{l} \Gamma, rx : \mathsf{RR} A \vdash T \text{type} \\ \Gamma \vdash f : (x : A) \to T(\eta_{\mathsf{RR}}(x)) \\ \hline \Gamma \vdash \mathsf{RR} f : (rx : \mathsf{RR} A) \to (\mathsf{RR} T)(rx) \end{array}$$

Separation of concerns:

We need modalities to keep track of variance.

- Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

- Instantiate MTraS (Modal Transpension System) [ND24]
- The syntax is their problem!
- Interaction with MTT is their problem!

Separation of concerns:

We need modalities to keep track of variance.

- Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

- Instantiate MTraS (Modal Transpension System) [ND24]
- The syntax is their problem!
- Interaction with MTT is their problem!

Separation of concerns:

We need modalities to keep track of variance.

- Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

- Instantiate MTraS (Modal Transpension System) [ND24]
- The syntax is their problem!
- Interaction with MTT is their problem!

Separation of concerns:

We need modalities to keep track of variance.

- Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

- Instantiate MTraS (Modal Transpension System) [ND24]
- The syntax is their problem!
- ③ Interaction with MTT is their problem!

Let $R: \mathscr{C} \to \mathscr{D}$ be a functor.

 Γ ctx @ \mathscr{C} $\tau : \Gamma \to \Gamma' @ \mathscr{C}$ $\Gamma \vdash T$ type @ \mathscr{C} $\Gamma \vdash t : T @ \mathscr{C}$ $R\Gamma$ ctx @ \mathscr{D} $R\tau : R\Gamma \to R\Gamma' @ \mathscr{D}$ $R\Gamma \vdash RT$ type @ \mathscr{D} $R\Gamma \vdash Rt : RT @ \mathscr{D}$

Ok, so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \rightarrow R\Gamma$. **BUT:** Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

 $\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{B\Gamma \operatorname{ctx} @ \mathscr{D}} \qquad \frac{\tau : \Gamma \to \Gamma' @ \mathscr{C}}{B\tau : B\Gamma \to B\Gamma' @ \mathscr{D}}$

 $\Gamma \vdash T$ type $@ \mathscr{C}$

 $R\Gamma \vdash RT$ type $@ \mathscr{D}$

 $\frac{\Gamma \vdash t : T @ \mathscr{C}}{B\Gamma \vdash Bt \cdot BT @ \mathscr{D}}$

Ok, so how do we check

 $\land \vdash RT$ type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \rightarrow R\Gamma$. **BUT:** Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

 $\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{B\Gamma \operatorname{ctx} @ \mathscr{D}} \qquad \frac{\tau : \Gamma \to \Gamma' @ \mathscr{C}}{B\tau : R\Gamma \to R\Gamma' @ \mathscr{D}} \qquad \frac{\Gamma \vdash T \operatorname{type} @ \mathscr{C}}{B\Gamma \vdash RT \operatorname{type} @ \mathscr{D}} \qquad \frac{\Gamma \vdash t : T @ \mathscr{C}}{R\Gamma \vdash RT : RT @ \mathscr{D}}$

Ok. so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \rightarrow R\Gamma$. **BUT:** Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

 $\begin{array}{c} \Gamma \operatorname{ctx} @ \mathscr{C} \\ \hline R\Gamma \operatorname{ctx} @ \mathscr{D} \\ \hline R\tau : R\Gamma \to R\Gamma' @ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash T \operatorname{type} @ \mathscr{C} \\ \hline R\Gamma \vdash RT \operatorname{type} @ \mathscr{D} \\ \hline R\Gamma \vdash RT \operatorname{type} @ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : T @ \mathscr{C} \\ \hline R\Gamma \vdash Rt : RT @ \mathscr{D} \\ \hline \end{array}$

Ok, so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type @ \mathscr{C} and substitute with $\sigma : \Delta \rightarrow R\Gamma$. BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

 $\begin{array}{c} \Gamma \operatorname{ctx} @ \, \mathscr{C} \\ \hline R\Gamma \operatorname{ctx} @ \, \mathscr{D} \\ \hline R\tau : R\Gamma \to R\Gamma' @ \, \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash T \operatorname{type} @ \, \mathscr{C} \\ \hline R\Gamma \vdash RT \operatorname{type} @ \, \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : T @ \, \mathscr{C} \\ \hline R\Gamma \vdash RT : RT @ \, \mathscr{D} \\ \hline \end{array}$

Ok, so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type @ \mathscr{C} and substitute with $\sigma : \Delta \rightarrow R\Gamma$. BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

 $\begin{array}{c} \Gamma \operatorname{ctx} @ \ \mathscr{C} \\ \hline R\Gamma \operatorname{ctx} @ \ \mathscr{D} \\ \hline R\tau : R\Gamma \to R\Gamma' @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash T \operatorname{type} @ \ \mathscr{C} \\ \hline R\Gamma \vdash RT \operatorname{type} @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : T @ \ \mathscr{C} \\ \hline R\Gamma \vdash RT : RT @ \ \mathscr{D} \\ \hline \end{array}$

Ok, so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type @ \mathscr{C} and substitute with $\sigma : \Delta \rightarrow R\Gamma$. BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

 $\begin{array}{c} \Gamma \operatorname{ctx} @ \ \mathscr{C} \\ \hline R\Gamma \operatorname{ctx} @ \ \mathscr{D} \\ \hline R\Gamma \operatorname{ctx} @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \tau : \Gamma \to \Gamma' @ \ \mathscr{C} \\ \hline R\tau : R\Gamma \to R\Gamma' @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash T \operatorname{type} @ \ \mathscr{C} \\ \hline R\Gamma \vdash RT \operatorname{type} @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : T @ \ \mathscr{C} \\ \hline R\Gamma \vdash RT : RT @ \ \mathscr{D} \\ \hline \end{array}$

Ok, so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type @ \mathscr{C} and substitute with $\sigma : \Delta \rightarrow R\Gamma$. BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context $L\Delta$ such that $\eta_{\Delta} : \Delta \to RL\Delta$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $L\Delta \to \Gamma'$.

 $\begin{array}{c} \Gamma \operatorname{ctx} @ \ \mathscr{C} \\ \hline R\Gamma \operatorname{ctx} @ \ \mathscr{D} \\ \hline R\Gamma \operatorname{ctx} @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \tau : \Gamma \to \Gamma' @ \ \mathscr{C} \\ \hline R\tau : R\Gamma \to R\Gamma' @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash T \operatorname{type} @ \ \mathscr{C} \\ \hline R\Gamma \vdash RT \operatorname{type} @ \ \mathscr{D} \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : T @ \ \mathscr{C} \\ \hline R\Gamma \vdash RT : RT @ \ \mathscr{D} \\ \hline \end{array}$

Ok, so how do we check

? $\Delta \vdash RT$ type

We check $\Gamma \vdash T$ type @ \mathscr{C} and substitute with $\sigma : \Delta \rightarrow R\Gamma$. BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context $L\Delta$ such that $\eta_{\Delta} : \Delta \to RL\Delta$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $L\Delta \to \Gamma'$.

+ some sensible laws $\sim L \dashv R$.

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

modes p, q, r, ...

• modalities $\mu : p \rightarrow q$

 $\begin{array}{c} \Gamma \operatorname{ctx} @ q & \Gamma, \textcircled{\textbf{\square}}_{\mu} \vdash T \operatorname{type} @ p & \Gamma, \textcircled{\textbf{\square}}_{\mu} \vdash t : T @ p \\ \hline \Gamma, \textcircled{\textbf{\square}}_{\mu} \operatorname{ctx} @ p & \Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q & \Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q \end{array}$

• (2-cells $\pmb{lpha}:\pmb{\mu}\Rightarrow\pmb{v}).$

Semantics:

- [[p]] is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

modes p, q, r, ...

• modalities
$$\mu: p \rightarrow q$$

 $\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \bigoplus_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$

• (2-cells $\pmb{lpha}:\pmb{\mu}\Rightarrow\pmb{ u}).$

Semantics:

- \triangleright [p] is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

- modes p, q, r, ...
- modalities $\mu : p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \bigoplus_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$$

• (2-cells $\pmb{lpha}:\pmb{\mu}\Rightarrow\pmb{ u}).$

Semantics:

- $\llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

- modes p, q, r, ...
- modalities $\mu : p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \bigoplus_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$$

• (2-cells $\pmb{lpha}:\pmb{\mu}\Rightarrow\pmb{ u})$

Semantics:

- [p] is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

- modes p, q, r, ...
- modalities $\mu : p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \bigoplus_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$$

► (2-cells α : $\mu \Rightarrow \nu$).

Semantics:

- [p] is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \Theta_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

- modes p, q, r, ...
- modalities $\mu : p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \bigoplus_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$$

► (2-cells α : $\mu \Rightarrow \nu$).

Semantics:

- [p] is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \Theta_{\mu} \rrbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

- modes p, q, r, ...
- ▶ modalities μ : $p \rightarrow q$

 $\begin{array}{c} \Gamma\mathsf{ctx} @ q & \Gamma, \textcircled{\texttt{a}}_{\mu} \vdash T \operatorname{type} @ p & \Gamma, \textcircled{\texttt{a}}_{\mu} \vdash t : T @ p \\ \hline \Gamma, \textcircled{\texttt{a}}_{\mu} \operatorname{ctx} @ p & \Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q & \Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q \end{array}$

• (2-cells $\pmb{lpha}:\pmb{\mu}\Rightarrow\pmb{ u}).$

Semantics:

- \triangleright [*p*] is a (often presheaf) category modelling all of DTT,
- $\llbracket \mu \rrbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \Theta_{\mu} \rrbracket$,
Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put **shape context** Ξ in the **mode**.

- ► $\Xi \in \operatorname{Psh}(\mathscr{W})$
- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ K U)! : Psh(𝒴) → Psh(𝒴)
 ∃∫Ξ + ∃∫Ξ : f_𝒴 Ξ → f_𝒴(Ξ, 𝒴): U)

	$\begin{bmatrix} \mathbf{A}_{\forall u}^{\exists u} \end{bmatrix}$	[∩ [∀] <i>u</i>]	

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put **shape context** Ξ in the **mode**.

 $\blacktriangleright \ \equiv \in \operatorname{Psh}(\mathscr{W})$

- ▶ Pick any old functor $\Box \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 ∃^{[]Ξ} = ∃^{[]Ξ} = ∃^{[]Ξ} : f_𝒴 = → f_𝒴(Ξ, 𝒴)

	$\left[\mathbf{A}_{\forall u}^{\exists u} \right]$	∏ A∀ <i>u</i> ≬ <i>u</i>]	

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

► $\Xi \in \operatorname{Psh}(\mathscr{W})$

- Pick any old functor $\Box \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 ∃¹/₂^Ξ → ∃¹/₂^Ξ : f₁₂[∞] = → f₁₂(Ξ µ : U)

	$\begin{bmatrix} \mathbf{A}_{\forall u}^{\exists u} \end{bmatrix}$	[₽ [∀] <i>u</i>]	

Idea: Treat

$$\exists (u:\mathbb{U}) \quad \dashv \quad \exists [u] \quad \dashv \quad \forall (u:\mathbb{U}) \quad \dashv \quad [u] \\ \Sigma(u:\mathbb{U}) \quad \dashv \quad \Omega[u] \quad \dashv \quad \Pi(u:\mathbb{U})$$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

► $\Xi \in \operatorname{Psh}(\mathscr{W})$

- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 □∫^Ξ □ □∫^Ξ : (□ Ξ □ ∧ (□ ∪ ∪ U)

	$\left[\mathbf{A}_{\forall u}^{\exists u} \right]$	∏ A∀ <i>u</i> ≬ <i>u</i>]	

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

- ► $\Xi \in Psh(\mathscr{W})$
- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 ∃^{fΞ}_{II} + ∃^{fΞ}_{II} : ∫_𝒴 Ξ → ∫_𝒴(Ξ, u : U)

		[∩ ∛ <i>u</i>]	

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

- ► $\Xi \in Psh(\mathscr{W})$
- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : \operatorname{Psh}(\mathscr{W}) \to \operatorname{Psh}(\mathscr{W})$

 $\blacktriangleright \exists_{\mathbb{U}}^{J\Xi} \dashv \exists_{\mathbb{U}}^{J\Xi} : \int_{\mathscr{W}} \Xi \to \int_{\mathscr{W}} (\Xi, u : \mathbb{U})$

		$\begin{bmatrix} \mathbf{A}_{\mathbf{X}}^{\forall \boldsymbol{u}} \end{bmatrix}$	

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

- ► $\Xi \in Psh(\mathscr{W})$
- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 ∃^{∫Ξ}_U ⊣ ∃^{∫Ξ}_U : ∫_𝒴 Ξ → ∫_𝒴(Ξ, u : U)

	$\begin{bmatrix} \mathbf{A}_{\forall u}^{\exists u} \end{bmatrix}$		

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put shape context Ξ in the mode.

- ► $\Xi \in \operatorname{Psh}(\mathscr{W})$
- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 ∃^{∫Ξ}_U ⊣ ∃^{∫Ξ}_U : ∫_𝒴 Ξ → ∫_𝒴(Ξ, u : U)

(∃ _U [∫] ≡)!	Η	$(\exists_{\mathbb{U}}^{\int\Xi})^{*}$	Η	$(\exists^{\int\Xi}_{\mathbb{U}})_*$		
		۶		۶		
		(⊣ ^{∫≡})!	Η	(∃ ^{∫≡})*	Η	(∃ _U ∫≡)∗
∃≣	Η	Ę	Η	$\forall_{\mathbb{U}}^{\Xi}$	Η	$\emptyset_{\mathbb{U}}^{\Xi}$
	4		-	[∩ [∀] <i>u</i>]		
		[[⊣ u]]	\dashv	[∀ <i>u</i>]]	\dashv	[[≬ u]]

Idea: Treat

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

Solution: Put **shape context** Ξ in the **mode**.

► $\Xi \in \operatorname{Psh}(\mathscr{W})$

- $\blacktriangleright \text{ Pick any old functor } \sqcup \ltimes \mathbb{U} : \mathscr{W} \to \mathscr{W}$
- Shape context extension is
 (□ ⋉ U)! : Psh(𝒴) → Psh(𝒴)
 ∃^{∫Ξ}_U ⊣ ∃^{∫Ξ}_U : ∫_𝒴 Ξ → ∫_𝒴(Ξ, u : U)

	$\begin{bmatrix} \mathbf{A}_{\forall u}^{\exists u} \end{bmatrix}$	[₽ [∀] <i>u</i>]	

Introduction: Wrapping up

- We want to preserve **relations**, **morphisms** and **isomorphisms**.
- We need variance > MTT

- For now, we care about:
 - a mode theory,
 - a presheaf model for each mode,
 - an adjunction for each modality,
 - a functor for each interval.

Three Approaches to the Model

Tamsamani & Simpson's model of *n*-Categories

Tamsamani (1999) Simpson (1997) see Cheng & Lauda (2004)

A reflexive graph Γ has:

- A set of nodes Γ₀
- A set of edges Γ₁
- $\blacktriangleright \ \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra,
- For each monotonic $f : \{0..m\} \hookrightarrow \{0..n\}$ a **face map** $\Gamma_f : \Gamma_n \to \Gamma_m$ (vertices of, edges of, faces of, ...)
- For each monotonic f: {0..m} → {0..n}, a degeneracy map Γ_f: Γ_n → Γ_m (flat tetrahedra)

It is a diagram in Set:

It is a diagram in Set:

A reflexive graph Γ has:

- A set of nodes Γ₀
- A set of edges Γ₁
- $\blacktriangleright \ \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...
- For each monotonic $f : \{0..m\} \hookrightarrow \{0..n\}$ a **face map** $\Gamma_f : \Gamma_n \to \Gamma_m$ (vertices of, edges of, faces of, ...)
- For each monotonic f: {0..m} → {0..n}, a degeneracy map Γ_f: Γ_n → Γ_m (flat tetrahedra)

It is a presheaf over RG:

It is a diagram in Set:

A reflexive graph Γ has:

- A set of nodes Γ₀
- A set of edges Γ₁
- $\blacktriangleright \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \text{ and } \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic f: {0..m} ↔ {0..n}, a face map Γ_f: Γ_n → Γ_m (vertices of, edges of, faces of, ...)
- For each monotonic f: {0..m} → {0..n}, a degeneracy map Γ_f: Γ_n → Γ_m (flat tetrahedra)

It is a presheaf over RG:

It is a diagram in Set:

A reflexive graph Γ has:

- A set of nodes Γ₀
- A set of edges Γ₁
- $\blacktriangleright \ \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic f: {0..m} ↔ {0..n}, a face map Γ_f: Γ_n → Γ_m (vertices of, edges of, faces of, ...)
- For each monotonic $f : \{0..m\} \rightarrow \{0..n\}$, a **degeneracy map** $\Gamma_f : \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a presheaf over RG:

Simplex category Δ

 Δ is a skeleton of NonEmptyFinLinOrd

A reflexive graph Γ has:

- A set of nodes Γ₀
- A set of edges Γ₁
- $\blacktriangleright \ \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic f: {0..m} ↔ {0..n}, a face map Γ_f: Γ_n → Γ_m (vertices of, edges of, faces of, ...)
- For each monotonic $f : \{0..m\} \rightarrow \{0..n\}$, a **degeneracy map** $\Gamma_f : \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a presheaf over RG:

Simplex category Δ

 Δ is a skeleton of NonEmptyFinLinOrd

Nerve $N(\mathscr{C})$ of a category \mathscr{C}

Simplicial set whose:

- nodes are objects
- edges are morphisms
- triangles are commutative diagrams
- $(n \ge 3)$ -simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a category?

A: If every chain of *n* edges

 $\bullet \longrightarrow \bullet \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$

is the **spine** (Hamiltonian path) of a unique *n*-simplex. I.e. if compositions uniquely exist.

Categories \simeq Segal simplicial sets

Nerve $N(\mathscr{C})$ of a category \mathscr{C}

Simplicial set whose:

- nodes are objects
- edges are morphisms
- triangles are commutative diagrams
- $(n \ge 3)$ -simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a category?

A: If every chain of *n* edges

is the **spine** (Hamiltonian path) of a unique *n*-simplex. I.e. if compositions uniquely exist.

Categories \sim Segal simplicial sets

Nerve $N(\mathscr{C})$ of a category \mathscr{C}

Simplicial set whose:

- nodes are objects
- edges are morphisms
- triangles are commutative diagrams
- $(n \ge 3)$ -simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a category?

A: If every chain of *n* edges

is the **spine** (Hamiltonian path) of a unique *n*-simplex. I.e. if compositions uniquely exist.

Categories \simeq Segal simplicial sets

Let $(\mathscr{V}, I, \otimes)$ be a monoidal category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** Hom $(x, y) \in \text{Obj}(\mathscr{V})$,
- $\blacktriangleright \operatorname{id}_{x}: I \to \operatorname{Hom}(x, x)$
- ▶ \circ : Hom(y, z) \otimes Hom(x, y) \rightarrow Hom(x, z)

Strict *n*-category

A 0-category is a **set**.

An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04] A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99] One such time yes! → using double / *n*-fold categories

Let $(\mathscr{V}, \top, \times)$ be a cartesian category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** Hom $(x, y) \in \text{Obj}(\mathscr{V})$,
- ▶ $\operatorname{id}_{x}: \top \to \operatorname{Hom}(x, x)$
- ▶ \circ : Hom(y, z) × Hom(x, y) → Hom(x, z)

Strict n-category

A 0-category is a **set**.

An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04] A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99] One such time yes! → using double / *n*-fold categories

Let $(\mathscr{V}, \top, \times)$ be a cartesian category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** Hom $(x, y) \in \text{Obj}(\mathscr{V})$,
- ▶ $\operatorname{id}_{x}: \top \to \operatorname{Hom}(x, x)$
- ▶ \circ : Hom(y, z) × Hom(x, y) → Hom(x, z)

Strict n-category

- A 0-category is a set.
- An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04] A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99] One such time yes! → using double / *n*-fold categories

Let $(\mathscr{V}, \top, \times)$ be a cartesian category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** Hom $(x, y) \in \text{Obj}(\mathscr{V})$,
- ▶ $\operatorname{id}_{x}: \top \to \operatorname{Hom}(x, x)$
- ▶ \circ : Hom(y, z) × Hom(x, y) → Hom(x, z)

Strict n-category

- A 0-category is a set.
- An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04] A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99] One such time yes!

using double / n-fold categories

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

a double category whose vertical arrows are trivial.

An *n*-fold category is:

an *n*-simplicial set $\mathscr{C} \in Psh(\Delta^n)$ satisfying the Segal condition in each dimension.

A T&S *n*-category is:

an *n*-fold category where only

- (1)-arrows, (1-cells)
- (1,2)-squares, (2-cells)
- (1,2,3)-cubes, (3-cells)

can be non-trivial

Pretypes!

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

a double category whose vertical arrows are trivial.

An *n*-fold category is:

an *n*-simplicial set $\mathscr{C} \in Psh(\Delta^n)$ satisfying the Segal condition in each dimension.

A T&S n-category is:

an *n*-fold category where only

- (1)-arrows, (1-cells)
- (1,2)-squares, (2-cells)
- (1,2,3)-cubes, (3-cells)

can be non-trivial.

Pretypes!

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in Psh(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

a double category whose vertical arrows are trivial.

An *n*-fold category is:

an *n*-simplicial set $\mathscr{C} \in \operatorname{Psh}(\Delta^n)$ satisfying

the **Segal condition** in each dimension.

A T&S n-category is:

an *n*-fold category where only

- (1)-arrows, (1-cells)
- (1,2)-squares, (2-cells)
- (1,2,3)-cubes, (3-cells)

can be non-trivial.

Pretypes!

. . .

Three Approaches to the Model

Pro-arrow Equipments

Richard J. Wood (1982, 1985)

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- ▶ arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Set)

Set is an **equipment** with:

sets

- functions
- relations
 - identity relation: equality
 - $(R; S)(x, z) = \\ \exists y. R(x, y) \land S(y, z)$

• proofs that $R(a,b) \Rightarrow S(fa,gb)$

(Pro-arrow) Equipment

An equipment $\mathscr C$ is a double category with

- objects
- ▶ arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Set)

Set is an equipment with:

sets

- functions
- relations
 - identity relation: equality
 - $(R; S)(x, z) = \\ \exists y. R(x, y) \land S(y, z)$

• proofs that $R(a,b) \Rightarrow S(fa,gb)$

(Pro-arrow) Equipment

An equipment $\mathscr C$ is a double category with

- objects
- ▶ arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Set)

Set is an equipment with:

sets

- functions
- relations
 - identity relation: equality
 - $(R;S)(x,z) = \exists y.R(x,y) \land S(y,z)$

• proofs that
$$R(a,b) \Rightarrow S(fa,gb)$$

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- \blacktriangleright arrows (\rightarrow)
- ▶ pro-arrows (\rightarrow)
- squares

such that every arrow $\varphi : x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- ▶ profunctors $\mathscr{P} : \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$\begin{array}{c} (\mathscr{P};\mathscr{Q})(x,z) = \\ \text{coend} \\ \exists y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z) \end{array}$$

• $\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$

$$\begin{array}{c} \mathscr{A} \xrightarrow{\mathscr{P}} \mathscr{B} \\ \mathsf{F} \downarrow & \qquad \downarrow \mathsf{G} \\ \mathscr{C} \xrightarrow{} \mathscr{D} \end{array} \end{array}$$

Example (Cat)

Cat is a T&S 2-category with:

- categories
- functors
- trivial (2)-arrows

▶ nat. transformations $\forall a.Hom(Fa, Ga)$ i.e. $\forall a, b.Hom(a, b) \Rightarrow Hom(Fa, Gb)$

To get **heterogeneous** nat. transformations: **drop** T&S's triviality condition!

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- ▶ profunctors $\mathscr{P} : \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$\begin{array}{c} (\mathscr{P};\mathscr{Q})(x,z) = \\ \stackrel{\text{coend}}{\exists} y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z) \end{array}$$

end

$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$

Example (Cat)

Cat is a T&S 2-category with:

- categories
- functors
- trivial (2)-arrows

▶ nat. transformations $\forall a.\text{Hom}(Fa,Ga)$ i.e. $\forall a, b.\text{Hom}(a,b) \Rightarrow \text{Hom}(Fa,Gb)$

To get **heterogeneous** nat. transformations: drop T&S's triviality condition!

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- ▶ profunctors $\mathscr{P} : \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$\begin{array}{c} (\mathscr{P};\mathscr{Q})(x,z) = \\ \stackrel{\text{coend}}{\exists} y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z) \end{array}$$

end

$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$

Example (Cat)

Cat is a **T&S 2-category** with:

- categories
- functors
- trivial (2)-arrows

▶ nat. transformations $\forall a. \text{Hom}(Fa, Ga)$ i.e. $\forall a, b. \text{Hom}(a, b) \Rightarrow \text{Hom}(Fa, Gb)$

To get **heterogeneous** nat. transformations: **drop** T&S's triviality condition!

Example (Cat)

Cat is an equipment with:

- categories
- functors
- ▶ profunctors $\mathscr{P} : \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$\begin{array}{c} (\mathscr{P};\mathscr{Q})(x,z) = \\ \stackrel{\text{coend}}{\exists} y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z) \end{array}$$

end

$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$

Three Approaches to the Model

Higher	
Pro-arrow	
Equipments	

Higher Pro-arrow Equipments

Set is ...

- 🙁 A large set
- A category
- An equipment

Cat is . .

- 🙁 A category
- A 2-category
- 🙂 An equipment

Eqmnt is ...

- An equipment
- A 2-equipment

Eqmnt has:

- Objects Equipments Arrows Equipment functors
- Pro-arrows Equipment profunctors: Contain arrows and pro-arrows
- Pro-pro-arrows Equipment **pro-profunctors:** Contain pro-arrows
 - Squares ..
 - Cubes ...

Higher Equipment

$$\Rightarrow \mathscr{C} \in \operatorname{Psh}(\Delta^n_{\dagger,\ddagger})$$

- 🙁 A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

An equipment

A 2-equipment

Eqmnt has:

- Objects Equipments Arrows Equipment functors Pro-arrows Equipment profunctors: Contain arrows and pro-arrows
- Pro-pro-arrows Equipment **pro-profunctors:** Contain pro-arrows
 - Squares ..
 - Cubes ...

Higher Equipment

$$\Rightarrow \mathscr{C} \in \operatorname{Psh}(\Delta^n_{\dagger,\sharp})$$

- 🙁 A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- A 2-equipment

Eqmnt has:

- Objects Equipments Arrows Equipment functors Pro-arrows Equipment profunctors: Contain arrows and pro-arrows
- Pro-pro-arrows Equipment **pro-profunctors:** Contain pro-arrows
 - Squares ..
 - Cubes ...

Higher Equipment

$$\Rightarrow \mathscr{C} \in \operatorname{Psh}(\Delta^n_{\dagger,\sharp})$$

- 🙁 A large set
- A category
- An equipment

Cat is ...

- 🙁 A category
- A 2-category
- An equipment

Eqmnt is ...

🙁 An equipment

A 2-equipment

Eqmnt has:

Objects Equipments

- Arrows Equipment functors
- Pro-arrows Equipment profunctors: Contain arrows and pro-arrows
- Pro-pro-arrows Equipment **pro-profunctors:** Contain pro-arrows

Squares ...

Cubes ...

Higher Equipment

$$\Rightarrow \mathscr{C} \in \operatorname{Psh}(\Delta^n_{\dagger,\ddagger})$$

🙁 A large set

- A category
- 🙂 An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

🙁 An equipment

A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

- Pro-arrows Equipment profunctors: Contain arrows and pro-arrows
- Pro-pro-arrows Equipment **pro-profunctors:** Contain pro-arrows

Squares ...

Cubes ...

Higher Equipment

$$\Rightarrow \mathscr{C} \in \operatorname{Psh}(\Delta^n_{\dagger,\ddagger})$$

"Equipment pro-profunctors"!? Are you making this up?

Only partially.

Hofmann-Streicher Universe [HS97

For any category \mathcal{W} , Psh(\mathcal{W}) models **DTT, with a universe** U^{HS}

Let $W \in Obj(\mathcal{W})$. A W-cell of U^{HS} contains:

a notion of dependent W-cells for all V < Obj(0%/M) a notion of dependent V-cella

Looking at this differently

Define $\mathcal{W} :\cong \mathcal{W}$. If $W \in \operatorname{Obj}(\mathcal{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathcal{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 Triangles express commutativity;
 pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \text{Obj}(\mathcal{W})$. A pro *W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- for all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 Triangles express commutativity;
 pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro *W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 - Triangles express commutativity;

- "Equipment pro-profunctors"!? Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro *W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality;
 pro-edges express relations.
 - Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 - Triangles express commutativity;

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro *W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

 $\mathsf{Consider} \ \mathsf{U}^{\mathsf{HS}}_{\mathscr{W}} \in \mathrm{Psh}(\mathscr{W}).$

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 - Triangles express commutativity;

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro *W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$. Consider $U^{HS}_{\mathscr{W}} \in \operatorname{Psh}(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 - Triangles express commutativity;

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro*W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 - Triangles express commutativity;

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro*W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 Triangles express commutativity;
 pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro*W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(𝒴/𝒴), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal.
 Arrows express morphisms;
 pro-arrows express profunctors.
 Triangles express commutativity;
 pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro*W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(W/W), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

U^{HS}_𝒜 is a **category** internal to Psh(𝒜) → U^{HS}_𝒜 is a **simplicial set** internal to Psh(𝒜) → U^{dir}_𝒜 ∈ Psh(𝒜 × Δ).

In particular:

	$Psh(\top)$	(sets)
U ^{dir} ⊤	$Psh(\Delta)$	(categories)
U_{Δ}^{dir}	$\mathrm{Psh}(\dot{\Delta} imes \Delta)$	(eqmnts)
$U^{dir}_{\dot{\Delta} \times \Delta}$	$\mathrm{Psh}(\ddot{\Delta} imes \dot{\Delta} imes \Delta)$	(2-eqmnts)

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro*W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(W/W), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

U^{HS}_𝒜 is a **category** internal to Psh(𝒜) → U^{HS}_𝒜 is a **simplicial set** internal to Psh(𝒜) → U^{dir}_𝒜 ∈ Psh(𝒜 × Δ). ⓒ **Directed layer** on top of your favorite TT!

In particular:

	$Psh(\top)$	(sets)
Udir	$Psh(\Delta)$	(categories)
U^{dir}_{Δ}	$\mathrm{Psh}(\dot{\Delta} imes\Delta)$	(eqmnts)
$U^{dir}_{\dot{\Delta} \times \Delta}$	$\mathrm{Psh}(\ddot{\Delta} imes \dot{\Delta} imes \Delta)$	(2-eqmnts)

- "Equipment pro-profunctors"!?Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \operatorname{Obj}(\mathcal{W})$. A pro*W*-cell of U^{HS} contains:

- a notion of dependent W-cells
- For all V ∈ Obj(W/W), a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

U^{HS}_𝒜 is a **category** internal to Psh(𝒜) → U^{HS}_𝒜 is a **simplicial set** internal to Psh(𝒜) → U^{dir}_𝒜 ∈ Psh(𝒜 × Δ). ⓒ **Directed layer** on top of your favorite TT!

In particular:

$$\begin{array}{rcl} & Psh(\top) & (sets) \\ \mathsf{U}^{\mathsf{dir}}_{\top} & \in & Psh(\Delta) & (categories) \\ \mathsf{U}^{\mathsf{dir}}_{\Delta} & \in & Psh(\dot{\Delta} \times \Delta) & (eqmnts) \\ \mathsf{U}^{\mathsf{dir}}_{\dot{\Delta} \times \Delta} & \in & Psh(\ddot{\Delta} \times \dot{\Delta} \times \Delta) & (2\text{-eqmnts}) \end{array}$$

- All of mankind is not an example of a human.
- The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- **Cat** is more than a (large) category.

It's not because you can truncate to achieve self-classification, that you should!

Provide the user with the unscathed classifier and the truncation modality.
 Use multimode type theory.

☺ Fixpoints: ∞Grpd is a (large) ∞-groupoid.

- All of mankind is not an example of a human.
- The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- Cat is more than a (large) category.

It's not because you can truncate to achieve self-classification, that you should!

Provide the user with the unscathed classifier and the truncation modality.
 Use multimode type theory.

Fixpoints: ∞Grpd is a (large) ∞-groupoid.

- All of mankind is not an example of a human.
- The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- **Cat** is more than a (large) category.

It's not because you can truncate to achieve self-classification, that you should!

Provide the user with the unscathed classifier and the truncation modality.
 Use multimode type theory.

☺ Fixpoints: ∞Grpd is a (large) ∞-groupoid.

- All of mankind is not an example of a human.
- The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- Cat is more than a (large) category.

It's not because you can truncate to achieve self-classification, that you should!

Provide the user with the unscathed classifier and the truncation modality.
 Use multimode type theory.

③ Fixpoints: ∞Grpd is a (large) ∞-groupoid.

... and while I am ranting ...

Grothendieck Construction

Given a **category** \mathscr{C} and a **functor** $\mathscr{D} : \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat}),$ i.e. equal functor $\mathscr{M} : \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat},$ the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

Anws(Cat) \in Cat is truncated.

 $\textbf{FPro}\dashv\textbf{Arws}:\textbf{Eqmnt}\rightarrow\textbf{Cat}$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Let's generalize from $\mathsf{FPro}(\mathscr{C})$ to $\mathscr{E}\in\mathsf{Eqmnt}.$

 $\mathscr{D} \qquad \operatorname{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$ $\operatorname{Pros}(\mathsf{Fst}) \downarrow$ $\operatorname{Pros}(\mathsf{FPro}(\mathscr{C}))$

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D}: \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. equat functor $\mathscr{H}: \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(\mathit{c}_{1} \stackrel{\gamma}{
ightarrow} \mathit{c}_{2}, \mathscr{D}(\gamma)(\mathit{d}_{1}) \stackrel{\delta}{
ightarrow} \mathit{d}_{2}
ight)$$

Anws(Cat) \in Cat is truncated.

FPro \dashv Arws : Eqmnt \rightarrow Cat

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D}: \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. equat functor $\mathscr{H}: \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{
ightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{
ightarrow} d_2
ight)$$

Arws(Cat) \in Cat is truncated.

FPro \dashv **Arws** : Eqmnt \rightarrow Cat

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D}: \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. equat functor $\mathscr{H}: \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{
ightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{
ightarrow} d_2
ight)$$

Arws(Cat) \in Cat is truncated.

FPro \dashv Arws : Eqmnt \rightarrow Cat

ArwsDiscards pro-arrowsFProFreely adds "graph" pro-arrowsProsDiscards arrows

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D} : \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. equat functor $\mathscr{M} : \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{
ightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{
ightarrow} d_2
ight)$$

Arws(Cat) \in Cat is truncated.

FPro \dashv Arws : Eqmnt \rightarrow Cat

ArwsDiscards pro-arrowsFProFreely adds "graph" pro-arrowsProsDiscards arrows

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D} : \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. equat functor $\mathscr{M} : \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{
ightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{
ightarrow} d_2
ight)$$

Arws(Cat) \in Cat is truncated.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

$$\mathcal{D} \qquad \operatorname{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$$

$$\operatorname{Pros}(\mathsf{Fst}) \downarrow$$

$$\operatorname{Pros}(\mathsf{FPro}(\mathscr{C}))$$

Andreas Nuvts

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D} : \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. eqmnt functor $\mathscr{H} : \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{
ightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{
ightarrow} d_2
ight)$$

Arws(Cat) \in Cat is truncated.

 $FPro \dashv Arws : Eqmnt \rightarrow Cat$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows
Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D} : \mathscr{C} \to \operatorname{Arws}(\operatorname{Cat})$, i.e. eqmnt functor $\mathscr{H} : \operatorname{FPro}(\mathscr{C}) \to \operatorname{Cat}$, the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{
ightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{
ightarrow} d_2
ight)$$

Arws(Cat) \in Cat is truncated.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Let's generalize from $\mathsf{FPro}(\mathscr{C})$ to $\mathscr{E} \in \mathsf{Eqmnt}$.

"Equipment of elements"

Given an **eqmnt** \mathscr{E} and an **eqmnt functor** $\mathscr{H} : \mathscr{E} \to Cat$, the category $\oint_{\mathscr{E}} \mathscr{H}$ has:

- ▶ objects $(c, d \in \mathscr{H}(c))$
- morphisms

 $\left(c_1 \xrightarrow{\gamma} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$

pro-arrows

$$\left(c_1 \stackrel{p}{\nrightarrow} c_2, d_1 \stackrel{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

Arws(Cat) \in Cat is truncated.

 $FPro \dashv Arws : Eqmnt \rightarrow Cat$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Let's generalize from $FPro(\mathscr{C})$ to $\mathscr{E} \in Eqmnt$.

"Equipment of elements"

Given an **eqmnt** \mathscr{E} and an **eqmnt functor** $\mathscr{H} : \mathscr{E} \to Cat$, the category $\oint_{\mathscr{E}} \mathscr{H}$ has:

- ▶ objects $(c, d \in \mathscr{H}(c))$
- morphisms

 $\left(c_1 \xrightarrow{\gamma} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$

pro-arrows

$$\left(c_1 \stackrel{p}{\nrightarrow} c_2, d_1 \stackrel{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

Arws(Cat) \in Cat is truncated.

 $FPro \dashv Arws : Eqmnt \rightarrow Cat$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Let's generalize from $\mathsf{FPro}(\mathscr{C})$ to $\mathscr{E} \in \mathsf{Eqmnt}$.

$$\int_{\mathscr{C}} \mathscr{D} \qquad \operatorname{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$$

$$\operatorname{Pros}(\mathsf{Fst}) \downarrow$$

$$\mathscr{C} \qquad \operatorname{Pros}(\mathsf{FPro}(\mathscr{C}))$$

"Equipment of elements"

Given an **eqmnt** \mathscr{E} and an **eqmnt functor** $\mathscr{H} : \mathscr{E} \to Cat$, the category $\oint_{\mathscr{E}} \mathscr{H}$ has:

- ▶ objects $(c, d \in \mathscr{H}(c))$
- morphisms

 $\left(c_1 \xrightarrow{\gamma} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$

pro-arrows

$$\left(c_1 \stackrel{p}{\nrightarrow} c_2, d_1 \stackrel{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

Arws(Cat) \in Cat is truncated.

 $FPro \dashv Arws : Eqmnt \rightarrow Cat$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Let's generalize from $\mathsf{FPro}(\mathscr{C})$ to $\mathscr{E} \in \mathsf{Eqmnt}$.

$$\mathcal{P} \operatorname{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$$

$$\operatorname{Pros}(\mathsf{Fst}) \downarrow$$

$$\operatorname{Pros}(\mathsf{FPro}(\mathscr{C}))$$

"Equipment of elements"

Given an **eqmnt** \mathscr{E} and an **eqmnt functor** $\mathscr{H} : \mathscr{E} \to Cat$, the category $\oint_{\mathscr{E}} \mathscr{H}$ has:

- ▶ objects $(c, d \in \mathscr{H}(c))$
- morphisms

 $\left(c_1 \xrightarrow{\gamma} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$

pro-arrows

$$\left(c_1 \stackrel{p}{\nrightarrow} c_2, d_1 \stackrel{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

Arws(Cat) \in Cat is truncated.

 $FPro \dashv Arws : Eqmnt \rightarrow Cat$

Arws Discards pro-arrows FPro Freely adds "graph" pro-arrows Pros Discards arrows

Let's generalize from $FPro(\mathscr{C})$ to $\mathscr{E} \in Eqmnt$.

$$\int_{\mathscr{C}} \mathscr{D} \qquad \operatorname{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$$

$$\xrightarrow{\varphi \mapsto \varphi^{\ddagger}} \qquad \operatorname{Pros}(\mathsf{Fst}) \downarrow$$

$$\mathscr{C} \xrightarrow{\varphi \mapsto \varphi^{\ddagger}} \qquad \operatorname{Pros}(\mathsf{FPro}(\mathscr{C}))$$

"Equipment of elements"

Given an **eqmnt** \mathscr{E} and an **eqmnt functor** $\mathscr{H} : \mathscr{E} \to Cat$, the category $\oint_{\mathscr{E}} \mathscr{H}$ has:

- ▶ objects $(c, d \in \mathscr{H}(c))$
- morphisms

 $\left(c_1 \xrightarrow{\gamma} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$

pro-arrows

$$\left(c_1 \stackrel{p}{\nrightarrow} c_2, d_1 \stackrel{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

pprox cat. of elements internal to Psh(Δ)

Arws(Cat) \in Cat is truncated.

 $FPro \dashv Arws : Eqmnt \rightarrow Cat$

ArwsDiscards pro-arrowsFProFreely adds "graph" pro-arrowsProsDiscards arrows

Let's generalize from $FPro(\mathscr{C})$ to $\mathscr{E} \in Eqmnt$.

Three Approaches to the Model

Degrees of Relatedness (RelDTT)

Nuyts and Devriese (2018) @ LICS

- Relational version of what NatTT intends to be
- Perhaps alienating:
 - Goes beyond Reynolds' parametricity
 - Much less than higher category theory
- Explains several known relational modalities
- Has the virtue of existence as a type system

Degrees of Relatedness (RelDTT)

Nuyts and Devriese (2018) @ LICS

- Relational version of what NatTT intends to be
- Perhaps alienating:
 - Goes beyond Reynolds' parametricity
 - Much less than higher category theory
- Explains several known relational modalities
- Has the virtue of existence as a type system

Parametricity is about relations,

Equip types with multiple, proof-relevant relations s
i t indexed by degree i:

- Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
- More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
- Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

Equip types with multiple, proof-relevant relations s ~; t indexed by degree i:

- Just one for small types (Bool, $\mathbb{N}
 ightarrow \mathbb{N}, \dots)$
- More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
- Proofs called *i*-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

Equip types with multiple, proof-relevant relations s ~; t indexed by degree i:

- Just one for small types (Bool, $\mathbb{N}
 ightarrow \mathbb{N}, \dots)$
- More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
- Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

Equip types with multiple, proof-relevant relations s ~ i t indexed by degree i:

- Just one for small types (Bool, $\mathbb{N}
 ightarrow \mathbb{N}, \dots)$
- More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
- Proofs called *i*-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

- Equip types with multiple, proof-relevant relations s ~ i t indexed by degree i:
 - ▶ Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

- Equip types with multiple, proof-relevant relations s ~ i t indexed by degree i:
 - ▶ Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

Equip types with multiple, proof-relevant relations s ~ i t indexed by degree i:

- ▶ Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
- More for larger types $(U_0 \rightarrow U_0, \text{Grp}, ...)$.
- Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

Parametricity is about relations,

- Equip types with multiple, proof-relevant relations s ~ i t indexed by degree i:
 - ▶ Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - More for larger types $(U_0 \rightarrow U_0, \text{Grp}, ...)$.
 - Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

• Reflexivity: $(a:A) \frown_i^A (a:A)$

(Semantically, prop. eq. = def. eq.)

Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$

Dependency: $(a: A) \frown_{i}^{R} (b: B)$ presumes $R: A \frown_{i+1}^{U} B$

Identity extension: (a: A) ∩^A₀ (b: A) means a = b: A.
→ heterogeneous ∩₀ serves as heterogeneous equality.

• Reflexivity: $(a = b : A) \rightarrow (a : A) \frown_i^A (b : A)$

(Semantically, prop. eq. = def. eq.)

- **Degradation:** $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$
- **Dependency:** $(a: A) \frown_{i}^{R} (b: B)$ presumes $R: A \frown_{i+1}^{U} B$
- Identity extension: (a: A) \$\sigma_0^A\$ (b: A) means a = b: A.
 A heterogeneous \$\sigma_0\$ serves as heterogeneous equality.

• Reflexivity:
$$(a = b : A) \rightarrow (a : A) \frown_i^A (b : A)$$

(Semantically, prop. eq. = def. eq.)

▶ Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$

Dependency: $(a: A) \frown_{i}^{R} (b: B)$ presumes $R: A \frown_{i+1}^{U} B$

Identity extension: (a: A) ^A₀ (b: A) means a = b: A.
→ heterogeneous ⁰ serves as heterogeneous equality

▶ Reflexivity:
$$(a = b : A) \rightarrow (a : A) \frown_{i}^{A} (b : A)$$

(Semantically, prop. eq. = def. eq.)

- ▶ Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \frown_{i}^{R} (b:B)$ presumes $R: A \frown_{i+1}^{U} B$
- Identity extension: (a: A) ^A (b: A) means a = b: A.
 → heterogeneous ^O serves as heterogeneous equality.

• Reflexivity:
$$(a = b : A) \rightarrow (a : A) \frown_{i}^{A} (b : A)$$

(Semantically, prop. eq. = def. eq.)

- ▶ Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \frown_{i}^{R} (b:B)$ presumes $R: A \frown_{i+1}^{U} B$
- **Identity extension:** $(a : A) \frown_{0}^{A} (b : A)$ means a = b : A.

 \rightsquigarrow heterogeneous \frown_0 serves as heterogeneous equality.

 $(a: A) \frown_0^A (b: A)$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along

 $(a: A) \frown_0^A (b: A)$ $(a:A) \frown_{0}^{R} (b:B)$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

 $(a: A) \frown_0^A (b: A)$ $(a:A) \frown_{0}^{R} (b:B)$ $R: (A: U^0) \frown_1^{U^0} (B: U^0)$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along

 $(a: A) \frown_{0}^{A} (b: A)$ $(a:A) \frown_{0}^{R} (b:B)$ $R: (A: U^0) \frown_1^{U^0} (B: U^0)$ $P: (G: Grp) \frown_{1}^{Grp} (H: Grp)$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

 $(a: A) \frown_{0}^{A} (b: A)$ $(a:A) \frown_{0}^{R} (b:B)$ $R: (A: U^0) \frown_1^{U^0} (B: U^0)$ $P: (G: Grp) \frown_{1}^{Grp} (H: Grp)$ $Q: (G: Grp) \frown_{1}^{V} (M: Monoid)$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

 $(a: A) \frown_0^A (b: A)$ $(a: A) \frown_{0}^{R} (b: B)$ $R: (A: U^0) \frown_1^{U^0} (B: U^0)$ $P: (G: Grp) \frown_{1}^{Grp} (H: Grp)$ $Q: (G: Grp) \frown_{1}^{V} (M: Monoid)$ V: (Grp: U^1) $\frown_0^{U^1}$ (Monoid: U^1)

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

 $(a: A) \frown_0^A (b: A)$ $(a: A) \frown_{0}^{R} (b: B)$ $R: (A: U^0) \frown_1^{U^0} (B: U^0)$ $P: (G: Grp) \frown_{1}^{Grp} (H: Grp)$ $Q: (G: Grp) \frown_{1}^{V} (M: Monoid)$ V: (Grp: U^1) $\frown_0^{U^1}$ (Monoid: U^1)

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

par : types \rightarrow values

 $if:(\mathbf{par} \mid X: \mathsf{U}^0) \to B X$

con : types \rightarrow types

 $B: U^0 \rightarrow U^0$ $B X = Bool \rightarrow X \rightarrow X \rightarrow X$

par : types \rightarrow values

if : $(\operatorname{par} X : U^0) \to B X$

con : types \rightarrow types

 $B: U^0 \rightarrow U^0$ $B X = Bool \rightarrow X \rightarrow X \rightarrow X$

par : types \rightarrow values

if : $(\operatorname{par} X : U^0) \to B X$

$\mathbf{con}: \mathbf{types} \rightarrow \mathbf{types}$

par : types \rightarrow values

 $if:(\mathbf{par} \mid X: \mathsf{U}^0) \to B X$

$\mathbf{con}: \mathbf{types} \rightarrow \mathbf{types}$

par : types \rightarrow values

if : $(\operatorname{par} X : U^0) \to B X$

$\mathbf{con}: \mathbf{types} \rightarrow \mathbf{types}$

The Mode Theory

▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$

Modalities $\mu : p \to q$ are functions $\{0 \le \ldots \le q\} \to \{(=) \le 0 \le \ldots \le p \le \top\} : i \mapsto i \cdot \mu$ where $f : (\mu : x : A) \to B(x)$ sends

$$(r: x \frown_{i \cdot \mu}^{A} y) \rightarrow f(x) \frown_{i}^{B(r)} f(y)$$

Modal types:

$$\mathsf{mod}_\mu x \frown_l^{\langle \mu | A
angle} \mathsf{mod}_\mu y = -x \frown_{l \cdot \mu}^A y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- ► Modalities $\mu : p \to q$ are functions $\{0 \le \ldots \le q\} \to \{(=) \le 0 \le \ldots \le p \le T\} : i \mapsto i \cdot \mu$ where $f : (\mu : x : A) \to B(x)$ sends

$$(r: x \frown_{i \cdot \mu}^{\mathcal{A}} y) \rightarrow f(x) \frown_{i}^{\mathcal{B}(r)} f(y)$$

Modal types:

$$\operatorname{mod}_{\mu} x \frown_{i}^{\langle \mu | A \rangle} \operatorname{mod}_{\mu} y = x \frown_{i \cdot \mu}^{A} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.
The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- ► Modalities $\mu : p \to q$ are functions $\{0 \le \ldots \le q\} \to \{(=) \le 0 \le \ldots \le p \le T\} : i \mapsto i \cdot \mu$ where $f : (\mu \mid x : A) \to B(x)$ sends

$$(r: x \frown_{i \cdot \mu}^{\mathcal{A}} y) \rightarrow f(x) \frown_{i}^{\mathcal{B}(r)} f(y)$$

Modal types:

$$\operatorname{mod}_{\mu} x \frown_{i}^{\langle \mu | A \rangle} \operatorname{mod}_{\mu} y = x \frown_{i \cdot \mu}^{A} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- ► Modalities $\mu : p \to q$ are functions $\{0 \le \ldots \le q\} \to \{(=) \le 0 \le \ldots \le p \le \top\} : i \mapsto i \cdot \mu$ where $f : (\mu : x : A) \to B(x)$ sends

$$(r: x \frown_{i \cdot \mu}^{\mathcal{A}} y) \rightarrow f(x) \frown_{i}^{\mathcal{B}(r)} f(y)$$

Modal types:

$$\operatorname{\mathsf{mod}}_\mu x \frown_i^{\langle \mu | A
angle} \operatorname{\mathsf{mod}}_\mu y \hspace{.1in} = \hspace{.1in} x \frown_{i \cdot \mu}^{A} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- ► Modalities $\mu : p \to q$ are functions $\{0 \le \ldots \le q\} \to \{(=) \le 0 \le \ldots \le p \le T\} : i \mapsto i \cdot \mu$ where $f : (\mu : x : A) \to B(x)$ sends

$$(r: x \frown_{i \cdot \mu}^{\mathcal{A}} y) \rightarrow f(x) \frown_{i}^{\mathcal{B}(r)} f(y)$$

Modal types:

$$\operatorname{\mathsf{mod}}_\mu x \frown_i^{\langle \mu | A
angle} \operatorname{\mathsf{mod}}_\mu y \hspace{.1in} = \hspace{.1in} x \frown_{i \cdot \mu}^{A} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

Three Approaches to the Model

Higher Pro-arrows: Directifying Degrees of Relatedness

- Equip types with multiple, proof-relevant relations s →_i t indexed by degree i
 Proofs called *i*-jets (proⁱ⁻¹-arrows).
- Describe function behaviour by saying how functions influence degree and orientation of jets.

▶ Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \frown_i^A (b : A))$$

(Semantically, prop. eq. = def. eq.)

- **Degradation:** $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \frown_{i}^{R} (b:B)$ presumes $R: A \frown_{i+1}^{U} B$
- ▶ Identity extension: $(a : A) \frown_0^A (b : A)$ means a = b : A. \rightarrow heterogeneous \frown_0 serves as heterogeneous equality.

Pretypes!

Higher equipments: Three Laws

- ▶ **Reflexivity:** $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- ▶ Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a : A) \Rightarrow_{i}^{J} (b : B)) \rightarrow ((a : A) \Rightarrow_{i+1}^{J} (b : B))$

Dependency: $(a: A) \rightarrow_i^J (b: B)$ presumes $J: A \rightarrow_{i+1}^U B$

▶ Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \frown_i^A (b : A))$$

(Semantically, prop. eq. = def. eq.)

- ▶ Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$
- **Dependency:** $(a: A) \frown_{i=1}^{R} (b: B)$ presumes $R: A \frown_{i=1}^{U} B$

Identity extension: (a : A) ^A (b : A) means a = b : A.
→ heterogeneous ^O serves as heterogeneous equality.

Pretypes!

Higher equipments: Three Laws

- ▶ **Reflexivity:** $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- ▶ Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a : A) \Rightarrow_{i}^{J} (b : B)) \rightarrow ((a : A) \Leftrightarrow_{i+1}^{J} (b : B))$

Dependency: $(a : A) \rightarrow_{i}^{J} (b : B)$ presumes $J : A \rightarrow_{i+1}^{U} B$

▶ Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \frown_i^A (b : A))$$

(Semantically, prop. eq. = def. eq.)

- ▶ Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$
- **Dependency:** $(a: A) \frown_{i=1}^{R} (b: B)$ presumes $R: A \frown_{i=1}^{U} B$

▶ Identity extension: $(a : A) \frown_0^A (b : A)$ means a = b : A. \rightarrow heterogeneous \frown_0 serves as heterogeneous equality.

Pretypes!

Higher equipments: Three Laws

• Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$$

► Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a : A) \rightarrow_i^J (b : B)) \rightarrow ((a : A) \rightsquigarrow_{i+1}^J (b : B))$

▶ Dependency: $(a: A) \rightarrow_i^J (b: B)$ presumes $J: A \rightarrow_{i+1}^U B$

▶ Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \frown_i^A (b : A))$$

(Semantically, prop. eq. = def. eq.)

▶ Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$

Dependency: $(a:A) \frown_{i}^{R} (b:B)$ presumes $R: A \frown_{i+1}^{U} B$

▶ Identity extension: $(a: A) \frown_0^A (b: A)$ means a = b: A. \rightarrow heterogeneous \frown_0 serves as heterogeneous equality.

Pretypes!

Higher equipments: Three Laws

• Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$$

► Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a:A) \rightarrow_{i}^{J} (b:B)) \rightarrow ((a:A) \rightsquigarrow_{i+1}^{J} (b:B))$

Dependency: (a: A) →^J_i (b: B) presumes J: A →^U_{i+1} B

▶ Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \frown_i^A (b : A))$$

(Semantically, prop. eq. = def. eq.)

Degradation: $((a:A) \frown_i^R (b:B)) \rightarrow ((a:A) \frown_{i+1}^R (b:B))$

Dependency: $(a:A) \frown_{i}^{R} (b:B)$ presumes $R: A \frown_{i+1}^{U} B$

▶ Identity extension: $(a: A) \frown_0^A (b: A)$ means a = b: A. \rightarrow heterogeneous \frown_0 serves as heterogeneous equality.

Pretypes!

Higher equipments: Three Laws

• Reflexivity:
$$(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$$

► Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a : A) \rightarrow_{i}^{J} (b : B)) \rightarrow ((a : A) \rightsquigarrow_{i+1}^{J} (b : B))$

Dependency: $(a:A) \rightarrow_{i}^{J} (b:B)$ presumes $J: A \rightarrow_{i+1}^{U} B$

 $(a: A) \rightarrow_{0}^{f} (b: B)$ $f: (A: U^{0}) \rightarrow_{1}^{U^{0}} (B: U^{0})$ $\varphi: (G: \operatorname{Grp}) \rightarrow_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$ $\psi: (G: \operatorname{Grp}) \rightarrow_{1}^{\mathscr{P}} (M: \operatorname{Monoid})$ $\mathscr{P}: (\operatorname{Grp}: U^{1}) \rightarrow_{2}^{U^{1}} (\operatorname{Monoid}: U^{1})$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along \dots

Any profunctor \mathscr{P} e.g. $\mathscr{P} = \operatorname{Hom}_{\operatorname{Monoid}}(U_{\operatorname{Grp}} \sqcup, \sqcup)$ $(a: A) \rightarrow_{0}^{f} (b: B)$ $f: (A: U^{0}) \rightarrow_{1}^{U^{0}} (B: U^{0})$ $\varphi: (G: \operatorname{Grp}) \rightarrow_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$ $\psi: (G: \operatorname{Grp}) \rightarrow_{1}^{\mathscr{P}} (M: \operatorname{Monoid})$ $\mathscr{P}: (\operatorname{Grp}: U^{1}) \rightarrow_{2}^{U^{1}} (\operatorname{Monoid}: U^{1})$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along \dots

Any profunctor \mathscr{P} e.g. $\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along \dots

Any profunctor \mathscr{P} e.g. $\mathscr{P} = \operatorname{Hom}_{\operatorname{Monoid}}(U_{\operatorname{Grp}} \sqcup, \sqcup)$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

Any profunctor \mathscr{P} e.g. $\mathscr{P} = \operatorname{Hom}_{\operatorname{Monoid}}(U_{\operatorname{Grp}} \sqcup, \sqcup)$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

Any profunctor \mathscr{P} e.g. $\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup)$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

Any profunctor \mathscr{P} e.g. $\mathscr{P} = \operatorname{Hom}_{\operatorname{Monoid}}(U_{\operatorname{Grp}}, \Box)$

lim⊕

 $e: (\lim^{\oplus} X: \operatorname{Grp}) \to |X|$

lim⊕

lim⊕

lim⊕

lim⊕

lim⊖

lim⊖

lim⊖

lim⊖

lim⊖

$$\mathsf{hd}:(\mathsf{lim}^{\ominus} \colon X:\mathsf{Coalg}_{\mathbb{N}\times\sqcup}) \to |X| \to \mathbb{N}$$

NatPT instantiates MTT (Multimode Type Theory) with:

- Modes are dimensions $p \in \mathbb{N}$ (+ you can mark a degree i < n as symmetric)</p>
- Modalities $\mu : p \rightarrow q$ are certain functions

 $\{0, \dots, q-1\} \to \{(=), 0, \dots, p-1, \top\} \times \{\circledast, \oplus, \ominus, \otimes\}$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r: x \multimap_{i \cdot \mu}^{\mathcal{A}} y) \rightarrow f(x) \multimap_{i}^{\mathcal{B}(r)} f(y).$$

Modal types:

$$\mathsf{mod}_\mu \, x \, {
ightarrow}^{\langle \mu | A
angle}_l \, \mathsf{mod}_\mu \, y \quad = \quad x \, {
ightarrow}^A_{l \cdot \mu} \, y$$

NatPT instantiates MTT (Multimode Type Theory) with:

▶ Modes are dimensions $p \in \mathbb{N}$ (+ you can mark a degree *i* < *n* as symmetric)

▶ Modalities
$$\mu : p \to q$$
 are certain functions
 $\{0, \dots, q-1\} \to \{(=), 0, \dots, p-1, \top\} \times \{\circledast, \oplus, \ominus, \otimes\}$
where $f : (\mu : x : A) \to B(x)$ sends

$$(r: x \multimap_{i \cdot \mu}^{\mathcal{A}} y) \rightarrow f(x) \multimap_{i}^{\mathcal{B}(r)} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_\mu x woheadrightarrow^{(\mu|A)}_l \operatorname{\mathsf{mod}}_\mu y = -x woheadrightarrow^A_{l,\mu} y$$

NatPT instantiates MTT (Multimode Type Theory) with:

- Modes are dimensions p ∈ N (+ you can mark a degree i < n as symmetric)</p>
- Modalities $\mu : p \to q$ are certain functions

 $\{0, \dots, q-1\} \to \{(=), 0, \dots, p-1, \top\} \times \{\circledast, \oplus, \ominus, \otimes\}$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r: x \rightarrow_{i:\mu}^{\mathcal{A}} y) \rightarrow f(x) \rightarrow_{i}^{\mathcal{B}(r)} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\mu} x
ightarrow_{i}^{\langle \mu | A
angle} \operatorname{\mathsf{mod}}_{\mu} y = x
ightarrow_{i \cdot \mu}^{A} y$$

NatPT instantiates MTT (Multimode Type Theory) with:

- Modes are dimensions p ∈ N (+ you can mark a degree i < n as symmetric)</p>
- Modalities $\mu : p \to q$ are certain functions

 $\{0, \dots, q-1\} \to \{(=), 0, \dots, p-1, \top\} \times \{\circledast, \oplus, \ominus, \otimes\}$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r: x \rightarrow^{\mathcal{A}}_{i \cdot \mu} y) \rightarrow f(x) \rightarrow^{\mathcal{B}(r)}_{i} f(y).$$

Modal types:

$$\operatorname{mod}_{\mu} x \to_{i}^{\langle \mu | A \rangle} \operatorname{mod}_{\mu} y = x \to_{i \cdot \mu}^{A} y$$

NatPT instantiates MTT (Multimode Type Theory) with:

- Modes are dimensions p ∈ N (+ you can mark a degree i < n as symmetric)</p>
- Modalities $\mu : p \to q$ are certain functions

 $\{0, \dots, q-1\} \to \{(=), 0, \dots, p-1, \top\} \times \{\circledast, \oplus, \ominus, \otimes\}$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r: x \rightarrow^{\mathcal{A}}_{i \cdot \mu} y) \rightarrow f(x) \rightarrow^{\mathcal{B}(r)}_{i} f(y).$$

Modal types:

$$\operatorname{mod}_{\mu} x \to_{i}^{\langle \mu | A \rangle} \operatorname{mod}_{\mu} y = x \to_{i \cdot \mu}^{A} y$$

Three Approaches to the Model

The Model

The Twisted Prism Functor

Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\Box \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} :$ $W \mapsto W^{\mathsf{op}} \boxplus_{<} W$

$$a \longrightarrow b \quad \mapsto \quad \begin{pmatrix} (a,0) \longleftarrow (b,0) \\ \downarrow & \downarrow \\ (a,1) \longrightarrow (b,1) \end{pmatrix}$$

MTraS shape modelled by $\Box \ltimes \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- Hom as a constrained function type.

${\mathbb I}$ as an MTraS-shape is better behaved on ${\bowtie}:$

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\Box \ltimes I$.

 \rightarrow Use \bowtie instead of Δ .

O Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\Box \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} :$ $W \mapsto W^{\mathsf{op}} \uplus_{<} W$

MTraS shape modelled by $\square \ltimes \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- Hom as a constrained function type.

 ${\mathbb I}$ as an MTraS-shape is better behaved on ${\bowtie}:$

wisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\Box \ltimes I$.

 \rightarrow Use \bowtie instead of Δ .

O Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\Box \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} :$ $W \mapsto W^{\mathsf{op}} \uplus_{<} W$

$$a \longrightarrow b \quad \mapsto \quad igcup_{(a,0)} \longleftarrow (b,0) \ (a,1) \longrightarrow (b,1)$$

MTraS shape modelled by $\Box \ltimes \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- Hom as a **constrained function type**.

 ${\mathbb I}$ as an MTraS-shape is better behaved on ${\bowtie}:$

wisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\Box \ltimes I$.

 \rightarrow Use \bowtie instead of Δ .

O Pinyo & Kraus carve ⋈ out of graph category.
The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\Box \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} :$ $W \mapsto W^{\mathsf{op}} \uplus_{<} W$

$$a \longrightarrow b \quad \mapsto \quad \begin{pmatrix} (a,0) \longleftarrow (b,0) \\ \downarrow & \downarrow \\ (a,1) \longrightarrow (b,1) \end{pmatrix}$$

MTraS shape modelled by $\Box \ltimes \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- Hom as a **constrained function type**.

 ${\mathbb I}$ as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\Box \ltimes \mathbb{I}$.

\rightarrow Use \bowtie instead of Δ .

O Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\Box \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} :$ $W \mapsto W^{\mathsf{op}} \uplus_{<} W$

$$a \longrightarrow b \quad \mapsto \quad \begin{pmatrix} (a,0) \longleftarrow (b,0) \\ \downarrow & \downarrow \\ (a,1) \longrightarrow (b,1) \end{pmatrix}$$

MTraS shape modelled by $\Box \ltimes \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- Hom as a **constrained function type**.

 ${\mathbb I}$ as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\Box \ltimes \mathbb{I}$.

 \rightarrow Use \bowtie instead of Δ .

 Pinyo & Kraus carve ⋈ out of graph category.

Jet Set of dimension n

Set equipped with *n* Prop-valued **jet-relations** \rightarrow_i such that:

- $\blacktriangleright \rightarrow_i$ is reflexive
- ▶ \multimap_i implies \rightsquigarrow_{i+1}
- Intervals $(\neg _i) = \{0 \rightarrow _i 1\}$
- **Twisted prism** functor $\Box \ltimes (\neg _i)$ only **op**s degree *i*
- **b** Jet cubes are generated by \top and $\square \ltimes (|-\triangleright_i|)$
 - What is a morphism of jet cubes?

Jet Set of dimension n

Set equipped with *n* Prop-valued **jet-relations** \rightarrow_i such that:

- $\blacktriangleright \rightarrow_i$ is reflexive
- $\blacktriangleright \rightarrow_i \text{ implies } \rightsquigarrow_{i+1}$
- ▶ Intervals $(| \rightarrow_i) = \{ 0 \rightarrow_i 1 \}$
- **Twisted prism** functor $\Box \ltimes (\neg i)$ only **op**s degree *i*
- ▶ Jet cubes are generated by \top and $\square \ltimes (|->_i|)$
 - What is a morphism of jet cubes?

Jet Set of dimension n

Set equipped with *n* Prop-valued **jet-relations** \rightarrow_i such that:

- $\blacktriangleright \rightarrow_i$ is reflexive
- $\blacktriangleright \rightarrow_i \text{ implies } \rightsquigarrow_{i+1}$
- ▶ Intervals $(| \rightarrow_i) = \{ 0 \rightarrow_i 1 \}$
- **Twisted prism** functor $\Box \ltimes (\rightarrow_i)$ only **op**s degree *i*
- ▶ Jet cubes are generated by \top and $\sqcup \ltimes (| \multimap_i |)$
 - What is a morphism of jet cubes?

▶ What interval operations do you want? → Cube^{$\square}_M <math>\cong$ Kleisli(M)^{op}</sup>

▶ Do you want diagonals? → $\square \in \{\square, \square\}$

Turns out only $Cube_{0,1,\neg}^{\Box}$ and $Cube_{FreeBoolAlg}^{\Box}$ really work.

- ▶ What interval operations do you want? → Cube^[Z]_M \cong Kleisli(M)^{op}
- ▶ Do you want diagonals? $\Rightarrow \square \in \{\square, \square\}$

Turns out only Cube $^{\Box}_{0,1,\neg}$ and Cube $^{\Box}_{\text{FreeBoolAlg}}$ really work.

- ▶ What interval operations do you want? → Cube^[Z]_M \cong Kleisli(M)^{op}
- ▶ Do you want diagonals? $\Rightarrow \square \in \{\square, \square\}$

Turns out only Cube $^{\square}_{0,1,\neg}$ and Cube $^{\square}_{\text{FreeBoolAlg}}$ really work.

- ▶ What interval operations do you want? → Cube^[Z]_M \cong Kleisli(M)^{op}
- ▶ Do you want diagonals? $\Rightarrow \exists \in \{\Box, \Box\}$

Turns out only Cube $^{\Box}_{0,1,\neg}$ and Cube $^{\Box}_{\text{FreeBoolAlg}}$ really work.

- ▶ What interval operations do you want? → Cube^[Z]_M \cong Kleisli(M)^{op}
- ▶ Do you want diagonals? $\Rightarrow \exists \in \{\Box, \Box\}$

Turns out only Cube $^{\Box}_{0,1,\neg}$ and Cube $^{\Box}_{\text{FreeBoolAlg}}$ really work.

- ▶ What interval operations do you want? → Cube^{$\square}_M <math>\cong$ Kleisli(M)^{op}</sup>
- ▶ Do you want diagonals? $\Rightarrow \square \in \{\square, \square\}$
- ► Turns out only $Cube_{0,1,\neg}^{\Box}$ and $Cube_{FreeBoolAlg}^{\Box}$ really work.

? When is a morphism of **cubes** a morphism of jet cubes?

$\frac{\text{terminal}}{\vdash (): V \rightarrow ()}$	
$\frac{src:fwd}{\vdash \varphi : V \rightarrow Op_{l}^{\bigcirc}(W)} \\ \overline{\vdash (\varphi, 0/\mathbf{i}) : V \rightarrow (W, \mathbf{i} : (\neg d))}$	$ \begin{array}{l} \underset{\vdash \varphi: V \rightarrow Op^{\square}_{i}(W)}{\vdash (\varphi, 1/i): V \rightarrow (W, i: (\leftarrow_{i}))} \end{array} \\ \end{array} $
$\frac{ \begin{array}{c} \text{tgt:fyd} \\ \vdash \varphi: V \rightarrow W \\ \hline \vdash (\varphi, 1/i): V \rightarrow (W, i: (\neg \phi)) \end{array} }$	$\begin{array}{l} {}^{\operatorname{tgright}} & \\ \vdash \varphi: V \to W \\ \hline & \\ \hline (\varphi, 0/\mathbf{i}): V \to (W, \mathbf{i}: (\leftarrow_i)) \end{array}$
$\frac{\underset{(\phi, t/i) : V \rightarrow (W, i : (\phi \neg d))}{\vdash (\phi, \neg t/i) : V \rightarrow (W, i : (\phi \neg d))}$	$ \frac{INV:BCK}{\vdash (\varphi, t/\mathbf{i}) : V \rightarrow (W, \mathbf{i} : (\neg *_d)) } $ $ \frac{\vdash (\varphi, \neg t/\mathbf{i}) : V \rightarrow (W, \mathbf{i} : (\diamond \neg_i)) }{\vdash (\varphi, \neg t/\mathbf{i}) : V \rightarrow (W, \mathbf{i} : (\diamond \neg_i)) } $
$\frac{\stackrel{PRISM:PWD}{\vdash} \varphi: V \rightarrow W}{\vdash} (\varphi, \mathbf{i}': (\neg, \mathbf{i}: (\neg, \mathbf{i})) \rightarrow (W, \mathbf{i}: (\neg, \mathbf{i}))}$	$\begin{array}{l} \underset{\vdash \varphi : V \rightarrow W}{\overset{\vdash}{\vdash} (\varphi, i/i) : (V, i : (\varphi \neg i)) \rightarrow (W, i : (\varphi \neg i))} \end{array}$
SYMMETRIZE $\vdash \varphi : \mathbb{F}Sym^{\oplus} V \rightarrow W'$ $\vdash \varphi : V \rightarrow USym^{\oplus} W'$	
$\begin{array}{l} \underset{\vdash \varphi: \; SymGl_{\varepsilon}^{(0)}(V) \rightarrow W \qquad R \in \{ \multimap, \leftarrow, \circ \circ \} \\ \hline \vdash (\varphi, \mathfrak{i} / \otimes) : (V, \mathfrak{i} : (R_i)) \rightarrow W \end{array}$	$\begin{array}{l} \underset{i \in \varphi: \ (V, \mathbf{j}: \ (i \circ \circ_i), U_1, \mathbf{i}: \ (i \circ \circ_i), U_2) \rightarrow W}{\vdash \varphi: (V, \mathbf{i}: \ (i \circ \circ_i), U_1, \mathbf{j}: \ (i \circ \circ_i), U_2) \rightarrow W} \end{array}$
$\begin{array}{c} \begin{array}{l} \text{CONCURSION} \\ P \in \{-n, +-, ++\} & Q \in \{-n, +-\} & j > i \\ \vdash \varphi : \text{Sym} \Pi_i^{(0)}(\text{Sym} \Pi_i^{(0)}(U, V) \rightarrow W \\ \hline \vdash (\varphi, j/l) : \langle U, j : \{I\} \rangle, V \rightarrow (W, 1 : \{Q_i\}) \end{array}$	
$\begin{array}{l} \text{conn primes reference} \\ \{Q, \Diamond) \in \left[\{(-\pi, \forall), (-\pi, \delta)\} \\ \vdash \varphi : Sym G_1^{\square V} \rightarrow W \\ \vdash (\varphi, t/\delta) : \left[\mathbf{Op}_1^{\square V} \right] \rightarrow (W, 1 : (Q, \beta) \\ \vdash (\varphi, t/\delta) : (V, 1 : (Q, \beta) \rightarrow (W, 1 : (Q, \beta)) \\ \vdash (\varphi, t \land 1/\delta) : (V, 1 : (Q, \beta) \rightarrow (W, 1 : (Q, \beta)) \end{array} \right] \text{Bod}$	$\begin{array}{l} \text{CONN-PRISM-TGT-NEUTRAL} \\ (Q, \diamondsuit) \in \left[\{(\rightarrow, \land), (\leftarrow, \lor)\} \\ \vdash \varphi: 5\text{ymC}(^{1}V \rightarrow W) \\ \vdash (\varphi, t, \forall): \underline{V} \rightarrow (W, i: (Q, i)) \\ \vdash (\varphi, t, \forall i, i): (V, i: (Q, i)) \rightarrow (W, i: (Q, j)) \end{array} \right] Boo$
$\begin{array}{l} \label{eq:constraint} \begin{split} & \text{dimensional pressure of electral} \\ & (Q, \Diamond, P) \in \left\{ (\prec, \nabla, +), (\prec, \wedge, \to) \right\} \\ & + \varphi \cdot \text{Syn} \left[Q^{\dagger} \mid \nabla \rightarrow W \\ & + (\varphi, t i) : \left[\overline{Og^{\dagger} V} \rightarrow (W, i: (Q, \dot{g}) \right) \\ & + (\varphi, t \Diamond = \overline{i}, l) : (V, i: \left(P \right) \\ & + (\varphi, l \partial) : (V, i: \left(P \right) \end{pmatrix} \rightarrow (W, i: (Q, \dot{g})) \end{split} \right] \text{Bo}$	$ \begin{array}{l} & \begin{array}{l} \text{CONNEREEM-INV:TUT-NEUTRAL} \\ & (Q, \diamondsuit, P, P) \in \{ \{-n, \wedge, -, (+-, \vee, -+)\} \\ & \vdash \varphi \in \text{SymC}[^{2}V \rightarrow W \\ & \vdash (\varphi, t/B) : V' \rightarrow (W; 1; (Q, j)) \\ & \vdash (\varphi, t/B) : V' \rightarrow (W; 1; (Q, j)) \\ & \vdash (\varphi, t \diamondsuit = 1/p) \rightarrow (W, 1; (Q, j)) \end{array} \right. \\ \end{array} $
CONVEDUCATE-STRUCTURE $Q \in \{-, +-\} \rightarrow 0 \in \{V, A\}$ $\vdash (\varphi_{i}, R_{i}) : SymC_{i}^{TV} \lor \cup \{V, 1 : \{Q_{i}\}\}$ $\vdash (\varphi_{i}, t(Y) : V \rightarrow (W, 1 : \{Q_{i}\})$ $\vdash (\varphi_{i}, t(Y) : V \rightarrow (W, 1 : \{Q_{i}\})$ Boo	

 $\vdash (\varphi, t \diamondsuit s/\mathbf{i}) : V \rightarrow (W, \mathbf{i} : (Q_i))$

Three Approaches to the Model

- [BCMMPS20] Birkedal, L., Clouston, R., Mannaa, B., Møgelberg, R. E., Pitts, A. M., & Spitters, B. (2020). Modal dependent type theory and dependent right adjoints. MSCS, 30(2), 118–138. https://doi.org/10.1017/S0960129519000197
 - [BT17] Boulier, S., & Tabareau, N. (2017). Model structure on the universe in a two level type theory. https://hal.archives-ouvertes.fr/hal-01579822
 - [CL04] Cheng, E., & Lauda, A. (2004). Higher-Dimensional Categories: an illustrated guide book. http://eugeniacheng.com/guidebook/
 - [GKNB21] Gratzer, D., Kavvos, G. A., Nuyts, A., & Birkedal, L. (2021). Multimodal Dependent Type Theory. LMCS, Volume 17, Issue 3. https://doi.org/10.46298/lmcs-17(3:11)2021
 - [HS97] Hofmann, M., & Streicher, T. (1997). Lifting Grothendieck Universes. Unpublished note.
 - [LOPS18] Licata, D. R., Orton, I., Pitts, A. M., & Spitters, B. (2018). Internal Universes in Models of Homotopy Type Theory. FSCD 2018. https://doi.org/10.4230/LIPIcs.FSCD.2018.22
 - [ND18] Nuyts, A., & Devriese, D. (2018). Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory. LICS 2018.
 - [ND24] Nuyts, A., & Devriese, D. (2024). Transpension: The Right Adjoint to the Pi-type. Accepted at LMCS.
 - [Nuy20] Nuyts, A. (2020). Contributions to Multimode and Presheaf Type Theory [Phdthesis, KU Leuven]. https://lirias.kuleuven.be/3065223
 - [NVD17] Nuyts, A., Vezzosi, A., & Devriese, D. (2017). Parametric quantifiers for dependent type theory. PACMPL, 1(ICFP), 32:1-32:29. https://doi.org/10.1145/3110276
 - [PK20] Pinyo, G., & Kraus, N. (2020). From Cubes to Twisted Cubes via Graph Morphisms in Type Theory. TYPES 2019 / LIPIcs.
 - [Sim97] Simpson, C. (1997). Limits in n-categories. ArXiv alg-geom/9708010
 - [Tam99] Tamsamani, Z. (1999). Sur des notions de n-categorie et n-groupoide non strictes via des ensembles multi-simpliciaux (On the notions of a nonstrict n-category and n-groupoid via multisimplicial sets). K-Theory, 16(1), 51–99.
 - [Woo82] Wood, R. J. (1982). Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle, 23(3), 279–290.
 - [Woo85] Wood, R. J. (1985). Proarrows II. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 26(2), 135–168.

Thanks!

Questions?

- *i*-edge relations \frown_i
- **Dependency:** $r : a \frown_{i}^{R} b$ presumes $R : A \frown_{i+1}^{U} B$
- Degradation:
 - $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

n-equipments

- ▶ *i*-jet (pro^{*i*-1}-arrow) relations \rightarrow_i
- **Dependency:** $j: a \rightarrow_{i}^{J} b$ presumes $J: A \rightarrow_{i+1}^{U} B$
- Companion / conjoint: $(\ddagger, \dagger) : a \rightarrow_i b \Rightarrow a \nleftrightarrow_{i+1} b$
- Modalities change indices & orientation:

• *i*-edge relations \frown_i

• Dependency: $r : a \frown_{i}^{R} b$ presumes $R : A \frown_{i+1}^{U} B$

Degradation:

 $a \frown_i b \Rightarrow a \frown_{i+1} b$

Modalities change indices:

n-equipments

- ▶ *i*-jet (pro^{*i*-1}-arrow) relations \rightarrow_i
- ► **Dependency:** $j: a \rightarrow_{i}^{J} b$ presumes $J: A \rightarrow_{i+1}^{U} B$
- Companion / conjoint:
 (‡,†): a → b ⇒ a ↔ +1 b
 Modalities change indices & orientation

- *i*-edge relations \frown_i
- Dependency: $r: a \frown_{i}^{R} b$ presumes $R: A \frown_{i+1}^{U} B$
- **Degradation:** $a \frown_i b \Rightarrow a \frown_{i+1} b$
 - Modalities change indices

n-equipments

- ▶ *i*-jet (pro^{*i*-1}-arrow) relations \rightarrow_i
- **Dependency:** $j: a \rightarrow_{i}^{J} b$ presumes $J: A \rightarrow_{i+1}^{U} B$
- Companion / conjoint: $(\ddagger, \dagger) : a \rightarrow_i b \Rightarrow a \rightsquigarrow_{i+1} b$

Modalities change indices & orientation:

- \blacktriangleright *i*-edge relations \frown_i
- Dependency: $r : a \frown_{i}^{R} b$ presumes $R : A \frown_{i+1}^{U} B$
- Degradation:

 $a \frown_i b \Rightarrow a \frown_{i+1} b$

Modalities change indices:

n-equipments

- ▶ *i*-jet (pro^{*i*-1}-arrow) relations \rightarrow_i
- ► **Dependency:** $j: a \rightarrow_{i}^{J} b$ presumes $J: A \rightarrow_{i+1}^{U} B$
- Companion / conjoint: (‡, †) : a →_i b ⇒ a ↔_{i+1} b
- Modalities change indices & orientation:

irr : values \rightarrow values **shi** : values \rightarrow types $[]: (\operatorname{irr} n : \mathbb{N}) \to \operatorname{List}_n A$ $\lambda n.\text{List}_n A : (\mathbf{shi} \mid n : \mathbb{N}) \to U^0$ $m = n \longrightarrow []_m = []_n$ $m = n \longrightarrow \text{List}_m A = \text{List}_n A$ $\begin{array}{c} \downarrow \\ m \frown_{0}^{\mathbb{N}} n \\ \text{List}_{m} A \frown_{1}^{U^{0}} \text{List}_{n} A \end{array}$ $r: m \frown_0^{\mathbb{N}} n \qquad []_m \frown_0^{\text{List} A} []_n$

Andreas Nuyts Higher Pro-arrows: Towards a Model for Naturality Pretype Theory

 \downarrow List_m $A \frown_{0}^{U^{0}}$ List_n A

irr : values \rightarrow values **shi** : values \rightarrow types $[]: (\operatorname{irr} n : \mathbb{N}) \to \operatorname{List}_n A$ $\lambda n.\text{List}_n A : (\mathbf{shi} \mid n : \mathbb{N}) \to U^0$ $m = n \longrightarrow []_m = []_n$ $m = n \longrightarrow \text{List}_m A = \text{List}_n A$ List_m $A \stackrel{\downarrow}{\frown}_{0}^{U^0}$ List_n A \downarrow List_m $A \frown_{1}^{U^0}$ List_n A $r: m \frown_{0}^{\mathbb{N}} n \qquad []_{m} \frown_{0}^{\text{List} A} []_{n}$ $m \frown_0^{\mathbb{N}} n$ • • -

irr : values \rightarrow values **shi** : values \rightarrow types $[]: (\operatorname{irr} n : \mathbb{N}) \to \operatorname{List}_n A$ $\lambda n.\text{List}_n A : (\mathbf{shi} \mid n : \mathbb{N}) \to U^0$ $m = n \longrightarrow []_m = []_n$ $m = n \longrightarrow \text{List}_m A = \text{List}_n A$ List_m $A \frown_{0}^{U^0}$ List_n A $r: m \frown_0^{\mathbb{N}} n \qquad []_m \frown_0^{\text{List} A} []_n$ List_m $A \frown_{1}^{U^0}$ List_n A $m \frown_{0}^{\mathbb{N}} n$ •: 7