
Internal and Observational Parametricity for Cubical Agda

ANTOINE VAN MUYLDER, KU Leuven, Belgium

ANDREAS NUYTS, KU Leuven, Belgium

DOMINIQUE DEVRIESE, KU Leuven, Belgium

Two approaches exist to incorporate parametricity into proof assistants based on dependent type theory. On
the one hand, parametricity translations conveniently compute parametricity statements and their proofs
solely based on individual well-typed polymorphic programs. But they do not offer internal parametricity:
formal proofs that any polymorphic program of a certain type satisfies its parametricity statement. On the other
hand, internally parametric type theories augment plain type theory with additional primitives out of which
internal parametricity can be derived. But those type theories lack mature proof assistant implementations
and deriving parametricity in them involves low-level intractable proofs. In this paper, we contribute Agda
--bridges: the first practical internally parametric proof assistant. We provide the first mechanized proofs of
crucial theorems for internal parametricity, like the relativity theorem. We identify a high-level sufficient
condition for proving internal parametricity which we call the structure relatedness principle (SRP) by analogy
with the structure identity principle (SIP) of HoTT/UF. We state and prove a general parametricity theorem for
types that satisfy the SRP. Our parametricity theorem lets us obtain one-liner proofs of standard internal free
theorems. We observe that the SRP is harder to prove than the SIP and provide in Agda --bridges a shallowly
embedded type theory to compose types that satisfy the SRP. This type theory is an observational type theory
of logical relations and our parametricity theorem ought to be one of its inference rules.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: cubical type theory, parametricity, structure relatedness principle, Agda

ACM Reference Format:

Antoine VanMuylder, Andreas Nuyts, and Dominique Devriese. 2024. Internal and Observational Parametricity
for Cubical Agda. Proc. ACM Program. Lang. 8, POPL, Article 8 (January 2024), 32 pages. https://doi.org/10.
1145/3632850

1 INTRODUCTION

Theorems for free [Wadler 1989] are mathematical statements about polymorphic programs whose
validity only depends on a program’s type, not its implementation. Such theorems hold in program-
ming languages that prevent polymorphic programs from inspecting their type arguments. This
restriction forces polymorphic programs to behave parametrically, i.e., apply the same algorithm
irrespective of the type they are invoked at.

For example, let us take a purely functional, polymorphic program taking two lists as input and
outputting a single list, for an arbitrary type - (we use curly braces to indicate the presence of an
implicit argument).

? : ∀{- : Type} → List- → List- → List- (1)

Authors’ addresses: Antoine Van Muylder, KU Leuven, DistriNet, Belgium, antoine.vanmuylder@kuleuven.be; Andreas
Nuyts, KU Leuven, DistriNet, Belgium, andreas.nuyts@kuleuven.be; Dominique Devriese, KU Leuven, DistriNet, Belgium,
dominique.devriese@kuleuven.be.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART8
https://doi.org/10.1145/3632850

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-4144-9368
HTTPS://ORCID.ORG/0000-0002-1571-5063
HTTPS://ORCID.ORG/0000-0002-3862-6856
https://doi.org/10.1145/3632850
https://doi.org/10.1145/3632850
https://orcid.org/0000-0003-4144-9368
https://orcid.org/0000-0002-1571-5063
https://orcid.org/0000-0002-1571-5063
https://orcid.org/0000-0002-3862-6856
https://doi.org/10.1145/3632850

8:2 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

If ? is parametric, its range of possible behaviors is considerably limited. Indeed, it cannot branch
on concrete values of - like - = Bool and thus can only use its inputs GB,~B through the List

interface: the resulting list ? GB ~B must be obtained by interleaving, duplicating or omitting values
from GB and ~B . As a result, such a parametric program ? should satisfy the following theorem:

∀(�0�1 : Type) (GB ~B : List�0) (5 : �0 → �1) → map 5 (? GB ~B) ≡ ? (map 5 GB) (map 5 ~B) (2)

The theorem holds when ? is a list concatenation function, for instance. But in fact, the reasoning
above applies for arbitrary parametric implementations of type ∀{- : Type} → List- → List- →
List- , which all satisfy the theorem. For this reason, the theorem is “free”, i.e. obtained at zero cost.
Several approaches have been developed to study the theoretical aspects of free theorems and

enable their use for program verification. The first formal definition of parametricity was given
by [Reynolds 1983] for System F, a.k.a. the second-order polymorphic lambda calculus [Girard
1986, 1972; Reynolds 1974]. Reynolds defined parametricity for System F programs as a form of
preservation of relations. More precisely, he proceeded in two steps. First, he defined a logical
relation for System F types, that is, an inductively defined translation mapping any System F type g
into a set-theoretic relation ⟦g⟧ between inhabitants of the type. Second, he proved his abstraction
theorem stating that every inhabitant G : g is related to itself G ⟦g⟧G . For example1, the abstraction
theorem for ? : ∀{- : Type} → List- → List- → List- implies:

∀�0�1 (' : Rel(�0, �1)) → ∀GB0 GB1 such that ListRel' GB0 GB1 →

∀~B0 ~B1 such that ListRel' ~B0 ~B1 → ListRel' (? GB0 ~B0) (? GB1 ~B1)
(3)

The relation ListRel' relates two lists iff they have the same length and their 8-th elements are
related by ' for every 8 . Observe that Reynolds’s relational definition of parametricity lets us
successfully recover the free theorem (2) by setting '(G,~) iff 5 G ≡ ~ in property (3).
Reynolds’s abstraction theorem is a metatheoretical statement about programs of System F.

When verifying polymorphic programs in dependently typed proof assistants like Coq [The Coq
development team 2022] or Agda [Agda Development Team 2023], such a metatheoretical statement
is unsatisfactory. At best, it guarantees that the free theorem of interest can be added as an axiom
in the proof assistant without jeopardizing the logical consistency of the system. The question
then arises whether we can prove this free theorem in the proof assistant. To answer this question,
two approaches have been developed in the literature: parametricity translations on one hand and
dependent type theories with internal parametricity on the other.
Parametricity translations [Anand and Morrisett 2017; Bernardy et al. 2012; Keller and Lasson

2012] enhance Reynolds’s logical relation ⟦−⟧ by acting both at the type level and at the term level.
On the one hand, types of dependent type theory (DTT), say) = (- : Type) → List- → List- →
List- , are mapped to Reynolds’s relational parametricity statement for that type, i.e., their logical
relation ⟦)⟧. For) this is (basically) statement (3) but formulated inside DTT, contrary to what
can be done for System F. On the other hand, terms of DTT are mapped to a proof of the logical
relation at their type. For a program ? :) it is a proof of (3).

From the point of view of a proof assistant user, parametricity translations are convenient: solely
based on an implementation ? :) , they compute the statement of) ’s free theorem as well as its
proof for ? . Nonetheless, parametricity translations are not as powerful as they could be. Indeed

1For the sake of this example we imagine that System F features a List type.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:3

they fail to provide proofs of free theorems like the following:

glob-�hm : ∀(? : {- : Type} → List- → List- → List-)

∀(�0�1 : Type) (GB ~B : List�0) (5 : �0 → �1) →

map 5 (? GB ~B) ≡ ? (map 5 GB) (map 5 ~B) (4)

We call such a theorem global because the quantification on ? is an object-level, or internal
quantification (so not metatheoretical). Because of this internal quantification, theorems like
glob-�hm are known to be logically independent from plain DTT [Booij et al. 2016; Boulier et al.
2017]. Another example of (an indirect consequence of) a global free theorem is the correctness
of the Church encoding for the type of booleans Bool ≃ (- : Type) → - → - → - . Since
parametricity translations do not alter the logical expressivity of plain DTT, they cannot possibly
validate global free theorems.

An alternative approach that does validate such global free theorems in DTT is the use of
internally parametric type theories [Cavallo and Harper 2021; Moulin 2016; Nuyts and Devriese
2018; Nuyts et al. 2017]. In such type theories, free theorems can be proven from first principles,
even theorems like (4). Those type theories draw inspiration from parametric denotational models
of DTT (see e.g. [Atkey et al. 2014]) and augment plain DTT with so-called parametricity primitives:
additional types, terms and equations (definitional equalities) from which free theorems can be
derived. One such parametricity primitive, which appears in all internally parametric DTTs we
know of, is the bridge type former (some systems use a different name). It axiomatizes the logical
relation ⟦)⟧ at each type) . Internal parametricity then follows from the fact that programs preserve
such bridges, similar to how parametric programs preserve relations.

Nonetheless, the cost of the extra logical expressivity granted by internally parametric DTTs is
twofold. For one thing, only experimental, unpractical or incomplete implementations of such type
theories exist (see e.g. [Cavallo 2020; Nuyts et al. 2017]). More fundamentally, even proving simple
free theorems in those systems can be cumbersome. For example, Cavallo and Harper [2021] need
about 25 lines of on-paper proof relying on their low-level parametricity primitives to establish
that Bool ≃ (- : Type) → - → - → - .

In this work we contribute a practical proof assistant and associated library combining the two
approaches to parametricity in dependent type theory. Concretely, we first contribute the Agda
--bridges proof assistant: an extension of the --cubical mode of the Agda proof assistant [Vezzosi
et al. 2021]. It implements the parametricity primitives of Cavallo and Harper [2021] (CH), which we
have adapted to the cubical type theory underlying Agda --cubical [Cohen et al. 2017]. In order to
soundly emulate the substructurality of the bridge type former of CH and their variable-capturing
equational theory, we build on the implementation of ticks [Mannaa and Møgelberg 2018] in Agda

--guarded [Veltri and Vezzosi 2020, 2023] and let Agda --bridges raise freshness constraints on free
variables at typechecking time. Furthermore, Agda --bridges reimplements the equational theory of
the Kan operations hcomp, transp of Agda --cubical with respect to a novel, extended cofibration
logic (a.k.a. face logic, see e.g. [Rose et al. 2022] for some background and references). Agda --bridges
successfully compiles the full Agda --cubical standard library [Agda Community [n. d.]], offering
evidence of its practicality and backwards compatibility. In particular, Agda --bridges conveniently
enjoys strong extensionality principles like the univalence and function extensionality theorems
provided by Agda --cubical. Within Agda --bridges, we give the first fully formal proofs of several
theorems fundamental to internal parametricity, such as relativity [Cavallo and Harper 2021], the
relational counterpart of univalence.
Agda --bridges can be used to prove (global) free theorems by hand using its low-level para-

metricity primitives, as is customary in internally parametric DTTs. However, experience showed

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:4 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

that such direct low-level proofs suffer from several drawbacks. First, familiarity with the CH
parametricity primitives is required of the user. Second, these proofs lack compositionality: for
example, it is unclear how to reuse a proof like (4) in order to shortcut a parametricity proof at a
type built using) = (- : Type) → List- → List- → List- as a subterm. Third, these proofs are
typically long and quickly get intractable as the complexity of the polymorphic target type grows.

To remedy this situation we first observe that the information required to carry out such proofs
is exactly captured by a high-level metatheoretical principle which we call the structure relatedness
principle (SRP). The SRP is a relational, dependent version of the structure identity principle (SIP;
see e.g. Angiuli et al. [2021b] and Section 6.3). In essence, the SRP simply asserts that for each
(dependent) type) , the bridge type of) is equivalent to the logical relation type at) . For a type)
like (1), such an equivalence looks like the following, where ?0 and ?1 are polymorphic programs
of type) and the left-hand side looks like (3):

∀(�0�1 : Type) (' : �0 → �1 → Type) → ∀GB0 GB1 (GBA : ListRel' GB0 GB1) → ...

≃ Bridge(- :Type)→List-→List-→List- ?0 ?1

Note that the SIP asks for similar characterizations, but for path types instead of bridge types.
The SRP at a certain (dependent) type, i.e., a characterization like the above, is enough to derive

global free theorems for it. This is the content of our general parametricity theorem param (see
Section 3.3.2), formulated in Agda --bridges for (dependent) types that satisfy the SRP. It is an
internal abstraction theorem asserting that dependent functions preserve or act on logical relations.
In practice, proofs of free theorems in Agda --bridges are one-liner invocations of param, if the
appropriate type has been proven to satisfy the SRP.

Factoring the proof of a free theorem into an SRP proof obligation plus a call to the param theorem
is already helpful. Such proofs are conceptually easier (with the same computational content) than
their low-level counterparts and SRP proofs for simpler types compose to SRP proofs for more
complex types. Nonetheless, proving the SRP for dependent types turns out to be challenging.
Indeed we observe that some tools that facilitate SIP proofs do not translate to the relational setting:
this includes the fundamental theorem of identity types (Theorem 3.5) and the useful fact that the
proof-irrelevant fragment of a type can be ignored while proving the SIP for it (Theorem 3.6).

This motivates us to introduce a shallowly embedded domain-specific language (DSL) developed
in Agda --bridges, letting the user combine types that validate the SRP. The mere act of writing a
type in this DSL, amounts to the construction of an Agda --bridges type that satisfies the SRP, so
that param can be used straightforwardly. Since it is a tool for composing dependent types, our DSL
is in fact a dependent type theory itself, or rather a shallow embedding of a type theory. For the
expert reader, our DSL consists of a (raw) category-with-families (CwF) structure on the category of
types that satisfy the SRP. Our DSL can be seen as an observational type theory (OTT) [Altenkirch
and Kaposi 2015; Altenkirch et al. 2022, 2007; Pujet and Tabareau 2022] of logical relations and our
param theorem ought to be one of its inference rules. Indeed param can be seen as the relational
analogue of the 0? inference rule of OTT stating that open terms act on identifications (equalities).
For this reason we call our DSL relational observational type theory (ROTT) and say that our param
theorem is not just internal (to Agda --bridges) but also observational.
ROTT and param provide free theorems of practical and theoretical relevance as one-liners in

Agda --bridges2: we prove theorem (4); we prove a scheme of Church encodings parametrized by a
strictly positive functor; we give the first proof of Reynolds’s abstraction theorem for (predicative)
System F, using an internally parametric DTT (Agda --bridges) as a metatheory. This was not
possible in [Nuyts et al. 2017]. We believe this is the first formal connection between an internally
parametric system and Reynolds’s relational parametricity. To summarize, our contributions are as
follows:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:5

• Agda --bridges: the first practical proof assistant with support for internal parametricity. It
implements an adaptation of the internally parametric DTT of Cavallo and Harper [2021] (CH) to
the type theory underlying Agda --cubical [Cohen et al. 2017] (CCHM). To faithfully implement the
CH theory, Agda --bridges raises freshness constraints at typechecking time; the implementation of
this feature builds on the implementation of ticks [Mannaa and Møgelberg 2018] in Agda --guarded

[Veltri and Vezzosi 2020, 2023]. Agda --bridges reimplements the hcomp, transp operations of Agda
--cubical with respect to an extended cofibration logic (a.k.a. face logic). It successfully compiles
the full Agda --cubical standard library [Agda Community [n. d.]] and thus features the univalence
and function extensionality theorems.
• Within Agda --bridges, we provide the first machine-checked proofs of several theorems of

fundamental importance for internal parametricity, such as relativity.
• We identify a sufficient condition to obtain free theorems internally, the structure relatedness

principle (SRP). We state and prove param: a general binary parametricity theorem (abstraction
theorem) inside Agda --bridges, formulated for dependent types validating the SRP. Internal free
theorems can be obtained out of param as one-liners.
• We identify objective reasons why, at a given type, proving the SRP is generally harder than

proving the SIP. For these reasons, we provide ROTT: a shallowly embedded type theory for
obtaining SRP proofs by merely writing a type, in the spirit of parametricity translations. Our
param theorem ought to be one of the inference rules of ROTT. Internal parametricity proofs
performed using ROTT and its param rule are user-friendly, compositional and concise.
• We demonstrate the use and generality of Agda --bridges, ROTT and param on practically

and theoretically relevant examples.

Outline. This paper is structured as follows. In Section 2 we present the implementation and
typing rules of Agda --bridges as well as its core theorems. More precisely: Section 2.1 is a brief
reminder about cubical type theory and Agda --cubical; Section 2.2 discusses what makes Agda
--bridges and the CH type theory substructural type systems. Sections 2.3, 2.4, 2.5 introduce the
BridgeP, extent and Gel parametricity primitives; Section 2.6 and Section 2.7 prove core or basic
theorems using Agda --bridges. The discussion about the Kan operations transp,mhcomp of Agda
--bridges and their custom cofibration logic is rather postponed to Section 5 as they are not needed
for the free theorems we present. In Section 3 we present a framework developed in Agda --bridges

that provides abstractions to write user-friendly, modular and concise proofs of free theorems2.
More precisely: In Section 3.1 we discuss the structure relatedness principle (SRP); In Section 3.2 we
identify obstructions to the SRP; In Section 3.3 we present ROTT and its param rule. We use ROTT
and apply param on various examples in Section 4. We conclude with related work in Section 6.

Conventions and notations. We use the term “logical relation” for (1) a relation ' between struc-
tured types, compatiblewith the structure (e.g. a structure-preserving relation' : "0 → "1 → Type

between two monoids); (2) a proof of relatedness for such a structured relation (e.g. a proof
pf : '<0<1 for some<0 : "0,<1 : "1); and (3) (more rarely) a relation defined by induction on
the formation of types (like ⟦−⟧ above). Our choice to use the same term for (1) and (2) mirrors the
situation for bridges. We assume that the reader is somewhat familiar with intensional dependent
type theory and proof assistants based on it. The term “free theorem” designates consequences of
relational parametricity for potentially non-graph relations ', at any given polymorphic type. For
us, the equational theory of a type theory is the collection of its undirected definitional equalities
and it includes V and [rules. We typically use Agda syntax to write types, programs and proofs. We
ignore writing universe levels. We use curly braces for implicit arguments. Variable binding may

2All of our theorems are part of an Agda --bridges library https://github.com/antoinevanmuylder/bridgy-lib.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

https://github.com/antoinevanmuylder/bridgy-lib

8:6 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

be denoted with _G. 5 , _G → 5 (Agda syntax) or sometimes just G .5 . Logical relations between e.g.
G0 and G1 are typically denoted with a postfix A notation GA . Bridges and paths between G0 and G1
are rather denoted with a double-letter notation GG . The Y symbol systematically ranges in {0, 1}.

2 THE INTERNAL PARAMETRICITY OF AGDA BRIDGES

Agda --bridges is a proof assistant extending the Agda --cubical proof assistant [Vezzosi et al. 2021].
Accordingly, the type theory that Agda --bridges implements, i.e., its primitives and their equational
theory, is an extension of the type theory that Agda --cubical implements (called CCHM in the
literature [Cohen et al. 2017]). A reminder about Agda --cubical appears in Section 2.1.

The type theory of Agda --bridges is an adaptation of the internally parametric DTT of Cavallo
and Harper [2021] (referred to as the CH theory). In other words, Agda --bridges implements
the primitives and equations specified by the CH theory (we mostly keep the same names), or
rather relatively close variants. The CH theory is not entirely standard as it is a substructural
(alternatively “affine”) type theory. Indeed, most of its parametricity primitives have typing rules,
including operational semantics, that can only be used if certain conditions on free variables are
satisfied. This is discussed in Section 2.2. The first main difference between the Agda --bridges and
CH theories lies in how they both handle substructurality. Our solution, freshness typechecking
constraints on free variables, is discussed in Section 2.3. Note that the other main difference w.r.t.
the CH theory is that both type theories extend different kinds of cubical type theories. The latter
difference is rather discussed in Section 5.
In the CH theory, the bridge type former is postulated to represent logical relations: relations

between types that respect their structure, or proofs of relatedness under such relations. Concrete
examples of logical relations will appear below or can be consulted in [Hermida et al. 2013], for
example. To ensure that bridges do uniquely correspond to logical relations, additional primitives
called extent and Gel are postulated by the theory. Internal parametricity then refers to the fact
that all programs preserve bridges, which are in one-to-one correspondence with logical relations.
Accordingly, Agda --bridges features primitives BridgeP, extent and Gel whose implementation
and rules are explained in Sections 2.3, 2.4, 2.5. Occurrences of these primitives in a program or
type may generate freshness constraints at typechecking time.
In Section 2.6 and Section 2.7 we use the above primitives to derive within Agda --bridges core

theorems for internal parametricity as well as the free theorem Bool ≃ (- : Type) → - → - → -

in a low-level style.

2.1 The Cubical Fragment of Agda Bridges

Agda --cubical is an implementation of cubical type theory (CCHM) on top of the Agda proof
assistant. Overall, cubical type theory modifies standard intensional type theory in several respects.
First, it treats proofs of equality as if they were topological paths (see Section 2.1.1). Second, it
features language primitives that let it realize univalence as a theorem (see Section 2.1.3). The latter
property characterizes type equality as type equivalence (i.e. having a “bijection”) and constitutes a
defining aspect of homotopy type theory (HoTT) [Program 2013]. Earlier instances of HoTT assume
univalence as an axiom instead. Third, these primitives include the so-called Kan operations called
transport, hcomp in Agda --cubical. Our adaptation of the Kan operations is rather discussed in
Section 5. Lastly, as an instance of HoTT, cubical type theory defines higher inductive data types
(HITs) which we do not discuss in this work. We now remind the reader about paths, equivalences,
univalence and other extensionality principles.

2.1.1 Paths. A major difference between Agda and Agda --cubical lies in how each system treats
propositional equality. By contrast with the inductively defined equality types ≡ of standard

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:7

intensional type theory, Agda --cubical defines equality in terms of a special postulated type called
the path interval denoted I and equipped with two constants i0, i1 representing the interval’s
endpoints. A proof of equality of 00, 01 : � is then by definition a function 00 : I → � such that
00 i0 = 00 and 00 i1 = 01 (definitionally). Proofs of equality are commonly called paths in the context
of cubical type theory. In order to validate basic lemmas about path equality, I carries operations
~,∧,∨ for manipulating path variables. For instance, the map ~ : I → I inverts the two endpoints
and can be used to prove symmetry of path equality: _ 00 8 → 00 (~8) : 00 ≡01 → 01 ≡00.
To explain what are paths ? : 00 ≡� 01 when � is constituted from dependent types (e.g. � is a

Σ-type), an essentially unavoidable notion of heterogeneous, or dependent path emerges. For this
reason Agda --cubical features types PathP of dependent paths. Given a line of types, that is, a
function � : � → Type and terms 00 : � i0 and 01 : � i1, one can form the type PathP� 00 01 : Type
of heterogeneous or dependent paths between 00 and 01. While non-dependent paths 11 : 10 ≡� 11
are functions I → � with definitionally fixed endpoints 10, 11, dependent paths 00 : PathP� 00 01 are
dependent functions (8 : I) → � 8 with definitionally fixed endpoints 00, 01. In fact, the type 10 ≡� 11
of non-dependent paths in � is defined as the type PathP_8→� 10 11 of paths over a constant line
(_8 → � : I → Type). Note that we will use the notation 8 . � 8 := _8 → � 8 to refer to lines of types
in inlined code.

2.1.2 Equivalences. In Agda --cubical, an equivalence is a function 5 : �0 → �1 satisfying the
isEquiv : (�0 → �1) → Type predicate. The type �0 ≃�1 of equivalences between �0 and
�1 is defined as Σ[5 ∈ (�0 → �1)] isEquiv 5 . The exact definition of isEquiv can be consulted in
[Program 2013] e.g., andwe rather indicate here a sufficient condition for isEquiv 5 (our equivalences
are always built this way). In order to prove isEquiv 5 it is sufficient to build an inverse for 5 :

�0 → �1, that is, a function 6 : �1 → �0 such that ∀00 → 6(5 00) ≡00 and ∀01 → 5 (6 01) ≡01.
Note also that in order to prove that two equivalences 40, 41 : �0 ≃�1 are equal, it suffices to prove
that their underlying functions are equal.

2.1.3 Univalence and Other Extensionality Principles. It is commonplace in proof assistants to
be faced with situations where one needs a more concrete representation of an equality type
00 ≡� 01 when the specific shape of � is known. For example, in order to prove that two (perhaps
dependent) functions are equal it should be sufficient to prove that they are pointwise equal. In
Agda --cubical, this principle admits a simple proof and is realized as an equivalence funextEquiv :
((0 : �) → 50 0 ≡� 0 51 0) ≃ (50 ≡(0:�)→� 0 51).
Such characterizations of equality types 00 ≡� 01 at specific types � are called extensionality

principles. Interestingly, Agda --cubical is expressive enough to guarantee the validity of similar
extensionality principles for all primitive type formers, which we list here. The extensionality princi-
ple for Π (or→ in the non-dependent case) is funextEquiv. The principle for Σ (and ×) characterizes
the path type (?0 ≡Σ[0∈�]� 0 ?1) as Σ[00 ∈ (?0 .fst≡� ?1 .fst)] PathP8 . � (00 8) (?0 .snd) (?1 .snd).
Note that .fst, .snd extract values from (dependent) pairs. Similarly, extensionality principles for
specific data and (even coinductive) record types can always be proven, and there also exists
such a principle for the path type itself. Lastly, arguably the most important yet subtle primitive
extensionality principle is univalence, which asserts that two types are equal if and only if they are
equivalent, i.e., univalence : (�0 ≃�1) ≃ (�0 ≡Type�1). As all the other extensionality principles,
univalence is obtained as a theorem in Agda --cubical.

2.2 Substructurality

As explained above, the CH theory is dubbed substructural (or alternatively “affine”) because most
of its parametricity primitives have typing rules, including operational semantics, that can only be
used if certain conditions on free variables are satisfied. Reasons why these restrictions exist in

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:8 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

the first place appear later in this subsection. The CH theory manages to express such restrictions
on free variables by using a context restriction operation Γ ↦→ Γ \ G acting on contexts. Typically,
restricted contexts Γ \ G are strictly smaller than Γ and appear in the premises of certain typing
rules of CH. Note that having premises featuring smaller contexts is not standard in dependent
type theory. We now exemplify context restriction by looking at how the bridge type former is
defined in the CH theory.

Substructurality in CH. Recall that the CH theory is an extension of cubical type theory. The first
type former presented in CH is the bridge type former. The definition of the bridge type former is
similar to that of the path type former as it is also based on the presence of an abstract interval BI
called the bridge interval. The type BI is assumed to be equipped with two endpoints bi0, bi1 : BI but
no other operations (like ∼,∧,∨ in the case of I, see Section 2.1). This implies that a term Γ ⊢ G : BI

in an arbitrary context is in fact always either a bridge variable (G : BI) ∈ Γ or an endpoint bi0, bi1.
Similar to the path case, the bridge introduction rule (at a closed type �, say) lets us build a

bridge Γ ⊢ _ G. 00 : Bridge� 00 01 if a term Γ, G : BI ⊢ 00 : � is provided. However, the bridge and
path type formers feature different elimination rules which we reproduce here:

Γ ⊢ 8 : I Γ ⊢ 00 : Path� 00 01
Γ ⊢ 00 8 : �

Γ ⊢ G : BI Γ \ G ⊢ 00 : Bridge� 00 01
bdg-elim-ch

Γ ⊢ 00 G : �
As can be seen on the right, a bridge 00 can be applied to a bridge interval term Γ ⊢ G : BI only if

00 typechecks in a different, restricted context Γ \ G . This restriction operation Γ ↦→ Γ \ G is defined
by structural induction on the context. Intuitively, if G is a variable (so not bi0, bi1) the context Γ \G
is obtained from Γ by deleting the G : BI variable from Γ, as well as all those variables “strictly to
the right” of G in Γ (whose type could legally contain G). This intuition is made formal in Section 2.3.
In particular, the term _G. sqG G that takes the diagonal of a square of bridges (i.e. a bridge between
bridges), is ill-typed. The constraint appearing in bdg-elim-ch can be summarized by saying that
bridges are only allowed to consume variables G : BI that are “fresh”. Alternatively one can say
that bridges, or the interval BI itself, are substructural, or affine.
The bridge elimination rule is one example of how context restriction is used to make BI

substructural. In fact the majority of the rules appearing in the parametricity fragment of the CH
theory feature restricted contexts. But knowing that context restriction can be used to enforce
substructurality does not explain why the theory is substructural in the first place.
There are essentially two reasons for this, we refer to the CH article for more details. First,

CH show that their substructural type theory admits a denotational model (in bicubical sets, see
their article). This means that their type theory is logically consistent (relative to Set theory). In
other words we can be sure that no logical contradiction can be derived using their primitives, an
important requirement for a logic or a proof assistant. Second, several parametricity primitives of
the theory (extent,Gel and the Kan operations) present a non standard variable-capturing equational
theory that is well defined solely thanks to the substructurality of BI. For instance the V-rule of
extent operates by identifying a free bridge variable G : BI in an appropriate argument< and by
capturing the variable G in<, yielding an overall term with _G .< as a subterm. More information
about capturing appears in Section 2.4.

Substructurality in Agda --bridges. Neither normal dependent Agda functions nor paths of Agda
--cubical present an elimination rule with a restricted context. Accordingly, to minimize the imple-
mentation work and maximize the reuse of existing Agda infrastructure we do not use a context
restriction operation: the premises of our rules do not have smaller contexts compared to their
conclusion. For instance, eliminating a bridge 00 at a bridge variable Γ ⊢ G : BI only requires 00
to typecheck in Γ (not Γ \ G). To remain sound w.r.t. the CH theory, Agda --bridges compensates
by raising appropriate constraints on free variables when typechecking a rule featuring a premise

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:9

where Γ \ G would appear in the CH theory. An example of such a rule is bdg-elim-ch. We call
these constraints freshness typechecking constraints. Their definitions are given in Definition 2.1,
2.2. Such freshness constraints can be raised on different occasions during typechecking, which we
list here.

• We are typechecking a bridge application Γ ⊢ 00 G .
• We are typechecking an affine function elimination Γ ⊢ 5 G .
• We are computing (so reducing or comparing terms) and need capturing to occur.

Note that affine functions are exactly like bridges, but without fixed endpoints. Affine functions
will be used to express the type of extent, for example. The first two cases are similar. If the raised
constraint is found satisfiable, typechecking can continue and perhaps succeed. Else, a typechecking
error occurs. In the third case, a freshness constraint called semi-freshness is raised. If it is found
satisfiable computing goes on. Else, computing halts (no further reduction, or a failed comparison).
We now present the primitives of Agda --bridges: their typing rules and equational theory,

details about their implementation as well as core theorems they guarantee. Following the above,
several of these typing rules have premises that are (semi-) freshness constraints. Recall that all the
theorems we obtain using Agda --bridges are available in our accompanying library.

2.3 Affine Functions and Bridges

First of all, Agda --bridges postulates the existence of a bridge interval type BI equipped with two
endpoints bi0, bi1 : BI and no further operations. Next, we define the type former of affine functions.
Bridges will essentially be affine functions with definitionally fixed endpoints.

2.3.1 Affine Functions. Affine functions are implemented as normal Agda dependent functions but
their domain is BI and it carries what is called a tick annotation (building on [Veltri and Vezzosi 2020,
2023]). The type of non-dependent affine functions with codomain� is denoted (@tick G : BI) → �

or @BI → � . We call an affine function � : (@tick G : BI) → Type an (affine) line of types and
such lines are sometimes denoted G . � G .

Given a line� : (@tick G : BI) → Type one can form the type of dependent affine functions over
� denoted (@tick G : BI) → �G . Compared to normal dependent functions, the tick annotation
has the net effect of raising an additional freshness constraint while typechecking the application
of a function 5 : (@tick G : BI) → �G to a bridge variable (G : BI) in a given context. That is to
say, the following typing rule is implemented.

Γ ⊢ 5 : (@tick G : BI) → �G (G : BI) ∈ Γ fresh(5 , G)
tick-app

Γ ⊢ 5 G : �G

The other rules of (@tick G : BI) → �G are those of normal dependent functions. Notice how
this time the context in which 5 typechecks is not restricted. The constraint on free variables
implied by the context restriction operation of (2.2) is instead expressed as a typechecking side
condition denoted fresh(5 , G) (understood to live at the same context Γ than 5). We call the latter
side condition a freshness constraint and it is defined as the following decidable condition on 5 , G .

Definition 2.1 (Freshness constraint). Setting Γ = Γ1, (G : BI), Γ2, the freshness constraint fresh(5 , G)
is satisfied if for every free variable E of 5 one of the following holds:

• E appears in Γ1 (i.e., E ∈ Γ1)
• E appears in Γ2 and is a path or a bridge variable3, i.e., (E : I) ∈ Γ2 or (E : BI) ∈ Γ2.

We also adopt the convention that bi0, bi1 are always fresh for any term 5 .

3Additionally, E can be a variable witnessing the truth of a face constraint (Section 5.2) that does not mention G .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:10 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

In more mundane terms, 5 and G satisfy the freshness constraint if 5 does not mention G as a
free variable, nor any term variable (i.e. not a path/bridge variable) declared after G in the context
Γ. In what follows the presence of a tick annotation will sometimes be abbreviated to an@ symbol,
or omitted. To remain sound w.r.t. CH, all functions must use BI with this annotation.
We now explain the BridgeP, extent and Gel type formers. The typing rules implemented for

those primitives are provided in Fig. 1. We make a few general remarks about these rules. The Y
symbol systematically ranges over the indices 0, 1. An equality judgment Γ ⊢ 0 = 1 : �, or just
0 = 1 when the context and types are clear, signifies that “the convertibility algorithm of the
Agda --bridges typechecker concludes that 0 and 1 are definitionally equal”. A reduction judgment
Γ ⊢ 0 ↦→ 1 : �, or just 0 ↦→ 1 signifies that “the reduction algorithm of Agda --bridges finds that 0
reduces to 1”. More precisely, Agda uses weak head normalization and we denote the result of this
algorithm on 0 by red0. To be more precise about our implementation, some of the rules of Fig. 1
contain occurrences of reduction red0. It is important to know that red is not a type-theoretic
primitive but rather a hint that the corresponding argument should be reduced when firing the rule
in question. In other words, occurrences of red in the rules must merely be seen as informative
decorations providing more details about the implementation. The rules also present occurrences of
variable captures ⟨G⟩0. Again, capturing is not an object-level program but rather a metatheoretical
algorithm applying various substitutions and raising freshness constraints under the hood (see
Section 2.4).

2.3.2 Bridges. As hinted above, the rules of BridgeP are essentially a replication of the rules of
(@G : BI) → �G . According to the formation rule, and given an affine line of types� : (@G : BI) →
Type as well as two endpoints 00 : � bi0 and 01 : � bi1 one can form the type BridgeP�00 01 : Type

of heterogeneous or dependent bridges between 00 and 01 over the line �. We sometimes write
the line � as an index as in BridgeP� 00 01 : Type. Given a type � : Type and two inhabitants 00, 01,
the type of non dependent bridges between 00, 01 is defined as Bridge� 00 01 = BridgePG.� 00 01.
Furthermore, eliminating a bridge at a bridge variable can only be done if a freshness constraint
is satisfied, similar to the tick-app rule of Section 2.3.1. Lastly, when typechecking a bridge
Γ ⊢ 00 : BridgeP� 00 01, the typechecker will verify that 00 biY and 0Y are definitionally equal.
Conversely, the expression 00 biY will reduce to 0Y for a typechecked bridge.

So far only one example of a bridge can be built in an empty context. If� is a closed type inhabited
by 0, one can build the reflexivity bridge at � as _G . 0 : Bridge� 0 0. To build examples of bridges
different from reflexivity at function types (0 : �) → � 0, the extent primitive is introduced.

2.4 The Extent Primitive

We now turn our attention to the rules and implementation of the extent parametricity primitive.
The rules of extent are displayed in Fig. 1. The sole purpose of extent is to guarantee the validity
of a certain relational extensionality principle: a principle akin to funextEquiv but characterizing
bridges between functions rather than paths. We call this principle extentEquiv and it reads as:

((00 01 : �) (00 : Bridge� 00 01) → BridgePG. � (00 G) (50 00) (51 01)) ≃ Bridge(0:�)→� 0 50 51

This equivalence asserts that two functions 50, 51 are related by a bridge if and only if they are
pointwise related, i.e., they map related inputs to related outputs, where “related” signifies the
existence of an appropriate bridge. In other words it makes the bridge type former behave as a
type former of logical relations, at (0 : �) → � 0. Note that there exists a slight generalization of
this principle characterizing the type of heterogeneous bridges BridgePG. (0:�G)→� G 0 50 51 instead,
which we still call extentEquiv.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:11

Γ ⊢ � : @BI → Type Γ ⊢ 0Y : � biY
bdg-form

Γ ⊢ BridgeP� 00 01 : Type

Γ ⊢ 00 : (@G : BI) → �G Γ ⊢ 00 biY = 0Y
bdg-intro

Γ ⊢ _G. 00 G : BridgeP� 00 01

Γ ⊢ 00 : BridgeP� 00 01 Γ ⊢ G : BI fresh(00, G)
bdg-elim

Γ ⊢ 00 G : �G

Γ ⊢ 00 : BridgeP� 00 01
bdg-m

Γ ⊢ 00 biY ↦→ 0Y

Γ ⊢ 00Y : BridgeP� 00 01

Γ,@G : BI ⊢ 000 G = 001 G : �G
bdg-[

Γ ⊢ 000 = 001 : BridgeP� 00 01

Γ ⊢ 00 : (@G : BI) → �G Γ ⊢ ~ : BI fresh(00, ~)
bdg-V

Γ ⊢ (_G. 00 G) ~ ↦→ 00 ~ : � ~

Γ ⊢ � : @BI → Type (G : BI) ∈ Γ Γ ⊢ 0 : �G sfresh(0, G)
cap

Γ ⊢ ⟨G ⟩0 : (@~ : BI) → � ~ fresh(⟨G ⟩0, G) Γ ⊢ (⟨G ⟩0) G = 0 : �G

Γ ⊢ � : @BI → Type Γ ⊢ � : (@G : BI) (0 : �G) → Type Γ ⊢ 5Y : (0Y : � biY) → � biY 0Y

Γ ⊢ fr : (00 : � bi0) (01 : � bi1) (00 : BridgeP� 00 01) → BridgePG. � G (00G) (50 00) (51 01)
ext

Γ ⊢ extent {�} {�} 50 51 fr : (@G : BI) (0 : �G) → � G 0

premises of ext Γ ⊢ 0Y : � biY
ext-m

Γ ⊢ extent 50 51 fr biY 0Y ↦→ 5Y 0Y

premises of ext (G : BI) ∈ Γ Γ ⊢ 0 : �G sfresh(red0, G)
ext-V

Γ ⊢ extent 50 51 frG 0 ↦→ fr (⟨G ⟩0 bi0) (⟨G ⟩0 bi1) (⟨G ⟩ (red0)) G : � G 0

Γ ⊢ �Y : Type Γ ⊢ ' : �0 → �1 → Type
Gel-form

Γ ⊢ Gel�0�1 ' : (@G : BI) → Type
Gel-m

Γ ⊢ Gel�0�1 ' biY ↦→ �Y : Type

Γ ⊢ 0Y : �Y Γ ⊢ ar : ' 00 01
Gel-intro

Γ ⊢ gel {�0} {�1} {'} 00 01 ar : (@G : BI) → Gel�0�1 ' G
gel-m

Γ ⊢ gel00 01 ar biY ↦→ 0Y : �Y

Γ ⊢ & : (@G : BI) → Gel�0�1 ' G
Gel-elim

Γ ⊢ ungel {�0} {�1} {'}& : ' (& bi0) (& bi1)

Γ ⊢ 0Y : �Y Γ ⊢ ar : ' 00 01
Gel-V

Γ ⊢ ungel (_G. gel00 01 ar G) ↦→ ar : ' 00 01

Γ ⊢ 6Y : Gel�0�1 ' G (G : BI) ∈ Γ sfresh(red6Y , G)

Γ ⊢ ⟨G ⟩60 biY = ⟨G ⟩61 biY Γ ⊢ ungel (⟨G ⟩ (red60)) = ungel (⟨G ⟩ (red61)) : ' (⟨G ⟩60 bi0) (⟨G ⟩60 bi1)
Gel-[

Γ ⊢ 60 = 61 : Gel�0�1 ' G

Fig. 1. Rules of the BridgeP, extent and Gel primitives of Agda --bridges. Some premises are omi�ed.

In order to validate the left-to-right direction of the above principle, Agda --bridges postulates
the existence of the extent primitive (see also the ext rule of Fig. 1). Note that the type of extent
rather ends with a type of affine functions. This difference is essentially cosmetic thanks the the
ext-m rule of extent.

extent : ∀ {A : (@tick x : BI) → Type} {B : (@tick x : BI) (a : A x) → Type}

(f0 : (a0 : A bi0)→ B bi0 a0) (f1 : (a1 : A bi1)→ B bi1 a1)

(fr : (a0 : A bi0) (a1 : A bi1) (aa : BridgeP A a0 a1)→ BridgeP (_ x → B x (aa x)) (f0 a0) (f1 a1))

(@tick x : BI) (a : A x)→ B x a

It remains to upgrade this map into an actual equivalence extentEquiv. Validating the right-to-
left direction of extentEquiv is possible without assuming further primitives. Indeed, assuming a
bridge 55 : Bridge(0:�)→� 0 50 51, we can easily build a function of the appropriate type _00 01 00 →
_G. 55 G (00 G). Furthermore, one of the inverse conditions can be obtained using a “propositional
[-rule” theorem proved for extent. The other inverse condition relies on the V-rule of extent (see
ext-V in Fig. 1). The exact proof can be consulted in our accompanying library, or in the CH paper.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:12 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

The V-rule of extent is not a standard type theoretic rule, as it works by capturing (see cap rule)
the bridge variable argument G : BI of extent in its principal argument 0 : �G . Capturing can only
be performed if a specific freshness constraint (semi-freshness, denoted sfresh(0, G)) is satisfied
and thus ext-V only fires in that case. We now explain what semi-freshness is and how capturing
is implemented. Note that several other parametricity primitives of Agda --bridges like Gel and the
Kan operations make use of capturing in their equations.

Definition 2.2 (Semi-freshness constraint). Given a context Γ = Γ1, (G : BI), Γ2 and a term Γ ⊢ 0,
the constraint sfresh(0, G) is satisfied if for every free variable E of 0 one of the following holds:

• E ∈ Γ1 or E = G ,
• (E : I) ∈ Γ2 or3 (E : BI) ∈ Γ2. We define Υ2 as the variables E satisfying this clause.

If Γ1, (G : BI), Γ2 ⊢ 0 : �G and sfresh(0, G) then 0 is in fact a weakening 0 = 0′ [c] of a term
Γ1, (G : BI), Υ2 ⊢ 0

′ : �′ G along c : Γ1, (G : BI), Γ2 → Γ1, (G : BI), Υ2
4. Moreover, there is a well-typed

substitution d : Γ1, (G : BI), Γ2, (~ : BI) → Γ1, (G : BI), Υ2 defined by d = (idΓ1 , ~/G, idΥ2), so that we
have Γ1, (G : BI), Γ2, (~ : BI) ⊢ 0′ [d] : �′ [d] ~. Agda --bridges will shortcut this by constructing
a potentially ill-typed substitution f = (idΓ1 , ~/G, idΓ2) : Γ1, (G : BI), Γ2, (~ : BI) → Γ1, (G : BI), Γ2
which has the property that c ◦f = d , and therefore Γ1, (G : BI), Γ2, (~ : BI) ⊢ 0[f] = 0′ [d] : �[f] ~
is well-typed. By freshness w.r.t. G , �[f] = � and by lambda abstraction we obtain Γ ⊢ _~. 0[f] :
(@~ : BI) → �~. The latter is the definition of capturing Γ ⊢ ⟨G⟩0 : (@~ : BI) → �~.

2.5 Gel Types

The univalence theorem stated in Section 2.1.3 posits that paths at the universe �� : �0 ≡�1

uniquely correspond to type equivalences �0 ≃�1. Analogously, the relativity theorem asserts that
bridges at the universe uniquely correspond to relations.

relativity : (�0 → �1 → Type) ≃ BridgeType�0�1

Similar to extent, Agda --bridges postulates the existence of Gel in order to validate the left-to-
right direction of relativity. Thus Gel has the following type (see also Gel-form in Fig. 1).

Gel : ∀ (A0 A1 : Type) (R : A0 → A1 → Type) (@tick x : BI) → Type

The type of Gelmerely ends with a type of affine functions (@G : BI) → Type which can be turned
into a bridge type thanks to the Gel-m rule.
To upgrade this map into the relativity equivalence, we first need an inverse candidate. From

a bridge between two types �� : BridgeType�0�1 we obtain the following relation _ 00 01 →
BridgePG.��G 00 01 : �0 → �1 → Type. This relation between the types �0 and �1 holds for 00, 01
exactly when there is a dependent bridge over �� between them. We also need to provide two
inverse conditions.

2.5.1 The First Inverse Condition. Regarding the first condition, using function extensionality one
has to show ∀(' : �0 → �1 → Type) (00 : �0) (01 : �1) → BridgePG.Gel�0�1 'G 00 01 ≡' 00 01. By
univalence, it can be reduced to proving an equivalence BridgePG.Gel�0�1 ' G 00 01 ≃' 00 01. One
could call this equivalence a (dependent) relational extensionality principle for Gel. Constructing
both directions of this particular equivalence is precisely the role played by the introduction and
elimination primitives of Gel, called gel and ungel, respectively (see Gel-intro, Gel-elim). The
fact that gel and ungel are mutual inverses is in turn guaranteed by the equations governing those
primitives, called the [-rule and the V-rule of Gel (see Gel-V , Gel-[). Note that the [-rule of Gel

4Because �G is a well-typed bridge application, � is fresh w.r.t. G and therefore � = �′ [c].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:13

makes use of capturing, as was the case for ext-V . This means in particular that a semi-freshness
constraint is checked when comparing two inhabitants of Gel.

2.5.2 The Second Inverse Condition. Regarding the second inverse condition needed to prove
relativity, one has to show ∀(�� : Bridge�0�1) → Gel�0�1 (_0001 .BridgePG.��G0001) ≡��.
Formally proving this lemma in Agda --bridges was far from trivial (see our accompanying library).
In their paper and technical report, Cavallo and Harper [2019, 2021] sketch a proof of this lemma
based on a relational extensionality principle for equivalences whose lengthy proof they also sketch.
The principle is a characterization of the type of heterogeneous bridges between equivalences and
its formulation is somewhat comparable to extentEquiv. We merely indicate here that our formal
proof involves the pasting of several 2-dimensional paths in Type, whose construction relies on the
path interval operations ~,∧,∨ provided by Agda --cubical.

2.6 Other Relational Extensionality Principles

The primitives extent and Gel, gel, ungel we have implemented grant relational extensionality
principles for the Π type former and for the universe Type, respectively. It turns out that their
addition alone ensures the validity of similar principles for the other primitive type formers of the
theory. For instance, as is the case for paths, a bridge at Σ[0∈�]� 0 between pairs (00, 10), (01, 11)
can equivalently be regarded as a bridge in the base00 : Bridge� 00 01 together with a heterogeneous
bridge over it 11 : BridgePG. � (00 G) 10 11. There also exist relational extensionality principles for
the path type ≡ and the Bridge type itself. Essentially, those two principles reflect the fact that is is
always possible to swap the order of bridge and path variables in the context.

Relational extensionality principles for specific inductive data types can also be stated and proved
in Agda --bridges. For instance, in their paper CH prove such a principle for the type of booleans
Bool. The principle expresses that Bool is bridge-discrete, that is, the only bridges in Bool are the
ones corresponding to its paths: 10 ≡Bool 11 ≃ (BridgeBool 10 10). Since Bool has no non-reflexivity
paths (i.e., is an h-set in HoTT parlance), there are only two bridges in Bool: the reflexivity bridges at
true and false. We have adapted the argument of CH to prove in Agda --bridges a similar principle
for the List parametrized data type. More precisely, it is a dependent extensionality principle
as it characterizes the type of heterogeneous bridges BridgePG.List(��G) 0B0 0B1 between two lists
(0B0 : List�0), (0B1 : List�1) where �� : Bridge�0�1.

ListRel : ∀ {A0 A1 : Type} (R : A0 → A1 → Type) → List A0 → List A1 → Type

ListRel R [] [] = Unit

ListRel R [] (_ :: _) = ⊥

ListRel R (_ :: _) [] = ⊥

ListRel R (a0 :: as0) (a1 :: as1) = R a0 a1 × ListRel R as0 as1

ListvsBridgeP : ∀ {A0 A1 : Type} (AA : Bridge A0 A1) (as0 : List A0) (as1 : List A1) →

ListRel (BridgeP (_ x → AA x)) as0 as1 ≃ BridgeP (_ x → List (AA x)) as0 as1

The principle essentially expresses that a bridge between lists is a list of bridges. Indeed, ListRel'
is an inductively defined relation between the types List�0 and List�1 which holds for 0B0, 0B1
exactly when the latter lists have the same size and exhibit '-related values at each index.

2.7 Low-Level Parametricity

We are now ready to prove theorems for free from first principles in Agda --bridges. It is customary
in type theories with internal parametricity (incl. CH) to prove free theorems by directly appealing

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:14 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

lowChurchBool : (∀ (X : Type)→ X → X → X) ≃ Bool

lowChurchBool = isoToEquiv (iso chToBool boolToCh (_ { true → refl ; false → refl })

_ k → funExt _ A → funExt _ t → funExt _ f → param-prf k A t f)

where

boolToCh : Bool → (∀ (X : Type) → X → X → X)

boolToCh true X xt xf = xt

boolToCh false X xt xf = xf

chToBool : (∀ (X : Type) → X → X → X) → Bool

chToBool k = k Bool true false

module CH-inverse-cond (k : ∀ (X : Type)→ X → X → X) (A : Type) (t f : A) where

R : Bool→ A→ Type

R = _ b a → (boolToCh b A t f) ≡ a

k-Gelx : (@tick x : BI)→ Gel Bool A R x → Gel Bool A R x → Gel Bool A R x

k-Gelx x = k (Gel Bool A R x)

k-Gelx-gel-gel : (@tick x : BI)→ Gel Bool A R x

k-Gelx-gel-gel x = k-Gelx x (gel true t (refl) x) ((gel false f (refl) x))

asBdg : BridgeP (_ x → Gel Bool A R x) (k Bool true false) (k A t f)

asBdg x = k-Gelx-gel-gel x

param-prf : R (k Bool true false) (k A t f)

param-prf = ungel {R = R} _ x → asBdg x

open CH-inverse-cond

Fig. 2. A low-level proof of a free theorem.

to the available low-level parametricity primitives. This is unsurprising since, after all, those
primitives have been added precisely for that purpose.

Such a low-level proof of a free theorem in Agda --bridges appears in Fig. 2. The lowChurchBool
theorem asserts that Bool admits a Church encoding, i.e., that this equivalence holds: (- : Type) →
- → - → - ≃ Bool. It is a faithful reproduction of the proof appearing in [Cavallo and Harper
2021]. We provide a high-level description of the proof and refer to the latter for more detailed
explanations. To build an equivalence, it is sufficient to provide twomaps and two inverse conditions.
This is the content of the isoToEquiv lemma. The two candidate inverses are defined in a where
block below and are called boolToCh and chToBool. The first inverse condition can simply be
proven by induction. Using function extensionality, the second inverse condition asks that for every
: : (- : Type) → - → - → - , this equality holds boolToCh(chToBool:)� C 5 ≡: � C 5 . Note
that the universal quantification on : appears inside the system (with an Agda Π-type). The logic
of Agda --cubical alone would not be sufficient to warrant this result (see Section 1). Therefore
the internal parametricity of Agda --bridges must be used. All calls to parametricity primitives are
isolated in a separate module called CH-inverse-cond. The last lemma of this module param-prf

implies the second inverse condition.
We observe that such low-level proofs suffer from several defects. First, the user of Agda --bridges

wanting to reproduce this style of proofs must have a good familiarity with the parametricity
primitives provided by Agda --bridges, including their inner workings. But these primitives use
advanced or non-standard type-theoretic notions like freshness and capturing. This makes for
hard and non user-friendly proofs. Second these proofs lack compositionality. Indeed, we have
proved in Fig. 2 a free theorem param-prf about polymorphic programs of type) = (- : Type) →
- → - → - . We expect other free theorems to hold at this type and it is unclear at first glance
if param-prf could be reused to achieve that. In fact we even would like to be able to reuse the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:15

latter parametricity proof to shortcut proofs of free theorems at types having − → − → − as a
subexpression. Lastly, these proofs are typically long even for seemingly simple examples of free
theorems. Furthermore their complexity quickly gets intractable when the size of the target type)
grows (there are several reasons for this, discussed in the next section).
All in all, these drawbacks motivated us to develop in Agda --bridges a library providing user-

friendly, compositional and short proofs of free theorems. This is the content of Section 3.

3 THE OBSERVATIONAL PARAMETRICITY OF AGDA BRIDGES

As explained in Section 2.7, low-level proofs of internal free theorems are unsatisfactory in several
respects. We improve these low-level proofs in two steps.
Our first improvement stems from the observation that, in order to make use of internal

parametricity, it is always sufficient to prove appropriate relational extensionality principles.
More precisely, we argue that obtaining internal free theorems for an Agda --bridges program
? : (W : Γ) →) W can be reduced to providing (dependent) relational extensionality principles for ?’s
domain and codomain, so characterizations of their (dependent) bridge types as types of actual logi-
cal relations: an equivalence[Γ : ...≃BridgeΓ W0 W1 and an equivalence[) : ...≃BridgePG.) (WW G) (C0 :
) W0) (C1 :) W1) where WW : BridgeΓ W0 W1. This is explained in Section 3.1 and illustrated on an exam-
ple in Section 3.1.4.

We call this informal sufficient condition for obtaining free theorems, which asks that all (depen-
dent) types are equipped with a characterization of their Bridge/BridgeP type as logical relations,
the structure relatedness principle (SRP). The SRP is precisely stated in Section 3.1. The reason behind
this name is that there exists an analogous principle asking instead that all (dependent) types feature
a characterization of their ≡/PathP types as types of isomorphisms. The latter principle is known
(to varying degrees of generality, see Section 6.3) as the structure identity principle (SIP) in HoTT/UF.

The second improvement we make compared to low-level proofs stems from the observation
that proving the SRP or the SIP “by hand” at a given type can quickly get intractable, as explained
in Section 3.2. To remedy this situation we introduce in Section 3.3 a shallowly embedded domain-
specific language (DSL) implemented as an Agda --bridges library that allow the user to (1) show
the SRP at a type) by merely writing their type) in the DSL (using the rules in Section 3.3.1) and
(2) derive free theorems for) in a straightforward manner (see the param theorem of Section 3.3.2).
We call our DSL relational observational type theory (ROTT). By contrast with low-level proofs,
ROTT provides abstractions to write user-friendly, modular and concise proofs.

3.1 The SRP and Bare Parametricity

The first improvement we make for better internal parametricity proofs is to systematically factor
proofs of free theorems into two simpler statements: the structure relatedness principle (SRP) on
one side, and bare parametricity on the other. We first explain these principles and then illustrate
their use by deriving the global free theorem (4) of Section 1 in Agda --bridges.

3.1.1 Bare Parametricity. Bare parametricity is simply the fact that all programs defined in Agda

--bridges have a canonical action on bridges. It can be summarized as the following bare-param

program:

bare-param : ∀ {� : Type} {T : � → Type} (p : ∀ W → T W) (W0 W1 : �)

(WW : Bridge W0 W1)→ BridgeP (_ x → T (WW x)) (p W0) (p W1)

bare-param p W0 W1 WW = _ x → p (WW x)

3.1.2 The SRP, Relativistic Reflexive Graphs and the SIP. The structure relatedness principle (SRP)
is the following metatheoretical principle:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:16 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

record RRGraph : Type1 where

field

cr : Type

lrel : cr→ cr→ Type

requ : ∀ (a b : cr)→ lrel a b ≃ Bridge a b

open RRGraph public

record DispRRG (� : RRGraph) : Type1 where

field

dcr : � .cr→ Type

dlrel : ∀ (W0 W1 : � .cr) (Wr : � .lrel W0 W1) (a0 : dcr W0) (a1 : dcr W1) → Type

drequ : (W0 W1 : � .cr) (Wr : � .lrel W0 W1) (WW : Bridge W0 W1) (Wprf : Wr [(� .requ W0 W1)] WW)

(a0 : dcr W0) (a1 : dcr W1)→ dlrel W0 W1 Wr a0 a1 ≃ BridgeP (_ x → dcr (WW x)) a0 a1

open DispRRG public

→Form : ∀ {� : RRGraph} (A B : DispRRG �) → DispRRG �

→Form A B .dcr W = (A .dcr W → B . dcr W)

→Form A B .dlrel W0 W1 Wr f0 f1 = ∀ a0 a1 → (ar : A .dlrel W0 W1 Wr a0 a1) → B .dlrel W0 W1 Wr (f0 a0) (f1 a1)

→Form A B .drequ W0 W1 Wr WW Wprf f0 f1 = flip compEquiv extentEquiv --under the hood: extent

((equivNCod _ a0 → equivNCod _ a1 →

equivN ’ (A .drequ W0 W1 Wr WW Wprf a0 a1) _ {ar} {aa} aprf →

B .drequ W0 W1 Wr WW Wprf (f0 a0) (f1 a1)))

Fig. 3. (Displayed) relativistic reflexive graphs in Agda --bridges, and their→fm semantic rule.

Structure Relatedness Principle (SRP): For each type Γ : Type of Agda --bridges,
(resp. type family) : Γ → Type) the Bridge type of Γ (resp. the BridgeP type of)) can
be characterized as a type of logical relations (resp. heterogeneous logical relations).

In other words, the SRP conveys the idea that bridges act as logical relations at all types*. For
instance the SRP holds at Type thanks to the relativity theorem of Section 2.5, and the SRP holds at
function types (0 : �) → � thanks to the extentEquiv theorem of Section 2.4.
Contrary to bare parametricity, the SRP can not be stated as an object-level theorem of Agda

--bridges. The reason is that types of logical relations are ad hoc: there is a priori no Agda --bridges

function Lrel : Type → Type acting as an internal parametricity translation, computing for each Γ

its type of logical relations Lrel Γ. Indeed parametricity translations are defined by induction on
the syntax, so using a type-casing operation. But having a first-class type-casing operator on types
would contradict the internal parametricity of Agda --bridges! This means that the quantification
(*) must be stated metatheoretically.

Since the SRP can not be obtained as a theorem, we package it as a definition on types (or
type families). For reasons explained hereafter, types that satisfy the SRP are called relativistic
reflexive graphs (RRG). Moreover type families) : Γ → Type satisfying the SRP are called displayed
relativistic reflexive graphs (dRRG). In what follows RRGs and dRRGs are defined in plain English.
The corresponding formal Agda --bridges definitions of these structures are provided in Fig. 3.

Recall that we use a postfix A notation to denote (potentially heterogeneous) logical relations 0A
and a double-letter notation 00 to denote (potentially dependent) bridges. Additionally, note that
we use the notation 00 [4] 01 to signify that 4 .fst00 ≡�1

01 where 4 : �0 ≃�1 and 00 : �0, 01 : �1.

Definition 3.1 (Relativistic reflexive graph (RRG)). A relativistic reflexive graph is a type Γ : Type

which, for all elementsW0, W1 : Γ, is equipped with a type denoted Γ{W0, W1} : Type and an equivalence
denoted [Γ : Γ{W0, W1} ≃BridgeΓ W0 W1.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:17

Members of Γ{W0, W1} are called logical relations at Γ between W0, W1. The [equivalence is called
the relativistic equivalence of Γ. When the context is clear, we allow ourselves to refer to the RRG
given by the triple (Γ, _W0 W1 → Γ{W0, W1}, _W0 W1 → [Γ) simply as Γ. Next, the notion of displayed
relativistic reflexive graph (dRRG) is an indexed version of the above notion. The definition is
not straightforward but exactly encodes what we want: types that carry characterizations of
their BridgeP types. To help the reader parse the definition, the indexed counterpart of each RRG
operation is written in bold font.

Definition 3.2 (Displayed relativistic reflexive graph over − (dRRG over −)). Let Γ be a RRG. A
displayed relativistic reflexive graph) over Γ is

• For every W : Γ a type denoted)W with...
• For every W0 W1 (WA : Γ{W0, W1})(C0 :) W0) (C1 :) W1) a type denoted) {C0, C1}WA with ...
• For every (WA : Γ{W0, W1}) and (WW : BridgeΓ W0 W1) such that WA [[Γ] WW and for every (C0 :

) W0), (C1 :) W1), an equivalence denoted [) :) {C0, C1}WA ≃ BridgePG.) (WW G) C0 C1.

Members of) {C0, C1}WA are called heterogeneous logical relations at) between C0, C1 over the
logical relation WA . If the triple (), _... →) {C0, C1}WA , _... → [)) is a dRRG over Γ, we allow
ourselves to refer to it simply as) . In that case, we also adopt the suggestive notation (W : Γ) ⊨
)W dRRG by analogy with the type judgment of type theory (G0 : �0, ... , G= : �= ⊢) type).

We motivate our terminology of RRGs and dRRGs for types that satisfy the SRP. First, types Γ that
have the SRP, i.e., are equipped with types Γ{W0, W1} and an equivalence [: Γ{W0, W1} ≃BridgeΓ W0 W1,
are reflexive graphs. Indeed we can regard the logical relations of Γ as its edges and we can pick
[−1 (_G .W) : Γ{W,W} for its reflexivity edges. Second, the archetypal type satisfying the SRP is
Type, thanks to relativity. Hence types that satisfy the SRP are called relativistic reflexive graphs.
Following Ahrens and Lumsdaine’s [2019] convention for naming dependent mathematical objects,
we call the dependent version of a RRG a displayed RRG.

By exact analogy with the SRP, the structure identity principle (SIP; see Section 6.3 for references)
is a metatheoretical statement asking that, for each type Γ (resp.) : Γ →)) the ≡ type of Γ (c.f.
bridge type; resp. PathP type of)) can be characterized as a type of isomorphisms (c.f. logical
relations). That is to say, the SIP conveys the idea that paths act as isomorphisms at all types. For
instance the SIP holds at Type and at function types (0 : �) → � thanks to the univalence and
funextEquiv theorems of Section 2.1.3. Types satisfying the SIP are most commonly known as
univalent groupoids, or setoids in the literature (c.f. relativistic reflexive graphs).

3.1.3 Examples of RRGs and dRRGs. We give two examples of RRGs and one example of dRRG.
The upshot is that each (dependent) relational extensionality principle that we can prove (see
Section 2.6) for a potentially composite type, can be repackaged as a (d)RRG.

First, we define the composite type of premonoids PreMon = Σ[" ∈ Type]"× (" → " → ").
This type can be turned into an RRG. Indeed we can pick Γ = PreMon and define PreMon{"0, "1}
as the type of (actual) logical relations of premonoids between "0, "1. A logical relation of pre-
monoids is a relation between"0, "1 with a proof that the neutral elements of"0, "1 are related,
and a proof that the binary functions are pointwise related. By combining the principles for
Σ,×, Type,→ appearing in Section 2.6, one can prove that the type PreMon{"0, "1} is equivalent
to BridgePreMon"0"1 which makes Γ = PreMon an RRG. Second, the type Bool → Bool can be
turned into an RRG. We can indeed pick (Bool → Bool){50, 51} = (∀10 11 → 50 10 ≡Bool 51 11) and
use the appropriate relational extensionality principles, including the one for Boolmentioned in (2.6)
to build the expected equivalence. Our third example regards the List type former. Recall that the
triple (Type, _�0�1 → �0 → �1 → Type, relativity) turns Type into a RRG. We assert that the type

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:18 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

family _- → List- is a displayed RRG over the Type RRG, i.e., (- : Type) ⊨ List- dRRG. The rea-
son is that we can pick (_- → List-){0B0, 0B1}' = ListRel' 0B0 0B1, the inductive characterization
of BridgePG. List(��G) discussed in Section 2.6.

3.1.4 SRP + Bare Parametricity. Next, we illustrate how the SRP and bare parametricity can be used
to improve proofs of internal free theorems. The main idea is that since (1) bare parametricity tells
us that programs act on bridges and (2) the SRP guarantees that bridges uniquely correspond to
logical relations, we expect that (3) programs act on logical relations as well. And all free theorems
are consequences of the latter fact. We derive the global free theorem (4) of Section 1 in Agda

--bridges, or rather a slightly reduced version of it for sparing space.

�hm : ∀ {A0 A1 : Type} (f : A0 → A1) (as0 : List A0)

(p : (X : Type) → List X → List X) → map f (p A0 as0) ≡ p A1 (map f as0)

The first step of our proof is to derive the SRP for the domain and codomain of ? . In other words we
must (1) equip Typewith an RRG structure (we chose the one induced by relativity) and (2) equip the
type family _- . List- → List- with a dRRG structure over the Type RRG. This amounts to proving
the following characterization of the BridgeP type of _- . List- → List- where �0, �1 : Type,
' : �0 → �1 → Type, �� : Bridge�0�1, �prf : ' [relativity]��, and @Y : List�Y → List�Y for
Y = 0, 1. The proof uses the relational extensionality principles extentEquiv, ListvsBridgeP and the
one for Gel (see Section 2.5.1, 2.6) as well as the fact that all type formers preserve equivalences. In
the spirit of parametricity translations, an appropriate relational extensionality principle is used
based on the head of the type former appearing in the BridgeP type at hand.

BridgePG. List(��G)→List(��G) @0 @1 ≃

∀0B0 0B1 → BridgePG.List��G 0B0 0B1 → BridgePG. List(��G) (@0 0B0) (@1 0B1) ≃

∀0B0 0B1 → (ListRel (BridgePG.��G) 0B0 0B1) → (ListRel (BridgePG.��G) (@0 0B0) (@1 0B1)) ≃

∀0B0 0B1 → (ListRel' 0B0 0B1) → (ListRel' (@0 0B0) (@1 0B1))

The second step of our proof is to “conjugate” bare-param with the SRP proof obligations we pro-
duced for Type and _- . List- → List- . Let�0, �1, 5 , 0B0, ? be as in �hm. We first convert the graph
relation of 5 denoted Gr 5 = _ 00 01 → 5 00 ≡�1

01 into a bridge denoted �� : BridgeType�0�1,
using relativity. Then we apply bare parametricity to ��.

bare-param {) = _ - → List- → List- } ? �0�1�� : BridgePG. List(��G)→List(��G) (? �0) (? �1)

Finally we use the above dependent principle for _- . List- → List- and obtain a proof pf :

∀0B0 0B1 → (ListRel (Gr 5) 0B0 0B1) → (ListRel (Gr 5) (? �0 0B0) (? �1 0B1)). By a simple list in-
duction we see that ListRel (Gr 5) is equal to the relation _ 0B0 0B1 → (map 5) 0B0 ≡0B1. Thus
pf 0B0 (map 5 0B0) refl grants the free theorem �hm.

The technique of factoring free theorems into SRP proof obligations and a call to bare-param is an
improvement compared to low-level parametricity proofs like the one presented in Section 2.7. The
proofs are conceptually easier. Moreover they allow for more compositionality. Indeed, contrary
to Section 2.7 we are now in position to reuse the SRP proof obligations obtained for Type and
_- . List- → List- to derive (1) other free theorems for programs ? : (- : Type) → List- →
List- and even (2) shorter proofs of free theorems for a composite type having List− → List− as
a subexpression. However it turns out that proving SRP obligations “by hand” like in the above
is challenging, in fact strictly more challenging than SIP obligations, as explained in the next
subsection.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:19

3.2 Obstructions to the SRP and SIP

In this subsection we argue that proving the SIP, or worse, the SRP at a given type can get tedious.
We begin with an example of SIP and SRP proofs for the type of pointed unary type operations
PointedOp = Σ[� ∈ Type → Type] ((- : Type) → - → � -).

Example 3.3 (The SIP via extensionality principles). By repeatedly applying extensionality princi-
ples (see Section 2.1.3) we can characterize the meaning of a path between such pointed operations:

(�0, 50) ≡PointedOp (�1, 51)

≃ Σ[�� ∈ �0 ≡Type→Type �1] PathP8 .(- :Type)→-→�� 8 - 50 51

≃ Σ[�� ′ ∈ (- : Type) → (�0-) ≡Type (�1-)] PathP8 .(- :Type)→-→�� ′ - 8 50 51

≃ Σ[4 ∈ (- : Type) → �0- ≃ �1-] PathP8 .(- :Type)→-→ua (4 -) 8 50 51

≃ Σ[4 ∈ (- : Type) → �0- ≃ �1-]
(

(- : Type) → (G : -) → PathP8 .ua (4 -) 8 (50- G) (51- G)
)

≃ Σ[4 ∈ (- : Type) → �0- ≃ �1-] ((- : Type) → (G : -) → 50- G [4 -] 51- G)

We conclude that a path between pointed operations (�0, 50) and (�1, 51) consists of a pointwise
equivalence between �0 and �1, compatible with the pointings 50 and 51.

Example 3.4 (The SRP via relational extensionality principles). Set Rel-0-1 := -0 → -1 → Type

and ra := relativity. We can characterize bridges at PointedOp by applying the principles discussed
in Section 2.5.1, 2.6.

BridgePointedOp (�0, 50) (�1, 51)

≃ Σ[�� : BridgeType→Type �0 �1] BridgeP~.(- :Type)→-→�� ~ - 50 51

≃ Σ[�� ′ : (-0-1 : Type) → BridgeType-0-1 → BridgeType (�0-0) (�1-1)]

(-0-1 : Type) (-- : BridgeType-0-1) (G0 : -0) (G1 : -1) →

BridgeP~.-- ~ G0 G1 → BridgeP~.�� ′ -0 -1 -- ~ (50-0 G0) (51-1 G1)

≃ Σ[�A : (-0-1 : Type) → Rel-0-1 → Rel (�0-0) (�1-1)]

(-0-1 : Type) (' : Rel- .) (G0 : -0) (G1 : -1) →

BridgeP~.ra' ~ G0 G1 → BridgeP~.ra (�A -0 -1 ') ~ (50-0 G0) (51-1 G1)

≃ Σ[�A : (-0-1 : Type) → Rel-0-1 → Rel (�0-0) (�1-1)]

(-0-1 : Type) (' : Rel- .) (G0 : -0) (G1 : -1) →

(' G0 G1) → �A -0-1 ' (50-0 G0) (51-1 G1)

We conclude that a bridge between pointed operations (�0, 50) and (�1, 51) consists of a relation
transformer �A between them such that the pointings 50 and 51 send related pairs to related pairs.

The examples above required rote work: we had to apply a series of extensionality principles
which was entirely dictated by the formation of PointedOp. Hence, it is clear that proofs of the SIP
and SRP at a type) scale at least with the complexity of) : for each type former � used to define) ,
an appropriate extensionality principle must be used to swap PathP/BridgeP and � .
Moreover we argue that proving the SRP is in general strictly harder than proving the SIP,

because of three obstructions which we list here.
The first obstruction is that the extentEquiv principle of Section 2.4 always produces an extra

Bridge type when characterizing the type of bridges between two given functions. Both generated
Bridge types must be further characterized to finish the SRP proof at hand. This is to compare
with the funextEquiv principle of Section 2.1.3 which (if not in the fully dependent case) does not
produce an extra PathP type.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:20 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

The second and third obstructions relate to the fact that, in the SIP case, some tools are available
to dismiss part of the rote work seen above. A first such tool is a theorem (see Rijke [2022] e.g.)
that can be seen as a reformulation in cubical type theory of the � rule of equality types. Recall
that a type � is contractible (isContr�) if it is equivalent to the unit type {∗}.

Theorem 3.5 (Fundamental theorem of identity types). Assume � : Type and a relation
Eq : � → � → Type. Suppose that �@ is reflexive, i.e., ∀0 → Eq0 0. Additionally, suppose that
∀00 → isContr (Σ[01 ∈�] Eq00 01). Then ∀00 01 → (Eq00 01) ≃ (00 ≡� 01).

This theorem might allow us to shortcut proofs as in Example 3.3, especially in the case of ordinary
data types, by simply proving that the end result satisfies the above criteria. However, since bridges
have no elimination principles like � , the theorem does not to our knowledge translate to the
relational setting.
Similarly, the third obstruction is the lack of the following result, standard in HoTT but only

available in case of the SIP. Recall that a type % is an h-proposition if any two inhabitants of % are
equal, i.e., isProp % = ∀?0 ?1 → ?0 ≡% ?1. For instance the empty and unit types are h-propositions.
The theorem guarantees the existence and unicity of heterogeneous paths between proofs of
h-propositions.

Theorem 3.6 (Heterogenous eqality of proofs). Let % : I → Type be a line of h-propositions,
i.e., there is a map isp : (8 : I) → isProp (% 8). Suppose that ?0 : % i0 and that ?1 : % i1. Then
isContr (PathP8 . % 8 ?0 ?1)

5.

Typically, this theorem is used while proving the SIP for structured types of the form Σ[0∈�] (% 0)
where for all 0, % 0 is an h-proposition. For instance this is the reason why two equivalences 40, 41 :
�0 ≃�1 are equal if and only if their underlying functions are equal 40 ≡ 41 ≃ (40.fst≡ 40.fst). This
is to compare with the relational extensionality principle for equivalences evoked in Section 2.5.2
which has the hardest proof amongst basic relational principles.

Because of these obstructions to SRP proofs, we have developed a domain-specific language
(DSL) to obtain proofs of the SRP at a given type) by merely writing the type) in the DSL. Our
DSL is explained in the next subsection.

3.3 ROTT

The second improvement wemake compared to low-level proofs of free theorems is the introduction
of relational observational type theory (ROTT): a domain-specific language (DSL) implemented as a
library in Agda --bridges. It allows users to (1) show the SRP at a type) by merely writing their
type) in the DSL and (2) derive free theorems for) in a straightforward manner.
Since ROTT has abstractions that compose dependent types) satisfying the SRP (i.e. dRRGs

from Definition 3.2), it is itself a dependent type theory. To be more precise, ROTT is a type theory
shallowly embedded in Agda --bridges. This means that ROTT is not defined as some kind of data
type of expressions whose constructors would be inference rules used to write types) . Instead,
ROTT is an Agda --bridges library (part of our accompanying library) comprised of a bunch of
theorems called “semantic rules” explaining how to compose dRRGs. These Agda --bridges theorems
are discussed in Section 3.3.1. As an example, we program in Fig. 3 the→fm semantic rule of ROTT
directly in Agda --bridges.
Additionally, ROTT also features a param theorem letting the user straightforwardly deduce

free theorems from appropriate (d)RRGs instances (obtained with ROTT, e.g.). We see param as
one of the rules of ROTT. It is discussed in Section 3.3.2.

5For bridges, only isProp (BridgePG. % G ?0 ?1) holds. By (2.5.1), BridgePG.Gel%0 %1 (_− −.⊥) G ?0 ?1 ≃⊥.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:21

Γ RRG Γ ⊨) dRRG
ctx-ext

Γ #) RRG

Γ ⊨ � dRRG Γ #� ⊨ � dRRG
Πfm

Γ ⊨ N fm�� dRRG

Γ ⊨ � dRRG Γ #� ⊨ � dRRG
Σfm

Γ ⊨ Σfm�� dRRG

Γ ⊨ 5 : N fm�� Γ ⊨ 0 : �
app

Γ ⊨ app 5 0 : �[0]

Γ NRG
tyfm

Γ ⊨ Tyfm dNRG

Γ ⊨ � dRRG Γ ⊨ 00 : � Γ ⊨ 01 : �
≡fm

Γ ⊨ ≡fm00 01 dRRG

Fig. 4. Some rules of ROTT. Some premises are not displayed.

3.3.1 The Standard Rules of ROTT. The key idea behind ROTT is to remark that RRGs Γ act as if
they were contexts of a certain type theory, and displayed RRGs) over Γ act as if they were types
of a type theory. In other words it seems like the type of all RRGs RRGraph somehow constitutes a
model of type theory. For the expert reader this can be summarized as the fact that ROTT is a raw
category-with-families (CwF) structure (with support for various type formers) on the category
formed by relativistic reflexive graphs and their morphisms6. Here “raw” means that no equations
between the CwF operations are required. There is no need to define what a (raw) CwF is since we
only deal with one instance here and since in practice our proofs of the SRP sometimes combine
manual reasoning with using the ROTT interface.

ROTT features standard (shallowly embedded!) type theoretic rules to combine RRGs and dRRGs,
treating them as type-theoretic contexts and types in contexts, respectively. Some of those rules
appear in Fig. 4 using traditional type-theoretic syntax. Recall that our notation for displayed
RRGs over Γ is Γ ⊨) dRRG. Each of those rules is an Agda --bridges program parametrized by the
premises appearing in the rule. For example, the→fm rule of ROTT (a restricted version of Πfm)
is programmed directly in Agda --bridges in Fig. 3.
Let us explain how some of those rules are defined in Agda --bridges. The important idea

here is that those rules compose the relational extensionality principles of their premises to yield
composite types satisfying the SRP. This means that from the point of view of the user of ROTT,
the SRP is proved by the system while types are being written with those rules. As can be expected,
given Γ a RRG and) a displayed RRG over it, the context extension Γ #) is a RRG whose carrier
is simply Σ[W ∈ Γ])W . Its type of logical relations (Γ #)){(W0, C0), (W1, C1)} is moreover defined
as Σ[WA ∈ Γ{W0, W1}]) {C0, C1}WA . The fact that this type matches the corresponding bridge type
BridgeΓ #) (W0, C0) (W1, C1), can easily be deduced from the same fact for Γ and) . Regarding N fm and
Σfm, and supposing that Γ is empty,N fm�� and Σfm�� are RRGs7 with carriers (0 : �) → � 0 and
Σ[0 ∈�] (� 0). In particular ((0 : �) → � 0){50, 51} is defined as the type ∀00 01 (0A : �{00, 01}) →
�{50 00, 51 01}0A and this type can again be proven to match the corresponding Bridge type by
composing the relativistic equivalences of � and �. The Tyfm rule equips Type with a dRRG
structure in the expected way. For an empty Γ, the rule sets Type{�0, �1} = �0 → �1 → Type

and uses relativity. Finally ROTT also features a term judgment written Γ ⊨ 0 : � needed because
arbitrary dependent types might mention terms in their definition. We do not state the definition
of this judgment and merely indicate that Γ ⊨ 0 : � holds if 0 : (W : Γ) → �W features a custom
action on logical relations WA : Γ{W0, W1} which matches it canonical action on BridgeΓ W0 W1, i.e.,
bare-param0W0 W1.

3.3.2 Internal Observational Parametricity. We state the param semantic rule of ROTT. Once again
we do so as if it was a syntactic type-theoretic rule even though param really is an Agda --bridges

program parametrized by the premises appearing in the rule. The theorem states that, given an

6In our development those morphisms are called relativistic, or native relators but we will not need this notion here.
7There is a slight mismatch between dRRGs in empty contexts and RRGs, but we ignore it here.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:22 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

RRG Γ and a displayed RRG) over it, all external dependent functions (i.e. all functions definable
in Agda --bridges) from Γ to) respect logical relations.

Γ RRG Γ ⊨) dRRG ? : (W : Γ) →)W W0, W1 : Γ WA : Γ{W0, W1}
param

param Γ) ? W0 W1 WA :) {? W0, ? W1}WA

The proof of this theorem is elementary and proceeds in three steps, similar to the proof appearing
in Section 3.1.4. We omit to write .fst to extract direct maps out of equivalences. First convert
the logical relation WA into a bridge [Γ WA : BridgeΓ W0 W1. Second use bare parametricity to ob-
tain bare-param ? W0 W1 ([Γ WA) which has type BridgePG.) ([Γ WA G) (? W0) (? W1). Third by definition

we know that WA [[Γ] ([Γ WA). Hence we may use the relativistic equivalence [) of) to obtain
[) −1 (bare-param ? W0 W1 ([Γ WA)) which has type) {? W0, ? W1}WA . This concludes the proof and
definition of param.
The param theorem draws inspiration from observational type theory. It can indeed be seen

as a relational analogue of the ap inference rule (see e.g. [Altenkirch et al. 2022] and Section 6)
which states that terms of observational type theory act on identifications or isomorphisms, that is,
observational proofs of equality. For this reason we say that our internal param-etricity theorem
is also observational. In the next section we use ROTT and its param rule to obtain modular and
concise proofs of internal free theorems.

4 INTERNAL OBSERVATIONAL PARAMETRICITY APPLIED

In this section we obtain several free theorems as one-liner invocations of the param theorem of
Section 3.3.2. This is done by first constructing appropriate (d)RRGs using the rules of ROTT. All of
our examples can be consulted in our accompanying library.

4.1 Reproving �hm and lowChurchBool

We begin by recasting our proof of the global free theorem �hm from Section 3.1.4, this time
using ROTT and its param rule. Let ? : (- : Type) → List- → List- , let 5 : �0 → �1 for �0, �1

two types and let 0B : List�0. We want to apply param at program ? and at (logical) relation
Gr 5 : �0 → �1 → Type. In order to do so we must first provide an RRG structure for Type,
the domain of ? . This is achieved using the Tyfm rule of ROTT. Second, we must prove that
- : Type ⊨ List- → List- dRRG. By the N fm rule of ROTT (or rather→fm of Fig. 3) it is sufficient
to prove (twice) that - : Type ⊨ List- dRRG. The latter displayed RRG appears as an example in
Section 3.1.3. At this point all premises of param have been supplied.

Note how ROTT allows a significant improvement compared to proofs of the SRP “by hand” as
shown Section 3.1.4. Instead of proving a lengthy equivalence chain, we simply have to write the
following in Agda --bridges, using the →Form and X⊨ListX programs implemented by the ROTT
library (Agda identifiers can feature symbols, as in X⊨ListX).

X⊨ListX→ListX : DispRRG TypeRRG

X⊨ListX→ListX = →Form X⊨ListX X⊨ListX

Looking at the conclusion of param we are about to obtain something of type (_- → List- →
List-){? �0, ? �1}Gr 5 and contrary to the BridgeP type former, the latter type reduces to the
expected relational parametricity statement, i.e.:

param TypeRRG X⊨ListX→ListX ? �0 �1 (Gr 5) :

∀GB0 GB1 (GBA : ListRel (Gr 5) GB0 GB1) → ListRel (Gr 5) (? �0 GB0) (? �1 GB1)

By applying this function to GB0 = 0B0, GB1 = map 5 0B0 and by remarking that ListRel (Gr 5) ;0 ;1 is
the same predicate than map 5 ;0 ≡ ;1 we conclude the proof of �hm.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:23

Similarly, we can reprove the lowChurchBool theorem of Section 2.7. The call to param-prf and
the CH-inverse-cond module appearing in Fig. 2 are replaced by the following call to the param
theorem and definition of an appropriate dRRG using ROTT:

param TypeRRG X⊨X→X→X : Bool � (_ 1 G → boolToCh 1 � C 5 ≡ G) true C refl false 5 refl

X⊨X→X→X : DispRRG TypeRRG

X⊨X→X→X = →Form (X⊨ElX) (→Form X⊨ElX X⊨ElX)

4.2 Church Encodings

Using ROTT and param we were able to prove a scheme of Church encodings for data types
obtained out of a strictly positive functor, represented as a container [Abbott et al. 2005]. We first
state the theorem and briefly explain its proof in Agda --bridges, and then discuss its hypotheses
and significance in the more concrete case of the List type former.
Assume a type of shapes (: Type and a type family of positions % : (→ Type. Assume

that (: Type is bridge-discrete, i.e. has an equivalence [(: (B0 ≡ B1) ≃Bridge(B0 B1. Assume
that % : (→ Type is dependently bridge-discrete, that is, for every B0, B1, (BA : B0 ≡ B1), (BB :

Bridge(B0 B1) such that BA [[(]BB and for every ?0 : % B0 and ?1 : % B1, there exists an equivalence
[% : PathP8 . % (BA 8) ?0 ?1 ≃BridgePG. % (BB G) ?0 ?1. Define � : Type → Type as � - = Σ[B ∈ (] % B →
- . Additionally define the following Agda data type `F:

data `F : Type where

fold : F (`F) → `F

Note here that the data type declaration is accepted by Agda since � is a container functor and
its input - occurs strictly positively8. We assert that the following equivalence holds `F≃ (- :

Type) → (� - → -) → - . The proof follows a standard pattern. Recall that `F has an elimination
principle `Frec : ∀) → (�) →)) → `F →) . Going from left to right we can define a map toCh

using the latter principle. Going from right to left we can define a map _? → ? `F fold. Proving the
first inverse condition is done by induction. The other condition requires parametricity and reads
as follows (using funExt whenever needed):

(? : (- : Type) → (� - → -) → -) (� : Type) (5 : � � → �) →

toCh(? `F fold)� 5 ≡� ? � 5

This of course looks like a global free theorem in the sense of (4). We wish to obtain this equality
by applying param at program ? and at the (logical) relation given by the graph of the function
`Frec� 5 : `F → �. We denote this graph as Gr(`Frec� 5) : `F → � → Type. To that end we
must supply a RRG structure for the domain of ? and a dRRG structure for its codomain. For its
domain we use Tyfm as above. For its codomain we must show - : Type ⊨ (� - → -) → - dRRG.
Applying the N fm rule of ROTT and other structural rules not displayed in Fig. 4 the goal is
reduced to - : Type ⊨ � - dRRG. Recalling that � - = Σ[B ∈ (] % B → - we can apply the Σfm and
N fm rules of ROTT thereby reducing the goal to providing a RRG structure for (and providing
B : (⊨ % B dRRG. We can repackage our bridge-discreteness hypotheses [(, [% as such structures.
At this stage all premises of param have been supplied and so we expect to obtain from param

something of type (_- .(� - → -) → -){? `F, ? �}Gr(`Frec� 5) . Again, contrary to its BridgeP

8Agda conveniently looks through the definition of � to decide this.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:24 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

counterpart, the latter type computes to the appropriate relational parametricity statement, i.e.:

param ... `F� (Gr(`Frec� 5)) :

(50 : � `F → `F) (51 : � � → �) (5 A : ...) → `Frec� 5 (? `F 50) ≡� ? � 51

By setting 50 = fold, 51 = 5 and providing an easy proof of their logical relatedness 5 A we get
`Frec� 5 (? `F fold) ≡� ? � 5 and this proves the theorem.
Up to some reordering lemmas, we can obtain a Church encoding for the List data type as

an instance of the above scheme of Church encodings: List�≃ (- : Type) → - → (� →
- → -) → - . To do this the (and % parameters of the scheme are set to (= 1 + � and
% (inl CC) = ⊥, % (inr0) = Unit. For this simpler List Church encoding, our bridge-discreteness
hypotheses about (and % translate into the fact that � must be bridge-discrete for the encoding to
hold. The reason is that, if � is not bridge-discrete, additional programs using their type variable
non-parametrically will exist in the encoding. For instance Type is not bridge-discrete as its bridges
are relations between types. Accordingly the encoding for List� with � = Type does not hold,
essentially because some polymorphic programs can use their type variable non parametrically:
_- =; 2B. 2B - =; : (- : Type) → - → (Type → - → -) → - . Similar considerations appear
in [Nuyts and Devriese 2018].

4.3 System F

We can prove Reynolds’s abstraction theorem [Reynolds 1983] for predicative System F [Leivant
1991] using ROTT and param. Indeed predicative System F is a subset of ROTT and the param
theorem for dRRGs in that subset exactly expresses the abstraction theorem.

Corollary 4.1. By analogy to Section 3.3.2, we have the following “inference rule”, which states
that, given a kinding context Γ of predicative System F (consisting of type variables labeled with levels)
and a type) of predicative System F over this context, all external dependent functions (i.e. all functions
definable in Agda --bridges) from ⟦ Γ⟧ to ⟦)⟧ respect logical relations, where ⟦−⟧ is an object-level
translation from System F contexts (resp. types) to RRGs (resp. dRRGs).

Γ Ctx-F Γ ⊢�) type-F ? : (W : ⟦Γ⟧) → ⟦)⟧W W0, W1 : ⟦Γ⟧ WA : ⟦Γ⟧{W0, W1}
param-f

param ⟦Γ⟧ ⟦)⟧ ? W0 W1 WA : ⟦)⟧{? W0, ? W1}WA

We emphasize that this result proves parametricity of the obvious embedding ⟦−⟧ of predicative
System F into Agda --bridges, which is definable in Agda --bridges. That is, ⟦−⟧ is defined the
expected way. For instance, the System F type - : ∗0 ⊢� - → - type-F interprets as the dRRG
Type0 ⊨ - → - dRRG which has _- . - → - as its carrier. In other words, the dRRG model ⟦−⟧
is not some contrived construction, but simply a proof that all Agda --bridges types that read as
System F types satisfy the SRP.

Hence we recover Reynolds’s original notion of parametricity in Agda --bridges. We remark that
[Nuyts et al. 2017] could not prove this result as it lacked the power of the extent rule and therefore
could not properly characterize bridges between functions. Cavallo and Harper’s [2021] system
(which is almost identical to Agda --bridges) could prove this result equally well but the authors
did not do this, and the same holds almost certainly for Bernardy et al. [2015]. Thus, as far as we
are aware, this establishes the first formal relation between traditional parametricity as defined by
Reynolds for System F using a logical relation, and internally parametric type theory.

5 REIMPLEMENTING HCOMP AND TRANSP

Recall from Section 2.1 that when compared to plain dependent type theory, cubical type theo-
ries feature additional language primitives: (1) a path interval, path types, path abstraction and
application, (2) Kan operations, (3) additional type formers for turning equivalences into paths

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:25

in the universe, necessary to prove univalence, (4) (optionally) higher inductive types with path
constructors.
The Kan operations of cubical type theory are necessary to make paths act as well-behaved

proofs of equality. For instance, these operations are used to compose paths (i.e. prove transitivity of
≡) or to turn the univalence map into an equivalence. The operational semantics of these operations
is somewhat peculiar as it is defined by specifying how these operations reduce at each type former,
i.e., by induction on the syntax of types. Hence the process of extending cubical type theory with a
new type former � requires extra work: specifying how the Kan operations reduce at � .

Agda --bridges is an extension of Agda --cubical which implements CCHM cubical type theory
[Cohen et al. 2017]. Thus, Agda --bridges must implement reduction clauses for the Kan operations
of Agda --cubical at the BridgeP and Gel type formers. In Agda --cubical, the Kan operations are
primitives named homogeneous composition (hcomp) and transport (transp).

transp : (A : I→ Type) (i : I) (u0 : A i0)→ A i1

hcomp : {A : Type} {i : I} (u : (i : I) → Partial i A) (u0 : A)→ A

We now explain the transp (Section 5.1) and hcomp (Section 5.2) operations and how Agda --bridges

extend these. The exact equations can be consulted in our implementation. Further details about
transp, hcomp can be found in [Vezzosi et al. 2021]. This section ends with a brief comparison
between the Kan operations implemented by Agda --bridges and those specified by the CH theory.

5.1 Transport

The transp operation provides a way to coerce elements of a type into elements of a path-equal
type. Indeed, given �� : �0 ≡Type�1 we obtain transp (_8. �� 8) i0 : �0 → �1. This map can in
turn be upgraded into an equivalence and thus transp can be used to validate one direction of the
univalence equivalence �0 ≡�1 → �0 ≃ �1.
Regarding the i : I argument of transp, we merely indicate that it controls where the resulting

coercion function is definitionally the identity. In other words, transp� i1D0 reduces to D0 (a
typechecking side condition asks that � is constant when i = i1). “Normal” transport is recovered
by setting i = i0 as illustrated above.
As explained before, the transp primitive reduces by induction on the formation of the line �,

that is, a clause describing how transp reduces is specified when � is a line of Π-types, Σ-types,
data types, record types, etc. Compared to --cubical, Agda --bridges implements two additional
clauses for transp, handling lines of BridgeP andGel types. ForGel, we indicate that the clause uses
capturing (see Definition 2.2). We provide some details regarding the clause for BridgeP since it
requires a generalized hcomp operation called mhcomp in Agda --bridges and explained hereafter.

Transporting bridges. Assume � : I → (@G : BI) → Type and 0Y : (8 : I) → � 8 biY. The Agda
--bridges implementation adds a clause for transp specifying how the following term should reduce
transp (8 .BridgePG.� 8 G (00 8) (018)) (i : I) D0. This term can be represented as the dotted line in the
following diagram.

00 i1 01 i1

00 i0 01 i0

00 01

D0

Setting the result of this reduction to be the bridge _(G : BI). transp (8 . � 8 G) i (D0 G) does not work.
Indeed the latter term does not have the required endpoints 00 i1, 01 i1 definitionally.

A second idea is to use the hcomp primitive (its type appears above) of --cubical, which is used to
reduce transp along lines of path types. In general, the sole purpose of hcomp is to allow terms to be

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:26 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

definitionally adjusted on a fragment of the type they live in. More precisely, suppose the ambient
context Γ contains a number of path variables Φ = 9, :, ... and suppose Γ ⊢ j : I. Intuitively, the term
Γ ⊢ hcomp {� : Type} {j : I} E (E0 : �) is E0 : � but definitionally adjusted (using the E argument,
not explained here) on the fragment of Γ ⊢ � where j (9, :, ...) = i1 (since E0, �, j live in context Γ
they can depend on variables in Φ). In cubical type theory, constraints like j (9, :, ...) = i1 are called
face constraints or alternatively cofibrations and can be regarded as subsets of a cube j ⊆ Φ. The
language used to express face constraints is called a face or cofibration logic. The cofibration logic
used by Agda --cubical is De Morgan algebra and assertions in this logic are encoded as terms j : I.
If Γ ⊢ 9, :, ; : I, an example of face constraint is j = ((~ 9) ∨:) ∧ ; .
In our case we would like, in a context extended with (G : BI), to definitionally adjust the term

transp (8 . � 8 G) i (D0 G) of type � i1G when G = bi0 and G = bi1 (and in fact when i = i1). The
problem of course is that G is a bridge variable, and that hcomp only allows constraints i : � on path
variables. The mixed homogeneous composition mhcomp primitive of Agda --bridges generalizes
hcompw.r.t. bridge variables and can be used in place of hcomp to specify the result of transporting
along a line of bridges.

5.2 Mixed Homogeneous Composition

The mhcomp primitive of Agda --bridges has a type different than that of hcomp.

mhcomp : ∀ {A : Type} {Z : MCstr} (u : (i : I) →MPartial Z A) (u0 : A) → A

This time D0 and its type � can have free path variables Φ = (9, :, ...) but also free bridge variables
Ψ = (G,~, ...) and D0 ought to be definitionally adjusted on a subset Z of the mixed cube Φ × Ψ. For
this reason mhcomp expects face constraints Z expressed in an extended cofibration logic called
MCstr. Concretely, the latter is a type postulated by Agda --bridges and equipped with primitives for
combining atomicmixed face constraints. Instead of precisely explaining these primitives we provide
a formulaMCstr(Φ,Ψ) expressing what mixed constraints Z can be built in a context containing
Φ and Ψ as above. First, define I(Φ) = {i | Φ ⊢ i : I}. Second, define the set of bridge hyperfaces
of Ψ as � (Ψ) = Ψ × {bi0, bi1}. We define BCstr(Ψ) =

{
∨

(G,biY) ∈� ′ (G = biY)
�

�� ′ ⊆ �
}

∪ {⊤}, i.e.,
bridge face constraints obtainable in Ψ are disjunctions of bridge hyperfaces (this includes an empty
disjunction ⊥), or a vacuous constraint denoted ⊤. Finally we set

MCstr(Φ,Ψ) =
I(Φ) × Bcstr(Ψ)

∀ik . (i1,k) = (i,⊤) =: ⊤MCstr

The quotient is taken to turn the map i ↦→ (i,⊥) into an embedding of logics: a --cubical constraint
i : I holds if and only if its image (i,⊥) : MCstr is a mixed constraint that holds. This condition is
required to ensure that a term typechecks in Agda --cubical if and only if it typechecks in Agda

--bridges. An example of mixed constrainted Z : MCstr is Z := (i, (G = bi0)∨(G = bi1)) which
appears when transporting bridges, as hinted above.

transp (8 .BridgePG.� 8 G (00 8) (018)) i D0 ↦→

_(G : BI).mhcomp {� i1G}{(i, (G = bi0)∨(G = bi1))} (...) (transp (8 . � 8 G) i (D0 G))

Similar to transp, the operational semantics of mhcomp is defined by induction on the syntax of
its� : Type argument. Concretely, Agda --bridges duplicates the hcomp equations for Glue, hcomp,
PathP, Σ, Π, record and (non-indexed, non-HIT) data types, but propagating a mixed constraint Z
this time. Additionally, it implements reductions at BridgeP and Gel types. The latter clause uses
capturing. Following --cubical, if � is a HIT, an inhabitant mhcomp {�} {Z }D D0 : � is considered
normal and functions defined by pattern matching on � compute on it if Z = (i,⊥) for some i .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:27

Comparison with the CH Theory. While the theory of Agda --bridges extends CCHM cubical
type theory, the CH theory is an extension of cartesian cubical type theory [Angiuli et al. 2021a,
2018] (CCTT). This distinction leads to Kan operations formulated differently in each system. First,
in order to validate univalence, CCTT postulates V-types whereas CCHM postulates Glue types.
Hence transp and mhcomp both have a reduction clause for Glue types instead of V-types. Second,
the composition Kan operation of CCTT uses a simple cofibration logic with a constructor for
diagonal constraints (G = ~ : I). By contrast, CCHM uses a De Morgan cofibration logic which Agda

--bridges had to extend (seeMCstr above). To pinpoint a sound definition for MCstr we inspected
the presheaf model psh(□DM × □a) where □DM (resp. □a) is the category of De Morgan cubes (see
CCHM; resp. affine cubes, see CH). The above formula for MCstr(Φ,Ψ) can be regarded as the
definition of such a presheaf. Finally some equations for the Kan operations use capturing, handled
differently in Agda --bridges and CH: sound capturing is performed through context restriction in
the CH theory (see Section 2.2) and through semi-freshness in Agda --bridges (see Section 2.4).

6 RELATED WORK

6.1 Relational Parametricity in and of Type Theory

In order to discuss and classify related work about parametricity in and of type theory, we analyze
the general statement of parametricity. We assume that we are studying an object language �
which embeds or can be interpreted in a target language� where free theorems [Wadler 1989]
will be stated.

Parametricity: For every (�) type) in �, there exists a logical relation [)] in�,
such that every (�) program C :) in� is self-related according to [)] in�.

Note that the general statement of parametricity contains two universal quantifications, which we
have labeled with names � and� for the (meta)theories where these quantifications take place.
We will classify related work on parametricity by its choice of languages/theories �,�, � and �.
Note that if � = � = �, then we have global free theorems in� and can prove in� e.g. that
Church encodings in � behave as the data type they encode. By contrast if � is a metatheory,
then we only have free theorems for concretely known programs and the framework is merely
a parametricity translation of such programs. These situations are often referred to as internal
vs. external parametricity. In any provenly sound framework for internal parametricity hitherto
developed that we are aware of,� is a metatheory (at least if you want [)] to be a concrete relation
and not a bridge type whose meaning needs to be characterized separately), implying that the SRP
(Section 3.1.2) is a metatheorem.

Languages with internal parametricity typically feature non-standard parametricity primitives
which call for a denotational model to establish soundness. In this case, when relevant, we specify
how (closed) types in� are modelled, and the metatheoryℳ in which the model is built. In the
case of external parametricity, we rather specify how � is interpreted in the metatheory�.

The resulting classification is given in Table 1 (Ab denotes Agda --bridges). The first block lists
treatments of System F. Reynolds’s original model is in set theory, but was later shown not to
support impredicativity [Reynolds 1984]. Subsequent treatments use a logic over System F and prove
parametricity results about concrete programs of concrete types. Atkey explains how Reynolds’s
model can be restructured as a reflexive graph model and then generalizes to System Fl . The
third block lists treatments of external parametricity for dependent types. The first three papers
prove parametricity results again in dependent type systems, but only for concrete programs of
concrete types. The latter two use denotational models. Tabareau et al.’s approach is peculiar in
that it defines the logical relation on the universe as the type of relations that are the graph of an
equivalence, thus establishing a framework not for relational but for univalent parametricity.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:28 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

Table 1. Classification of related work about parametricity, based on [Nuyts et al. 2017, fig. 9]. Here,� is

(faintly) highlighted when (possibly)� = �;� is highlighted if� =� = �; and � is highlighted if � = �.

Citation Obj. lang. � Target lang.� � � ℳ model in� or (italic) ℳ

[Reynolds 1983] System F Meta: Set theory � � Sets with relations
[Abadi et al. 1993] System F System ℛ Meta Meta Meta PERs [Bellucci et al. 1995]

[Plotkin and Abadi 1993] System F System F + logic Meta Meta
[Wadler 2007] System F System F + logic Meta Meta
[Atkey 2012] System Fl Meta: Impred. CIC � � Reflexive graphs
[Takeuti 2001] � ∈ _-cube �+∀+Π ∈ _-cube Meta Meta
[Bernardy et al. 2012] Any PTS Suitable PTS Meta Meta
[Tabareau et al. 2021] CIC Univalent CIC Meta Meta
[Krishnaswami and Dreyer 2013] CC Meta Meta Meta PERs
[Atkey et al. 2014] MLTT Meta: CIC � � Reflexive graphs
[Bernardy and Moulin 2012] BM � � � none

[Bernardy et al. 2015] BCM � � Meta Meta Affine cubical sets

[Nuyts et al. 2017] ParamDTT � � Meta Meta Bridge/path cubical sets

[Nuyts and Devriese 2018] RelDTT � � Meta Meta Depth = cubical sets

[Cavallo and Harper 2021] CH � � Meta Meta Affine/cart. bicub. sets

Agda --bridges (Ab) Ab � � Meta Meta Affine/CCHM bicub. sets

ROTT DTT ({ Ab) Ab � � RRGs
Corollary 4.1 Pr. Sys. F Ab � � RRGs
[Altenkirch et al. 2024] ACKS � � � Meta Affine cubical sets

Cub. ROTT (envisioned) ≈ ACKS � � � Ab Relativistic cubical sets

The fourth block lists treatments of internal parametricity for dependent types; these produce
concrete free theorems (i.e. not mentioning bridge types that need to be characterized separately)
for abstract programs of concrete types. Bernardy and Moulin’s [2012] system predates the usage
of named relational dimensions, but it is observational, i.e. the SRP holds definitionally. We are
unaware of any soundness proof for this system. Bernardy et al. introduce the bridge interval as
well as the extent and Gel combinators, and Cavallo and Harper combine their system with HoTT
and demonstrate its power on paper. With Agda --bridges, we provide an implementation. The
work on ParamDTT and RelDTT introduces a modal system in order to prove Reynolds’s identity
extension lemma for large types, but in the process has to adopt a cartesian cubical model which
does not validate extent. As a consequence, these systems lack the power to prove parametricity of
System F, which we demonstrated can be done in Agda --bridges (Section 4.3). We refer to Nuyts
[2021] for a brief discussion of various internal parametricity features and their requirements in
the model.
Strictly speaking, ROTT is again a dependently typed system with external parametricity that

could go in the third block. However, ROTT was conceived as a commodity for Agda --bridges

and seeks to obtain free theorems there. This is in contrast with e.g. Atkey et al. [2014], where
MLTT is the system of interest but free theorems are obtained in some metatheory. We remark that
since param is an external rule, the source syntax of ROTT is really just dependent type theory
(extensible with bridge types, which are also displayed RRGs).

The reason why ROTT cannot provide internal parametricity is that the logical relation specified
for an RRG, is itself not a displayed RRG (i.e. a dependent ROTT type) but only an external Agda
--bridges type. This might be remedied in the future by moving from RRGs to relativistic cubical
types, i.e. cubical types whose =-cubes are equivalent to =-cubes of bridges. Such a system would
allow internal parametricity and satisfy the SRP definitionally. The syntax of such a system would

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

Internal and Observational Parametricity for Cubical Agda 8:29

be very close to that of the concurrent work by Altenkirch et al. [2024], who present an internally
parametric type theory which avoids the use of an interval and validates the SRP definitionally.

6.2 Parametricity and Univalence

While relational parametricity requires functions to respect relations, HoTT asks that they respect
equivalences. Of course, equivalences are a form of relations, so one idea is akin to the other.

We already mentioned Tabareau et al.’s [2021] work in the previous section. A reformulation of
their work using our techniques would effectively lead to a shallow embedding of observational
setoid [Pujet and Tabareau 2022] or homotopy [Altenkirch et al. 2022] type theory in a CwF of
univalent setoids or groupoids.
Awodey et al. [2018] define Church-like encodings of ordinary but also higher inductive types

in (homotopy) type theory. Since the correctness of the Church encoding relies on preservation
not only of equivalences but of all relations, they cannot be proven correct in plain type theory or
HoTT. Instead, the authors enforce relational parametricity simply by adding it as a “such that”
clause to the encoding.

6.3 The Structure Identity Principle (SIP)

We discuss appearances of the SIP in the literature and compare these to our discussion in Section 3.
The HoTT book does not actually feature the full SIP and two other treatments rely on a DSL.

Standard notions of structure on univalent categories. The HoTT book [Program 2013] defines
a notion of structure on a category C essentially as a displayed category D• over C such that
the projection functor % : ΣCD• → C from the total space is faithful, implying that the fiber of
any object of C (and its identity morphism) is a preorder. A notion of structure is standard if this
preorder is always a partial order, which is defined as a univalent preorder. The theorem called
SIP then states that if C is univalent and D• is standard, then the total space ΣCD• is univalent.
Relevant examples are group structures over h-sets, setoid structures over h-sets, monad structures
over endofunctors, functor structures over indexed objects, . . .

Fundamentally, the proof of this theorem does two things: It applies the extensionality principle
for Σ-types to characterize a path between objects in ΣCD•, and it uses path induction to deduce
“displayed” univalence from standardness (which meant fiberwise univalence). Importantly, if D•

is quite complex, it is still up to the user to prove fiberwise univalence there, which still requires
either rote work or the usage of a DSL for standard notions of structure. As such, we see this SIP as
only a fragment of the fully general SIP.

A DSL for univalent structures on Type. Angiuli et al. [2021b] are concerned with proving the SIP
(in our most general sense) for types of the form) = Σ[- : Type] Σ[B : (-] % - B , where % - B is
a mere proposition (h-prop). The idea is that a tuple (-, B, ?) is an algebra-like object with carrier
- and operations B satisfying the axioms % - B . Their paper features a theorem titled SIP which
amounts to the characterization of paths in a type of the form Σ[- : Type]� - . Since paths in
a mere proposition can be characterized as informationless (Theorem 3.6), only the SIP for the
operations type (- remains to be dealt with. A DSL – essentially the type language of the STLC
with base type - (the carrier) – is then provided to build structures satisfying the SIP.

A DSL for univalent higher categories. Ahrens et al. [2020, thm. 7.10] use FOLDS [Makkai 1995]
as a DSL for building univalent higher categories. In other words, they show that a higher type
satisfies the SIP if it occurs as the object type of a higher category specified by a FOLDS signature.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

8:30 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

ACKNOWLEDGMENTS

We thank Andrea Vezzosi for continuously sharing with us his expertise and sound suggestions
regarding Agda --cubical and Agda --bridges. We thank Rasmus Møgelberg and Andrea Vezzosi
for welcoming the first author at the IT University of Copenhagen. We thank the reviewers for
their remarks and suggestions. Antoine Van Muylder holds a PhD fellowship (11H9921N) of the
Research Foundation – Flanders (FWO). Andreas Nuyts holds a Postdoctoral fellowship (1247922N)
of the Research Foundation – Flanders (FWO). This research is partially funded by the Research
Fund KU Leuven and by the Research Foundation - Flanders (FWO; G030320N).

DATA AVAILABILITY STATEMENT

We provide in [Van Muylder et al. 2023] a virtual machine where Agda --bridges is installed and
where ourAgda --bridges library and its results are typechecked. TheAgda --bridges implementation
is developed in https://github.com/antoinevanmuylder/agda/tree/bridges and our library can be
found in https://github.com/antoinevanmuylder/bridgy-lib. For some documentation, see the latter
repository. Note that some notions have slightly different names than in this work.

REFERENCES

Martín Abadi, Luca Cardelli, and Pierre-Louis Curien. 1993. Formal Parametric Polymorphism. Theor. Comput. Sci. 121, 1&2
(1993), 9–58. https://doi.org/10.1016/0304-3975(93)90082-5

Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers: Constructing strictly positive types. Theor.
Comput. Sci. 342, 1 (2005), 3–27. https://doi.org/10.1016/J.TCS.2005.06.002

The Agda Community. [n. d.]. A standard library for Cubical Agda. https://github.com/agda/cubical
Agda Development Team. 2023. Agda 2.6.3 documentation. https://agda.readthedocs.io/en/v2.6.3/
Benedikt Ahrens and Peter LeFanu Lumsdaine. 2019. Displayed Categories. Log. Methods Comput. Sci. 15, 1 (2019).

https://doi.org/10.23638/LMCS-15(1:20)2019
Benedikt Ahrens, Paige Randall North,Michael Shulman, andDimitris Tsementzis. 2020. AHigher Structure Identity Principle.

In LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM, 53–66. https://doi.org/10.1145/3373718.3394755

Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael Shulman. 2024. Internal parametricity, without an
interval. In To appear in: Proceedings of the 51st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2024. ACM.
Thorsten Altenkirch and Ambrus Kaposi. 2015. Towards a Cubical Type Theory without an Interval. In 21st International

Conference on Types for Proofs and Programs, TYPES 2015, May 18-21, 2015, Tallinn, Estonia (LIPIcs, Vol. 69), Tarmo Uustalu
(Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:27. https://doi.org/10.4230/LIPICS.TYPES.2015.3

Thorsten Altenkirch, Ambrus Kaposi, and Michael Shulman. 2022. Towards Higher Observational Type Theory. In 28th

International Conference on Types for Proofs and Programs (TYPES 2022). University of Nantes.
Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the ACM

Workshop Programming Languages meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007, Aaron
Stump and Hongwei Xi (Eds.). ACM, 57–68. https://doi.org/10.1145/1292597.1292608

Abhishek Anand and Greg Morrisett. 2017. Revisiting Parametricity: Inductives and Uniformity of Propositions. CoRR
abs/1705.01163 (2017). arXiv:1705.01163 http://arxiv.org/abs/1705.01163

Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Robert Harper, Kuen-Bang Hou (Favonia), and Daniel R. Licata.
2021a. Syntax and models of Cartesian cubical type theory. Math. Struct. Comput. Sci. 31, 4 (2021), 424–468. https:
//doi.org/10.1017/S0960129521000347

Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. 2021b. Internalizing representation independence with
univalence. Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434293

Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. 2018. Cartesian Cubical Computational Type Theory:
Constructive Reasoning with Paths and Equalities. In 27th EACSL Annual Conference on Computer Science Logic, CSL

2018, September 4-7, 2018, Birmingham, UK (LIPIcs, Vol. 119), Dan R. Ghica and Achim Jung (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 6:1–6:17. https://doi.org/10.4230/LIPICS.CSL.2018.6

Robert Atkey. 2012. Relational Parametricity for Higher Kinds. In Computer Science Logic (CSL’12) - 26th International

Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France (LIPIcs, Vol. 16),
Patrick Cégielski and Arnaud Durand (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 46–61. https://doi.org/

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

https://github.com/antoinevanmuylder/agda/tree/bridges
https://github.com/antoinevanmuylder/bridgy-lib
https://doi.org/10.1016/0304-3975(93)90082-5
https://doi.org/10.1016/J.TCS.2005.06.002
https://github.com/agda/cubical
https://agda.readthedocs.io/en/v2.6.3/
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1145/3373718.3394755
https://doi.org/10.4230/LIPICS.TYPES.2015.3
https://doi.org/10.1145/1292597.1292608
https://arxiv.org/abs/1705.01163
http://arxiv.org/abs/1705.01163
https://doi.org/10.1017/S0960129521000347
https://doi.org/10.1017/S0960129521000347
https://doi.org/10.1145/3434293
https://doi.org/10.4230/LIPICS.CSL.2018.6
https://doi.org/10.4230/LIPICS.CSL.2012.46
https://doi.org/10.4230/LIPICS.CSL.2012.46

Internal and Observational Parametricity for Cubical Agda 8:31

10.4230/LIPICS.CSL.2012.46
Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A relationally parametric model of dependent type theory. In The

41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,

January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 503–516. https://doi.org/10.1145/2535838.2535852
Steve Awodey, Jonas Frey, and Sam Speight. 2018. Impredicative Encodings of (Higher) Inductive Types. In Proceedings of

the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar
and Erich Grädel (Eds.). ACM, 76–85. https://doi.org/10.1145/3209108.3209130

Roberto Bellucci, Martín Abadi, and Pierre-Louis Curien. 1995. A Model for Formal Parametric Polymorphism: A PER
Interpretation for System R. In Typed Lambda Calculi and Applications, Second International Conference on Typed Lambda

Calculi and Applications, TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings (Lecture Notes in Computer Science,

Vol. 902), Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin (Eds.). Springer, 32–46. https://doi.org/10.1007/
BFB0014043

Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015. A Presheaf Model of Parametric Type Theory. In
The 31st Conference on the Mathematical Foundations of Programming Semantics, MFPS 2015, Nijmegen, The Netherlands,

June 22-25, 2015 (Electronic Notes in Theoretical Computer Science, Vol. 319), Dan R. Ghica (Ed.). Elsevier, 67–82. https:
//doi.org/10.1016/J.ENTCS.2015.12.006

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free - Parametricity for dependent types. J.
Funct. Program. 22, 2 (2012), 107–152. https://doi.org/10.1017/S0956796812000056

Jean-Philippe Bernardy and Guilhem Moulin. 2012. A Computational Interpretation of Parametricity. In Proceedings of

the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE
Computer Society, 135–144. https://doi.org/10.1109/LICS.2012.25

Auke Bart Booij, Martín Hötzel Escardó, Peter LeFanu Lumsdaine, andMichael Shulman. 2016. Parametricity, Automorphisms
of the Universe, and Excluded Middle. In 22nd International Conference on Types for Proofs and Programs, TYPES 2016,

May 23-26, 2016, Novi Sad, Serbia (LIPIcs, Vol. 97), Silvia Ghilezan, Herman Geuvers, and Jelena Ivetic (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:14. https://doi.org/10.4230/LIPICS.TYPES.2016.7

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17,

2017, Yves Bertot and Viktor Vafeiadis (Eds.). ACM, 182–194. https://doi.org/10.1145/3018610.3018620
Evan Cavallo. 2020. Ptt, an experimental implementation of Martin-Löf type theory with n-ary internal parametricity.

https://github.com/ecavallo/ptt
Evan Cavallo and Robert Harper. 2019. Parametric Cubical Type Theory. CoRR abs/1901.00489 (2019). arXiv:1901.00489

http://arxiv.org/abs/1901.00489
Evan Cavallo and Robert Harper. 2021. Internal Parametricity for Cubical Type Theory. Log. Methods Comput. Sci. 17, 4

(2021). https://doi.org/10.46298/LMCS-17(4:5)2021
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2017. Cubical Type Theory: A Constructive Interpreta-

tion of the Univalence Axiom. FLAP 4, 10 (2017), 3127–3170. http://collegepublications.co.uk/ifcolog/?00019
Jean-Yves Girard. 1986. The System F of Variable Types, Fifteen Years Later. Theor. Comput. Sci. 45, 2 (1986), 159–192.

https://doi.org/10.1016/0304-3975(86)90044-7
Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph. D.

Dissertation. Éditeur inconnu.
Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. 2013. Logical Relations and Parametricity - A Reynolds

Programme for Category Theory and Programming Languages. In Proceedings of the Workshop on Algebra, Coalgebra

and Topology, WACT 2013, Bath, UK, March 1, 2013 (Electronic Notes in Theoretical Computer Science, Vol. 303), John Power
and Cai Wingfield (Eds.). Elsevier, 149–180. https://doi.org/10.1016/J.ENTCS.2014.02.008

Chantal Keller and Marc Lasson. 2012. Parametricity in an Impredicative Sort. In Computer Science Logic (CSL’12) - 26th

International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France (LIPIcs,

Vol. 16), Patrick Cégielski and Arnaud Durand (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 381–395.
https://doi.org/10.4230/LIPICS.CSL.2012.381

Neelakantan R. Krishnaswami and Derek Dreyer. 2013. Internalizing Relational Parametricity in the Extensional Calculus of
Constructions. In Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy (LIPIcs, Vol. 23),
Simona Ronchi Della Rocca (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 432–451. https://doi.org/10.4230/
LIPICS.CSL.2013.432

Daniel Leivant. 1991. Finitely Stratified Polymorphism. Inf. Comput. 93, 1 (1991), 93–113. https://doi.org/10.1016/0890-
5401(91)90053-5

Michael Makkai. 1995. First order logic with dependent sorts, with applications to category theory. (1995). http:
//www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

https://doi.org/10.4230/LIPICS.CSL.2012.46
https://doi.org/10.4230/LIPICS.CSL.2012.46
https://doi.org/10.4230/LIPICS.CSL.2012.46
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1007/BFB0014043
https://doi.org/10.1007/BFB0014043
https://doi.org/10.1016/J.ENTCS.2015.12.006
https://doi.org/10.1016/J.ENTCS.2015.12.006
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1109/LICS.2012.25
https://doi.org/10.4230/LIPICS.TYPES.2016.7
https://doi.org/10.1145/3018610.3018620
https://github.com/ecavallo/ptt
https://arxiv.org/abs/1901.00489
http://arxiv.org/abs/1901.00489
https://doi.org/10.46298/LMCS-17(4:5)2021
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1016/J.ENTCS.2014.02.008
https://doi.org/10.4230/LIPICS.CSL.2012.381
https://doi.org/10.4230/LIPICS.CSL.2013.432
https://doi.org/10.4230/LIPICS.CSL.2013.432
https://doi.org/10.1016/0890-5401(91)90053-5
https://doi.org/10.1016/0890-5401(91)90053-5
http://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
http://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf

8:32 Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese

Bassel Mannaa and Rasmus Ejlers Møgelberg. 2018. The Clocks They Are Adjunctions Denotational Semantics for Clocked
Type Theory. In 3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12,

2018, Oxford, UK (LIPIcs, Vol. 108), Hélène Kirchner (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:17.
https://doi.org/10.4230/LIPICS.FSCD.2018.23

Guilhem Moulin. 2016. Internalizing Parametricity. Ph. D. Dissertation. Chalmers University of Technology, Gothenburg,
Sweden. http://publications.lib.chalmers.se/publication/235758-internalizing-parametricity

Andreas Nuyts. 2021. Parametricity Features and their Requirements. CoRR abs/2111.09822 (2021). arXiv:2111.09822
https://arxiv.org/abs/2111.09822

Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance,
Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich
Grädel (Eds.). ACM, 779–788. https://doi.org/10.1145/3209108.3209119

Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Parametric quantifiers for dependent type theory. Proc.
ACM Program. Lang. 1, ICFP (2017), 32:1–32:29. https://doi.org/10.1145/3110276

Gordon D. Plotkin and Martín Abadi. 1993. A Logic for Parametric Polymorphism. In Typed Lambda Calculi and Applications,

International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18,

1993, Proceedings (Lecture Notes in Computer Science, Vol. 664), Marc Bezem and Jan Friso Groote (Eds.). Springer, 361–375.
https://doi.org/10.1007/BFB0037118

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for
Advanced Study. https://homotopytypetheory.org/book/

Loïc Pujet and Nicolas Tabareau. 2022. Observational equality: now for good. Proc. ACM Program. Lang. 6, POPL (2022),
1–27. https://doi.org/10.1145/3498693

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium, Proceedings Colloque sur la

Programmation, Paris, France, April 9-11, 1974 (Lecture Notes in Computer Science, Vol. 19), Bernard J. Robinet (Ed.).
Springer, 408–423. https://doi.org/10.1007/3-540-06859-7_148

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of the

IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983, R. E. A. Mason (Ed.). North-Holland/IFIP, 513–523.
John C. Reynolds. 1984. Polymorphism is not Set-Theoretic. In Semantics of Data Types, International Symposium, Sophia-

Antipolis, France, June 27-29, 1984, Proceedings (Lecture Notes in Computer Science, Vol. 173), Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin (Eds.). Springer, 145–156. https://doi.org/10.1007/3-540-13346-1_7

Egbert Rijke. 2022. Introduction to Homotopy Type Theory. arXiv:2212.11082 [math.LO]
Robert Rose, Matthew Z Weaver, and Daniel R Licata. 2022. Deciding the cofibration logic of cartesian cubical type theories.

In 28th International Conference on Types for Proofs and Programs (TYPES 2022). University of Nantes.
Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2021. The Marriage of Univalence and Parametricity. J. ACM 68, 1,

Article 5 (jan 2021), 44 pages. https://doi.org/10.1145/3429979
Izumi Takeuti. 2001. The Theory of Parametricity in Lambda Cube. Technical report 1217, Kyoto University. https:

//repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/41237/1/1217_10.pdf
The Coq development team. 2022. The Coq proof assistant. http://coq.inria.fr
Antoine Van Muylder, Andreas Nuyts, and Dominique Devriese. 2023. Agda --bridges VM. https://doi.org/10.5281/zenodo.

10009365
Niccolò Veltri and Andrea Vezzosi. 2020. Formalizing c-calculus in guarded cubical Agda. In Proceedings of the 9th ACM

SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020,
Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, 270–283. https://doi.org/10.1145/3372885.3373814

Niccolò Veltri and Andrea Vezzosi. 2023. Formalizing CCS and c-calculus in Guarded Cubical Agda. J. Log. Algebraic
Methods Program. 131 (2023), 100846. https://doi.org/10.1016/J.JLAMP.2022.100846

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2021. Cubical Agda: A dependently typed programming language
with univalence and higher inductive types. J. Funct. Program. 31 (2021), e8. https://doi.org/10.1017/S0956796821000034

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on Functional programming

languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989, Joseph E. Stoy (Ed.). ACM, 347–359.
https://doi.org/10.1145/99370.99404

Philip Wadler. 2007. The Girard-Reynolds isomorphism (second edition). Theor. Comput. Sci. 375, 1-3 (2007), 201–226.
https://doi.org/10.1016/J.TCS.2006.12.042

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 8. Publication date: January 2024.

https://doi.org/10.4230/LIPICS.FSCD.2018.23
http://publications.lib.chalmers.se/publication/235758-internalizing-parametricity
https://arxiv.org/abs/2111.09822
https://arxiv.org/abs/2111.09822
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
https://doi.org/10.1007/BFB0037118
https://homotopytypetheory.org/book/
https://doi.org/10.1145/3498693
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-13346-1_7
https://arxiv.org/abs/2212.11082
https://doi.org/10.1145/3429979
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/41237/1/1217_10.pdf
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/41237/1/1217_10.pdf
http://coq.inria.fr
https://doi.org/10.5281/zenodo.10009365
https://doi.org/10.5281/zenodo.10009365
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1016/J.JLAMP.2022.100846
https://doi.org/10.1017/S0956796821000034
https://doi.org/10.1145/99370.99404
https://doi.org/10.1016/J.TCS.2006.12.042

	Abstract
	1 Introduction
	2 The Internal Parametricity of Agda Bridges
	2.1 The Cubical Fragment of Agda Bridges
	2.2 Substructurality
	2.3 Affine Functions and Bridges
	2.4 The Extent Primitive
	2.5 Gel Types
	2.6 Other Relational Extensionality Principles
	2.7 Low-Level Parametricity

	3 The Observational Parametricity of Agda Bridges
	3.1 The SRP and Bare Parametricity
	3.2 Obstructions to the SRP and SIP
	3.3 ROTT

	4 Internal Observational Parametricity Applied
	4.1 Reproving fthm and lowChurchBool
	4.2 Church Encodings
	4.3 System F

	5 Reimplementing hcomp and transp
	5.1 Transport
	5.2 Mixed Homogeneous Composition

	6 Related Work
	6.1 Relational Parametricity in and of Type Theory
	6.2 Parametricity and Univalence
	6.3 The Structure Identity Principle (SIP)

	References

