
Admissibility of Substitution for Multimode Type1

Theory2

Joris Ceulemans ��3

DistriNet, KU Leuven, Belgium4

Andreas Nuyts ��5

DistriNet, KU Leuven, Belgium6

Dominique Devriese ��7

DistriNet, KU Leuven, Belgium8

Abstract9

Multimode Type theory (MTT) is a generic type theory that can be instantiated with an arbitrary10

mode theory to model features like parametricity, cohesion and guarded recursion. However, the11

presence of modalities in MTT significantly complicates the substitution calculus of this system.12

Moreover, MTT’s syntax has explicit substitutions with an axiomatic system – not an algorithm –13

governing the connection between an explicitly substituted term and the resulting term in which14

variables have actually been replaced. So far, admissibility of substitution for MTT has only been15

proved as a consequence of normalisation via normalisation by evaluation. In this paper, we present16

a proof of admissibility of substitution for MTT that is completely separated from normalisation. To17

this end, we introduce Substitution-Free Multimode Type Theory (SFMTT): a formulation of MTT18

without explicit substitutions, but for which we are able to give a structurally recursive substitution19

algorithm, suitable for implementation in a total programming language or proof assistant. On20

the usual formulation of MTT, we consider σ-equality, the congruence generated solely by equality21

rules for explicit substitutions. There is a trivial embedding from SFMTT to MTT, and a converse22

translation that eliminates the explicit substitutions. We prove soundness and completeness with23

respect to σ-equivalence and thus establish that MTT with σ-equality has computable σ-normal24

forms, given by the terms of SFMTT.25

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation26

→ Modal and temporal logics; Software and its engineering → Syntax27

Keywords and phrases dependent type theory, modalities, multimode type theory, explicit substitu-28

tions, admissibility of substitution29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

1 Introduction31

Substitution is the operation that replaces variables in a term with other terms. It is a key32

part in defining the semantics of many programming languages. In a dependent type system,33

it is even necessary in order to formulate the typing rules, such as the one for dependent34

function application. However, defining substitution is not as simple as it intuitively may35

seem.36

1.1 Renaming and Substitution in the Simply Typed Lambda Calculus37

For example, consider the well-known simply typed lambda calculus. We call Tmstlc(Γ ` T)38

the set of terms of type T with free variables in context Γ and Substlc(Γ → ∆) the set of39

well-formed (simultaneous) substitutions from Γ to ∆. These substitutions are lists of terms:40

they contain a term of type T in context Γ for every variable of type T in context ∆. In other41

words, STLC substitutions are constructed in two ways: !Γ : Substlc(Γ → ·) representing42

© Joris Ceulemans, Andreas Nuyts and Dominique Devriese;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joris.ceulemans@kuleuven.be
https://distrinet.cs.kuleuven.be/people/JorisCeulemans
https://orcid.org/0000-0001-9582-0789
mailto:andreas.nuyts@kuleuven.be
https://anuyts.github.io/
https://orcid.org/0000-0002-1571-5063
mailto:dominique.devriese@kuleuven.be
https://distrinet.cs.kuleuven.be/people/DominiqueDevriese
https://orcid.org/0000-0002-3862-6856
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Admissibility of Substitution for Multimode Type Theory

the empty list and σ.t : Substlc(Γ→ ∆, x : T) which substitutes variables in ∆ according to43

σ : Substlc(Γ→ ∆) and substitutes t : Tmstlc(Γ ` T) for the variable x : T .44

Applying a substitution σ : Substlc(Γ→ ∆) to a term t : Tmstlc(∆ ` T) should produce45

a term t [σ] : Tmstlc(Γ ` T). This can be defined via recursion on the term t. Some cases46

are very simple: for variables x the corresponding term is found in σ and for applications47

(fs)[σ] we recurse on the subterms (f [σ])(s [σ]). However, difficulty arises when binders48

are involved. For lambda terms (λx.s) : Tmstlc(∆ ` T → S) with s : Tmstlc(∆, x : T ` S),49

the substitution (λx.s)[σ] is defined as λx.(s [σ+]) for σ+ : Substlc((Γ, x : T)→ (∆, x : T))50

a version of σ that is lifted to the contexts extended with x. To construct σ+, we can use51

the extension constructor above with variable x as term, but then we still need to weaken52

the terms in σ from context Γ to the extended context Γ, x : T . A naive definition might53

implement this weakening of terms t : Tmstlc(Γ ` A) to Tmstlc(Γ, x : B ` A) by applying a54

substitution from Γ, x : B to Γ, but this makes the story cyclic.55

An elegant solution to avoid this cycle, proposed and advocated by McBride [21] and56

Allais et al. [4], is to separately consider renamings and substitutions. Whereas a substitution57

maps variables to terms, a renaming from Γ to ∆ maps every variable in ∆ to a variable in58

Γ of the same type. Weakening, in particular, is a renaming. Thus, the terms listed in a59

substitution can be weakened by applying a weakening renaming, and the variables listed in60

a renaming – represented as De Bruijn indices – can be weakened by incrementation. So61

we can break the cycle by defining first how to rename and then how to substitute a term,62

each time by induction on the term. Going further, code duplication between the two term63

traversals can be avoided with a shared generic implementation [21, 4].64

1.2 Multimode Type Theory65

This paper is concerned with substitution in modal type theory, more specifically in the66

system MTT (Multimode Type Theory1) by Gratzer et al. [18]. MTT is a type theory that67

can be instantiated with a mode theory that specifies, among others, a collection of modes68

and modalities. Modes m index typing judgements and qualify their meaning: judgements in69

one mode may represent, for example, regular values, while judgements in other modes may70

represent time-indexed values or pairs of values satisfying a certain relation [11]. Modalities71

µ : m1 → m2 represent ways to transport terms and types from mode m1 to mode m2. We72

postpone a more extensive introduction to MTT to Section 2, but we will already explain73

why substitution in modal type theory is significantly more complicated.74

First, modes and modalities complicate the context structure in MTT. For every modality75

µ, MTT has a new primitive context operation _ .µµ which also extends to substitutions:76

if σ : Submtt(Γ → ∆), then we get a new substitution σ .µµ : Submtt(Γ .µµ → ∆ .µµ).277

Furthermore, all variables in a context are annotated with a modality. This also impacts78

how substitutions are defined: to produce a substitution from Γ to ∆, µ p x : T (i.e. ∆79

extended with a variable x of type T annotated with modality µ), we need to provide a80

σ : Submtt(Γ → ∆) and a term t : Tmmtt(Γ .µµ ` T) in a locked context. In other words,81

MTT substitutions are not mere lists of terms and applying substitutions to variables is not82

just a lookup operation.83

Complicating things further, mode theories can define two-cells α ∈ µ ⇒ ρ between84

modalities µ and ρ. For every two-cell α ∈ µ⇒ ρ from µ to ρ and every context Γ we get a85

1 The names Multimode and Multimodal Type Theory are used interchangeably for the same system
MTT which supports both multiple modes and multiple modalities.

2 The operation _ .µµ can be seen as some sort of left adjoint to µ. See Section 2.1 for more details.

J. Ceulemans, A. Nuyts and D. Devriese 23:3

new primitive key substitution ¤
α
Γ from Γ .µρ to Γ .µµ and we have to specify how these act86

on variables and terms.87

Finally, STLC substitutions σ : Substlc(Γ→ ∆) and τ : Substlc(∆→ Ξ) can be composed88

to a Substlc(Γ→ Ξ) by applying σ to every term in τ . Applying this composed substitution89

is equivalent to applying τ and σ consecutively. However, with the additional primitive90

substitutions in MTT, we cannot compute such a composed substitution anymore (we refer91

to Example 2 for more details). For that reason, MTT includes a primitive constructor92

τ ◦ σ for substitution composition, and we want to define t [τ ◦ σ] as (t [τ])[σ]. However,93

substitution of a term is defined by traversing the term and applying the substitution to94

every variable. But for a variable x, the substitution x [τ] is again an arbitrary term so95

that (x [τ])[σ] may trigger another arbitrary term traversal. Thus, this naïve definition96

of t [τ ◦ σ] is not structurally recursive,3 and restructuring the substitution algorithm to97

restore structural recursion is one of the main contributions of the current paper (Section 3).98

1.3 Contributions and Overview99

In this paper, we define substitution for MTT, resolving the above problems by identifying100

the equivalent of renamings and substitutions in MTT and building a structurally recursive101

substitution algorithm in terms of them. Specifically, we contribute the following.102

We define WSMTT: an intrinsically and modally scoped untyped syntax for MTT.103

Moreover, we define σ-equivalence for WSMTT: the congruence relation generated by104

substitution-related equality rules, but not β- and η-rules.105

We define SFMTT: a variant of WSMTT without explicit substitutions in terms or types.106

Moreover, we define a notion of SFMTT renamings and substitutions and implement a107

structurally recursive algorithm to apply those to types and terms.108

We provide a translation from WSMTT to SFMTT, which translates every WSMTT109

term and type to an expression without substitutions.110

We prove the soundness and completeness of our algorithm. Soundness means that111

WSMTT terms map to substitution-free terms that are σ-equivalent to the original.112

Completeness states that σ-equivalent WSMTT terms map to equal translations. Both113

results combined show that SFMTT terms are the σ-normal forms of WSMTT terms.114

Section 2 will provide the necessary background and details about the multimode type115

theory MTT. We continue in Section 3 to describe the SFMTT syntax and the algorithm for116

applying renamings and substitutions in that setting. The translation from MTT to SFMTT117

is also discussed there. Sections 4 and 5 then cover the soundness and completeness proofs,118

respectively. We conclude in Section 6 with related and future work. A technical report119

accompanying this paper contains all details of the soundness and completeness proofs.4120

2 Multimode Type Theory (MTT)121

In this section we introduce the type system MTT as developed by Gratzer et al. [18]. We122

start in Section 2.1 with the necessary background and continue in Section 2.2 with our own123

presentation of MTT that we call WSMTT, including a discussion of the differences with124

3 One can argue that in both recursive applications the substitution gets structurally smaller and that
therefore we do have structural recursion. However, substitutions do get bigger in other recursive calls,
for example by lifting when they are pushed under a binder.

4 Available at https://people.cs.kuleuven.be/~joris.ceulemans/mtt-sub-tech-report.pdf.

CVIT 2016

https://people.cs.kuleuven.be/~joris.ceulemans/mtt-sub-tech-report.pdf

23:4 Admissibility of Substitution for Multimode Type Theory

ctx-empty

· ctx @m

ctx-lock
Γ ctx @n µ : m→ n

Γ .µµ sctx @m

ctx-extend
Γ ctx @m µ : n→ m Γ .µµ ` T ty @n

Γ . (µ p x : T) ctx @m

locks (·) = 1 locks (Γ .µµ) = locks (Γ) ◦ µ locks (Γ . (µ p x : T)) = locks (Γ)
tm-var

α ∈ µ⇒ locks (∆)
Γ . (µ p x : T) .∆ ` xα : Tα @m

ty-mod
Γ .µµ ` T ty @n

Γ ` 〈µ | T 〉 ty @m

tm-mod
Γ .µµ ` t : T @n

Γ ` modµ (t) : 〈µ | T 〉@m

ty-arrow
Γ .µµ ` T ty @n Γ . (µ p x : T) ` S ty @m

Γ ` (µ p T)→ S ty @m

tm-lam
Γ . (µ p x : T) ` s : S@m

Γ ` λ(µ p x).s : (µ p T)→ S@m

tm-app
Γ ` f : (µ p T)→ S@m Γ .µµ ` t : T @n

Γ ` appµ (f ; t) : S [id.t] @m

Figure 1 Selection of MTT inference rules

the original formulation. In this section we also discuss (WS)MTT’s substitution calculus.125

Section 2.3 concludes with a discussion on an equivalence relation on terms and substitutions126

called σ-equivalence.127

2.1 Background on the MTT Type System128

MTT can be seen as a framework for modal type theory: it is parametrised by a mode theory129

which specifies the modalities and how they interact. More concretely, a mode theory in130

MTT is a strict 2-category of which the 0-cells (objects) are called modes and the 1-cells131

(morphisms) are called modalities. This already makes it clear that we have a unit modality132

1 for every mode and that compatible modalities can be composed. Moreover, we also have a133

notion of 2-cells between modalities, which will be denoted as α ∈ µ⇒ ν for a 2-cell α from134

µ to ν. Such 2-cells can be composed vertically (which we write as β ◦ α) and horizontally135

(written as β ? α). For every modality µ : m→ n there is a unit 2-cell 1µ ∈ µ⇒ µ.136

In MTT, every judgment (so every context, type and term) lives at a particular mode of137

the mode theory. This is made clear by adding @m to a judgment at mode m. We can think138

of every mode as containing a copy of Martin-Löf Type Theory (MLTT [20]) with natural139

numbers, products, etc. As they are confined to a single mode and do not really interact140

with modalities, we will not discuss these rules in the paper (as an illustration we do include141

a type of Booleans in the technical report though). The connection between the different142

modes is made via the modalities, as explained in the following paragraphs.143

A selection of the rules for constructing contexts, types and terms in MTT can be found144

in Figure 1. Contexts consist of variables (ctx-extend), each annotated with a modality, and145

locks (ctx-lock), which play an important role in determining when a variable can be used146

to construct a term. Note that a lock goes in the opposite direction of its modality: the lock147

operation for a modality µ : m→ n takes a context from mode n to mode m.148

A variable can be used as a term whenever there is a two-cell from its annotation to the149

composition of all locks to the right of that variable (tm-var). Every modality µ gives rise150

to a modal type former 〈µ | _〉 which can be seen as a (weak) dependent right adjoint [10]151

to _ .µµ (ty-mod). One direction of transposition for this dependent adjunction is given by152

tm-mod. We do not discuss the MTT elimination principle for modal types here.153

J. Ceulemans, A. Nuyts and D. Devriese 23:5

sctx-empty

· sctx @m

sctx-lock

Γ̂ sctx @n µ : m→ n

Γ̂ .µµ sctx @m

sctx-extend

Γ̂ sctx @m µ : n→ m

Γ̂ . µ sctx @m

locktele-empty

· : LockTele(m→ m)

locktele-lock
Λ : LockTele(o→ n) µ : m→ n

Λ .µµ : LockTele(o→ m)

locks (·) = 1 locks (Λ .µµ) = locks (Λ) ◦ µ

Figure 2 Definition of scoping contexts and lock telescopes

Finally, we can also consider modal function types (ty-arrow). Their values can be154

constructed via lambda abstraction (tm-lam), which adds an annotated variable to the context.155

Eliminating functions is done via application (tm-app) where the argument should type check156

in a locked context. Note that we are using a substitution in this rule to accommodate for157

dependent types, but we postpone the discussion about substitution in MTT to Section 2.2.1.158

I Example 1. To illustrate MTT, we will look at an example program. Suppose that we159

have a mode theory with modalities µ : m→ n and κ : n→ m, and a 2-cell α ∈ 1⇒ µ ◦ κ.160

Then we can construct a function of type (1 p A)→ 〈µ | (1 p B)→ 〈κ | Aα〉〉 as follows:161

λ(1 p x).modµ (λ(1 p y).modκ (xα)). We leave it to the reader to verify that this is indeed a162

well-typed program according to the rules in Figure 1.163

2.2 Alternative Presentation: Extrinsically Typed, Intrinsically Scoped164

The way the MTT syntax is presented in the previous section, which is also how it is originally165

presented in [18], could be called intrinsically typed. This means that we see the typing rules166

from Figure 1 as the way types and terms are introduced. In other words, we cannot even167

talk about ill-typed terms or ill-formed types.168

For the purposes of this paper, it will be more useful to work with extrinsically typed169

(one could say raw) syntax. In that way, our substitution algorithm can work on pure syntax170

without having to take typing derivations into account. Moreover, substitution is necessary171

to formulate some typing rules (such as tm-app). In MTT, this does not lead to circularity172

thanks to the use of explicit substitutions (see further) but it would make a substitution173

algorithm problematically cyclic if it works with intrinsically typed syntax.174

However, in order to conveniently develop our substitution algorithm, we will use intrin-175

sically scoped syntax, defined in this section. In order to distinguish between our system176

and the original presentation of MTT, we call the intrinsically scoped syntax WSMTT (for177

well-scoped MTT). Apart from the change from an intrinsically-typed to an extrinsically-178

typed presentation, this reformulation does not modify the MTT type theory. Specifically, it179

does not modify MTT’s treatment of substitution; that will only happen in Section 3, in a180

different system called SFMTT.181

For defining the intrinsically scoped syntax, we introduce scoping contexts in Figure 2.182

They are essentially MTT contexts from Figure 1 where all type information has been183

removed. We note that in the rule sctx-extend only the modality annotation of a variable is184

added to a scoping context. Indeed, in the rest of the paper we will not use named variables185

but a form of De Bruijn indices. This allows us to ignore α-equivalence and variable capture186

when implementing substitution.187

The WSMTT syntax is now introduced via a judgment Γ̂ ẁs t expr @m, meaning that188

t is a WSMTT expression in scoping context Γ̂ at mode m. Note that since we are not189

CVIT 2016

23:6 Admissibility of Substitution for Multimode Type Theory

wsmtt-expr-arrow

Γ̂ .µµ ẁs T expr @n Γ̂ . µ ẁs S expr @m

Γ̂ ẁs (µ p T)→ S expr @m

wsmtt-expr-lam

Γ̂ . µ ẁs t expr @m

Γ̂ ẁs λ
µ (t) expr @m

wsmtt-expr-var

Γ̂ sctx @n µ : m→ n

Γ̂ . µ .µµ ẁs v0 expr @m

wsmtt-expr-sub

∆̂ ẁs t expr @m ẁs σ sub(Γ̂→ ∆̂) @m

Γ̂ ẁs t [σ]ws expr @m

wsmtt-sub-empty

ẁs ! sub(Γ̂→ ·) @m

wsmtt-sub-id

Γ̂ sctx @m

ẁs id sub(Γ̂→ Γ̂) @m

wsmtt-sub-weaken

Γ̂ sctx @m

ẁs π sub(Γ̂ . µ→ Γ̂) @m

wsmtt-sub-compose

ẁs σ sub(∆̂→ Ξ̂) @m ẁs τ sub(Γ̂→ ∆̂) @m

ẁs σ ◦ τ sub(Γ̂→ Ξ̂) @m

wsmtt-sub-lock

ẁs σ sub(Γ̂→ ∆̂) @n µ : m→ n

ẁs σ .µµ sub(Γ̂ .µµ → ∆̂ .µµ) @m

wsmtt-sub-key
Θ,Ψ : LockTele(n→ m) α ∈ locks(Θ)⇒ locks(Ψ)

ẁs ¤
α∈Θ⇒Ψ
Γ̂ sub(Γ̂ .Ψ→ Γ̂ .Θ) @m

wsmtt-sub-extend

ẁs σ sub(Γ̂→ ∆̂) @m Γ̂ .µµ ẁs t expr @n

ẁs σ.t sub(Γ̂→ ∆̂ . µ) @m

Figure 3 Definition of raw WSMTT expressions and substitutions

specifying typing rules, the distinction between types and terms has disappeared and we talk190

about WSMTT expressions. An example of two rules that introduce WSMTT syntax can be191

found in the top row of Figure 3. In order to construct a modal function type in scoping192

context Γ̂, we need a domain type in the locked scoping context Γ̂ .µµ and a codomain type193

where we extend the scoping context with a variable annotated with µ (wsmtt-expr-arrow).194

The rule for introducing lambda abstraction is similar (wsmtt-expr-lam). Note that we can195

obtain all these rules by removing the typing information from the typing rules in Figure 1.196

The WSMTT variable rule wsmtt-expr-var has changed somewhat with respect to197

Figure 1: it only allows us to access the last variable added to a scoping context and only if198

it is locked behind the same modality as its annotation. It is standard, in formulations of199

type theory with explicit substitutions [1], to only allow access to the last variable which has200

De Bruijn index zero, since the De Bruijn index can then be incremented using a weakening201

substitution (wsmtt-sub-weaken) which applies not only to variables but to any objects-in-202

context. In the technical report on MTT [17], this standard practice is adapted to MTT203

with a variable rule that is a typed version of wsmtt-expr-var. The general variable rule204

tm-var (or its intrinsically scoped counterpart) however remains derivable by substituting v0205

with substitutions constructed via π, ¤α (wsmtt-sub-key) and _ .µµ (wsmtt-sub-lock).206

2.2.1 Substitution Calculus207

In both [18, 17] and our presentation, MTT is a system with explicit substitution: applying208

a substitution to an expression is viewed as a syntax constructor (wsmtt-expr-sub). This also209

means that expressions are defined mutually inductively with substitutions. For the latter,210

we introduce a judgment form ẁs σ sub(Γ̂ → ∆̂) @m expressing that σ is a substitution211

from scoping context Γ̂ to ∆̂ at mode m.212

J. Ceulemans, A. Nuyts and D. Devriese 23:7

Figure 3 shows all WSMTT substitution constructors. There is a unique substitution to213

the empty context (wsmtt-sub-empty) and identity (wsmtt-sub-id) and weakening (wsmtt-sub-214

weaken) substitutions. We can compose substitutions (wsmtt-sub-compose, note that this215

is a constructor), lock them (wsmtt-sub-lock) and extend them with a term to extend the216

codomain with a new variable (wsmtt-sub-extend). Note that this term has to live in a locked217

scoping context. Finally, every 2-cell in the mode theory gives rise to a key substitution218

(wsmtt-sub-key). This last rule introduces the concept of lock telescopes: sequences of zero219

or more locks that have the right domain and codomain modes to be composed. A lock220

telescope Θ : LockTele(n→ m) can be applied to a scoping context at mode n to obtain a221

scoping context at mode m. We can also compose all modalities in Θ to obtain a modality222

locks (Θ) : m→ n. Precise definitions are given in Figure 2.223

I Example 2 (Non-admissibility of composition). Figure 3 contains a constructor for the224

composition of substitutions, which breaks structural recursion in the usual argument of ad-225

missibility of substitution (Section 1.2). Here we argue that this is necessary: composition of226

substitutions is not admissible. Suppose that we have a mode theory with a 2-cell α ∈ µ◦ν ⇒ ρ.227

Then we can consider the key substitution ẁs ¤
α∈µ◦ν⇒ρ
Γ̂ sub(Γ̂ .µρ → Γ̂ .µµ .µν) @m. Fur-228

thermore, given an expression t in Γ̂ .µµ .µ1 we can construct ẁs (id.t) .µν sub(Γ̂ .µµ .µν →229

Γ̂ .µµ .1 .µν) @m. The composite of these two is a substitution from Γ̂ .µρ to Γ̂ .µµ .1 .µν ,230

which both splits ρ into µ◦ν and extends the codomain with a variable. In other words, if we231

would like composition to be admissible, the rule wsmtt-sub-extend would have to take 2-cells232

into account. A somewhat dual counterexample can be constructed in a mode theory with a233

2-cell α ∈ ρ⇒ µ ◦ ν. Now we can consider the substitutions ẁs π .µν sub(Γ̂ .µµ .1 .µν →234

Γ̂ .µµ .µν) @m and ẁs ¤
α∈µρ⇒µµ . µν

Γ̂ sub(Γ̂ .µµ .µν → Γ̂ .µρ) @m. Their composite cannot235

be constructed from the other constructors unless we make the rule wsmtt-sub-weaken take236

2-cells into account. This could quickly get out of hand when the involved 2-cells have a237

composite of more than 2 modalities in both their domain and codomain. Moreover, it would238

severely clutter the treatment of σ-equivalence of substitutions as discussed in Section 2.3.239

2.2.2 Lock Telescopes vs. Strict Functoriality of Locks240

sctx-lock-id

Γ̂ sctx @m

Γ̂ .µ1 = Γ̂ sctx @m

sctx-lock-comp

Γ̂ sctx @ o µ : m→ n ν : n→ o

Γ̂ .µν◦µ = Γ̂ .µν .µµ sctx @m

Figure 4 Strict functoriality of the lock operation on scoping contexts (optional)

The original presentation of MTT [18, 17] makes no mention of lock telescopes. Instead,241

it features strict functoriality rules for the lock operation on contexts, of which we give242

counterparts for scoping contexts in Figure 4. A consequence of these rules is that any lock243

telescope can be fused into a single lock.244

It is however quite unusual to have a non-trivial equational theory on contexts and early245

explorations of a lock calculus for MTT [23] suggest that it may be advantageous to drop246

the functoriality rules; by wsmtt-sub-key for the identity 2-cell, they automatically hold up247

to isomorphism. During the development of the current paper, we had a formulation of248

MTT in mind without these functoriality rules. However, nowhere in our proofs do we case249

distinguish on the number of locks in a given part of the context, or read off the modality250

annotation of a specific lock, so our results remain valid when we extend raw WSMTT with251

the rules in Figure 4.252

CVIT 2016

23:8 Admissibility of Substitution for Multimode Type Theory

Ξ̂ ẁs t expr @m ẁs σ sub(∆̂→ Ξ̂) @m ẁs τ sub(Γ̂→ ∆̂) @m

Γ̂ ẁs t [σ ◦ τ]ws =σ t [σ]ws [τ]ws expr @m

∆̂ ẁs t =σ s expr @m ẁs τ =σ σ sub(Γ̂→ ∆̂) @m

Γ̂ ẁs t [τ]ws =σ s [σ]ws expr @m

∆̂ . µ ẁs t expr @m ẁs σ sub(Γ̂→ ∆̂) @m

Γ̂ ẁs (λµ (t)) [σ]ws =σ λµ
(
t
[
σ+]

ws

)
expr @m with σ+ = (σ ◦ π).v0

ẁs σ sub(∆̂→ Ξ̂) @m ẁs τ sub(Γ̂→ ∆̂) @m

ẁs (σ ◦ τ) .µµ =σ (σ .µµ) ◦ (τ .µµ) sub(Γ̂ .µµ → Ξ̂ .µµ) @n

Γ̂ sctx @n Λ : LockTele(n→ m)

ẁs ¤
1locks(Λ)∈Λ⇒Λ
Γ̂

=σ id sub(Γ̂ .Λ→ Γ̂ .Λ) @m

α ∈ locks (Λ)⇒ locks (Θ) β ∈ locks (Θ)⇒ locks (Ψ)

ẁs ¤
β◦α∈Λ⇒Ψ
Γ̂ =σ ¤

α∈Λ⇒Θ
Γ̂ ◦¤β∈Θ⇒Ψ

Γ̂ sub(Γ̂ .Ψ→ Γ̂ .Λ) @m

α ∈ locks (Λ)⇒ locks (Θ) ẁs σ sub(Γ̂→ ∆̂) @n

ẁs ¤
α∈Λ⇒Θ
∆̂ ◦ (σ .Θ) =σ (σ .Λ) ◦¤α∈Λ⇒Θ

Γ̂ sub(Γ̂ .Θ→ ∆̂ .Λ) @m

α ∈ locks (Λ1)⇒ locks (Λ2) β ∈ locks (Θ1)⇒ locks (Θ2)

ẁs ¤
α?β∈Λ1 .Θ1⇒Λ2 .Θ2
Γ̂ =σ (¤α∈Λ1⇒Λ2

Γ̂ .Θ1) ◦¤β∈Θ1⇒Θ2
Γ̂ .Λ2

sub(Γ̂ .Λ2 .Θ2 → Γ̂ .Λ1 .Θ1) @m

Figure 5 Selected rules for σ-equivalence in WSMTT

2.3 σ-equivalence253

Since substitution in WSMTT expressions is an explicit constructor, it does not compute254

(as will be the case in SFMTT in Section 3). This means that there are a lot of distinct255

WSMTT expressions that are actually equivalent. For example, from the perspective of the256

rules in Figure 3 the expressions t [σ]ws [τ]ws and t [σ ◦ τ]ws have nothing to do with each257

other. For this reason, we add an axiomatic system to the intrinsically scoped WSMTT258

syntax that specifies when two expressions or substitutions are σ-equivalent (note that we259

do not add β- or η-equivalence to this system yet, those are covered in the type system that260

is defined on top of the syntax described here).261

Some of the rules for σ-equivalence can be found in Figure 5. We make use of a judgment262

Γ̂ ẁs t =σ s expr @m for expressions and ẁs σ =σ τ sub(Γ̂ → ∆̂) @m for substitutions.263

We find rules expressing the connection between applying a composed substitution and264

consecutively applying both substitutions, expressing how to push a substitution through265

expression constructors such as λµ (here σ+ is the lifting of σ defined as σ+ = (σ ◦ π).v0)266

and expressing functoriality of locks on substitutions. There are also quite some rules that267

express properties of key substitutions: their naturality and their behaviour with respect268

to the unit 2-cell and vertical and horizontal composition of 2-cells. The full definition of269

σ-equivalence for WSMTT can be found in the technical report.270

3 Substitution Algorithm271

In this section we describe our substitution algorithm for MTT. For this purpose we intro-272

duce a new language called SFMTT (for substitution-free MTT), which has no expression273

constructor for substitutions like wsmtt-expr-sub in Figure 3. We also introduce renamings274

and substitutions for SFMTT. All of this is included in Section 3.1. We then proceed in275

J. Ceulemans, A. Nuyts and D. Devriese 23:9

sf-var-zero

µ : m→ n

Θ : LockTele(n→ m)
Γ̂ sctx @n

α ∈ µ⇒ locks(Θ)

Γ̂ . µ .Θ s̀f vα0 var @m

sf-var-suc

µ : o→ n

Θ : LockTele(n→ m)
Γ̂ .Θ s̀f v var @m

Γ̂ . µ .Θ s̀f suc (v) var @m

Figure 6 Definition of well-scoped SFMTT variables

Section 3.2 to the core part of the substitution algorithm: applying SFMTT renamings276

and substitutions to SFMTT expressions. Finally, using this functionality we can translate277

WSMTT expressions to SFMTT expressions.278

3.1 Substitution-free Multimode Type Theory (SFMTT)279

3.1.1 SFMTT Expressions280

Exactly like our presentation of WSMTT, the expressions in SFMTT will be extrinsically281

typed but intrinsically scoped. We can reuse the same notion of scoping context and lock282

telescope from Figure 2. However, to introduce SFMTT expressions we cannot just take all283

expression constructors from Figure 3 and drop the one handling substitution (wsmtt-expr-284

sub). This would prevent us from accessing any other variable than the last one added to a285

scoping context and moreover we would no longer be able to take 2-cells into account.286

For this reason, we introduce a new variable judgment Γ̂ s̀f v var @m expressing that v is287

an accessible variable in scoping context Γ̂ at mode m. The inference rules for this judgment288

can be found in Figure 6. Either we want to access the last variable in the scoping context,289

in which case we have to provide an appropriate 2-cell (sf-var-zero), or we skip the last290

variable in the scoping context, which may be located under a lock telescope (sf-var-suc).291

As a conclusion, an SFMTT variable is just a De Bruijn index where the number zero is292

annotated with a 2-cell.293

SFMTT expressions can now be introduced via a judgment Γ̂ s̀f t expr @m stating that294

t is an SFMTT expression in scoping context Γ̂ at mode m. The constructors are now295

more or less the same as those for intrinsically scoped WSMTT in Figure 3, where the296

constructors for variables and substituted expressions are not included. Furthermore, every297

variable Γ̂ s̀f v var @m gives rise to an SFMTT expression in Γ̂. We emphasize that SFMTT298

expressions cannot contain substitutions.299

3.1.2 SFMTT Renamings and Substitutions300

We can also define substitutions for the SFMTT syntax, which will be required in the next301

section. As in our intrinsically scoped presentation of WSMTT, every SFMTT renaming302

and substitution has a domain and a codomain scoping context. This ensures that applying303

a renaming or substitution to an SFMTT expression is a total (always defined) operation.304

Similar to McBride [21] and Allais et al. [4], we define an action of renaming on expressions305

before we discuss the action of substitutions. Such a renaming does not only allow us to lift306

a substitution when pushing it under a binder, but also to perform some modal operations.307

Of course, we have to take into account that we want a structurally recursive substitution308

algorithm, which is impossible when substitution composition is added as a constructor. We309

solve this problem by first defining atomic renamings and substitutions, which are not closed310

under composition but which can be applied to SFMTT expressions in a structurally recursive311

CVIT 2016

23:10 Admissibility of Substitution for Multimode Type Theory

sf-arensub-empty

s̀f ! aren/asub(Γ̂→ ·) @m

sf-arensub-id

Γ̂ sctx @m

s̀f ida aren/asub(Γ̂→ Γ̂) @m

sf-arensub-weaken

s̀f σ aren/asub(Γ̂→ ∆̂) @m

s̀f weaken(σ) aren/asub(Γ̂ . µ→ ∆̂) @m

sf-arensub-lock

s̀f σ aren/asub(Γ̂→ ∆̂) @n µ : m→ n

s̀f σ .µµ aren/asub(Γ̂ .µµ → ∆̂ .µµ) @m

sf-arensub-key
Θ,Ψ : LockTele(n→ m) α ∈ locks(Θ)⇒ locks(Ψ)

s̀f ¤
α∈Θ⇒Ψ
Γ̂ aren/asub(Γ̂ .Ψ→ Γ̂ .Θ) @m

sf-aren-extend

s̀f σ aren(Γ̂→ ∆̂) @m Γ̂ .µµ s̀f v var @n

s̀f σ.v aren(Γ̂→ ∆̂ . µ) @m

sf-asub-extend

s̀f σ asub(Γ̂→ ∆̂) @m Γ̂ .µµ s̀f t expr @n

s̀f σ.t asub(Γ̂→ ∆̂ . µ) @m

Figure 7 Definition of atomic SFMTT renamings and substitutions

sf-rensub-id

Γ̂ sctx @m

s̀f id ren/sub(Γ̂→ Γ̂) @m

sf-rensub-snoc

s̀f σ ren/sub(∆̂→ Ξ̂) @m s̀f τ aren/asub(Γ̂→ ∆̂) @m

s̀f σ a© τ ren/sub(Γ̂→ Ξ̂) @m

Figure 8 Definition of regular SFMTT renamings and substitutions

way. Regular renamings and substitutions (from now on also referred to as rensubs) will be312

defined in terms of these atomic rensubs. We add a judgment s̀f σ aren/asub(Γ̂→ ∆) @m313

to denote that σ is an atomic renaming or substitution (much of the structure between314

renamings and substitutions is shared) from Γ̂ to ∆̂ at mode m. There is a similar judgment315

s̀f σ ren/sub(Γ̂→ ∆̂) @m for regular rensubs.316

The actual definition of atomic rensubs can be found in Figure 7. Many of the constructors317

are similar to the ones for WSMTT substitutions, such as the empty atomic rensub (sf-318

arensub-empty), locking (sf-arensub-lock) and keys (sf-arensub-key). As explained, we319

purposely omit a constructor for composition of atomic rensubs. As a consequence, we need320

a constructor for weakening rensubs (sf-arensub-weaken) which in WSMTT would have321

been accomplished by precomposing with π. Also note that we have an atomic identity322

rensub ida (sf-arensub-id). We could have alternatively implemented ida in terms of the323

other constructors but taking it as a constructor will make the rest of the paper easier324

because we can define its action on expressions to be trivial, whereas that would require a325

non-trivial proof in case of a defined identity atomic rensub. The only difference between326

atomic renamings and substitutions is the way they can be extended: a renaming is extended327

by a variable (sf-aren-extend) whereas a substitution can be extended with an arbitrary328

SFMTT expression (sf-asub-extend).329

The full definition of regular rensubs is shown in Figure 8. In essence, they are well-scoped330

snoc-lists of atomic substitutions. They can be empty, in which case the rensub is called331

the identity (sf-rensub-id), or they consist of an atomic rensub postcomposed with a regular332

rensub (sf-rensub-snoc).333

One operation that we will need in the next section, is the lifting of atomic rensubs.334

Given an atomic rensub σ from Γ̂ to ∆̂, we can construct a new, lifted atomic rensub335

σ+ := weaken(σ).v1µ

0 for an atomic rensub σ336

J. Ceulemans, A. Nuyts and D. Devriese 23:11

from Γ̂ . µ to ∆̂ . µ (here v1µ

0 is interpreted as a variable in the case of renamings and as an337

expression in the case of substitutions).5 Moreover, for any scoping context Γ̂ and modality338

µ, we have a weakening atomic rensub339

π := weaken(ida)340

from Γ̂ . µ to Γ̂. The lift and lock operations can be extended to regular rensubs by applying341

those operations to all constituent atomic rensubs. In other words, we have342

id+ = id id .µµ = id343

(σ a© τ)+ = σ+ a© τ+ (σ a© τ) .µµ = (σ .µµ) a© (τ .µµ).344
345

3.2 Renaming and Substitution Algorithm for SFMTT346

We are now ready to describe one of the core parts of the paper: the algorithm for applying347

an SFMTT substitution to an SFMTT expression. The definition is built up in 4 steps, each348

defining the action of another class of syntactic objects on SFMTT expressions:349

1. Atomic renamings.350

2. Regular renamings.351

3. Atomic substitutions.352

4. Regular substitutions.353

However, there is considerable overlap between some of these steps. For this reason, we will354

treat steps 2 and 4 together as well as large parts of steps 1 and 3.6 All operations take an355

(atomic) rensub from Γ̂ to ∆̂ and an SFMTT expression in scoping context ∆̂ to produce an356

SFMTT expression in scoping context Γ̂.357

3.2.1 Atomic rensubs acting on non-variable expressions358

We first discuss the application of atomic rensubs on SFMTT expressions other than variables.359

Note that we present the operation here as if it were acting on raw syntax, but strictly360

speaking it works on derivations of judgments of the form Γ̂ s̀f t expr @m (which are however361

fully determined by the expression itself).362

〈µ | A〉 [σ]aren/asub = 〈µ | A [σ .µµ]aren/asub〉363

modµ (t) [σ]aren/asub = modµ
(
t [σ .µµ]aren/asub

)
364

((µ p A)→ B) [σ]aren/asub =
(
µ p A [σ .µµ]aren/asub

)
→ B

[
σ+]

aren/asub365

(λµ (t)) [σ]aren/asub = λµ
(
t
[
σ+]

aren/asub

)
366

appµ (f ; t) [σ]aren/asub = appµ
(
f [σ]aren/asub ; t [σ .µµ]aren/asub

)
367
368

5 It might be surprising that this works for substitutions too, since we explained in the introduction for
STLC that defining weakening for substitutions requires recursively applying a subtitution (or renaming)
to terms in the context. However, substituting a variable with weaken(σ) will involve the application of
a renaming, as we will see in the next section.

6 In fact, the action of regular renamings is not really used anywhere. Only atomic renamings will be
important. However, as already mentioned the treatment of regular renamings and regular substitutions
is entirely the same.

CVIT 2016

23:12 Admissibility of Substitution for Multimode Type Theory

3.2.2 Atomic renamings acting on variables369

We now turn to the case for variables. This is where we distinguish between atomic renamings370

and atomic substitutions. We first discuss the action of an atomic renaming on a variable,371

producing another variable. The intuitive “type signature” of this operation is too weak to372

make recursion work. In particular, it does not allow us to go under locks in renamings.373

Therefore, we have a result that generalizes over a lock telescope Λ, but we can recover the374

desired result by taking the empty lock telescope for Λ.375

I Lemma 3. If we have an SFMTT atomic renaming s̀f σ aren(Γ̂→ ∆̂) @n, a lock telescope376

Λ : LockTele(n → m) and an SFMTT variable ∆̂ .Λ s̀f v var @m, then we can deduce377

Γ̂ .Λ s̀f v [σ]Λaren,var var @m378

Lemma 3 is a core lemma for this paper. Our substitution algorithm crucially relies on379

identifying a notion of renamings that can be recursively applied to MTT terms. It is this380

lemma that establishes that our choices achieve this and we include the proof below because381

it clarifies well why atomic renamings should be defined as they are.382

In the proof of Lemma 3 we will make use of the following result.383

I Lemma 4. Given two lock telescopes Θ,Ψ : LockTele(n→ m) and a 2-cell α ∈ locks (Θ)⇒384

locks (Ψ), we can transform a variable Γ̂ .Θ s̀f v var @m to a variable Γ̂ .Ψ s̀f v [α]Θ⇒Ψ
2-cell var @m.385

Proof. We proceed by induction on the variable v (i.e. the annotated De Bruijn index).386

case Γ̂ .Θ s̀f vβ0 var @m with Γ̂ = ∆̂ . µ .Λ (sf-var-zero, Λ is a lock telescope so it only387

contains locks)388

We know that ∆̂ . µ .Λ .Θ s̀f vβ0 var @m, so β ∈ µ⇒ locks (Λ .Θ) = locks (Λ) ◦ locks (Θ).389

Using the horizontal composition ?, we can construct a 2-cell 1locks(Λ) ? α ∈ locks (Λ) ◦390

locks (Θ) ⇒ locks (Λ) ◦ locks (Ψ). Hence we use the rule sf-var-zero again to obtain391

vβ0 [α]Θ⇒Ψ
2-cell = v(1locks(Λ)?α)◦β

0 .7392

case Γ̂ .Θ s̀f suc (v) var @m with Γ̂ = ∆̂ . µ .Λ (sf-var-suc, Λ is a lock telescope)393

In this case we have that ∆̂ .Λ .Θ s̀f v var @m. The induction hypothesis then gives us394

∆̂ .Λ .Ψ s̀f v [α]Θ⇒Ψ
2-cell var @m. Applying the rule sf-var-suc again to this result gives us395

the desired variable, so suc (v) [α]Θ⇒Ψ
2-cell = suc

(
v [α]Θ⇒Ψ

2-cell

)
. J396

Proof of Lemma 3. We proceed by induction on σ.397

case s̀f ! aren(Γ̂→ ·) @n398

In this case, ∆̂ is the empty scoping context. We can see from Figure 6 that there can be399

no variables in the empty scoping context (the scoping contexts in conclusions of both400

inference rules both contain at least a variable annotation). Hence we do not have to401

deal with this case further.8402

case s̀f ida aren(Γ̂→ Γ̂) @n403

Now Γ̂ .Λ s̀f v var @m, so we can just say v [ida]Λaren,var = v.404

case s̀f weaken(σ) aren(Γ̂ . µ→ ∆̂) @n405

We know that ∆̂ .Λ s̀f v var @m, so we can use the induction hypothesis for σ and obtain406

a variable Γ̂ .Λ s̀f v [σ]Λaren,var var @m. Since Λ is a lock telescope not containing variable407

7 This definition seems to imply a dependency of vβ0 [α]Θ⇒Ψ
2-cell on Λ, but note that Λ is completely

determined by the scoping context and the variable.
8 This case illustrates why it is advantageous to use intrinsically scoped syntax. It makes sure that the

codomain of the renaming and the scoping context of the expression match, so we do not have to cover
insensible cases.

J. Ceulemans, A. Nuyts and D. Devriese 23:13

annotations, we can then apply the rule sf-var-suc from Figure 6 with Θ = Λ to obtain a408

variable in Γ̂ . µ .Λ as required. In other words, v [weaken(σ)]Λaren,var = suc
(
v [σ]Λaren,var

)
.409

case s̀f σ .µµ aren(Γ̂ .µµ → ∆̂ .µµ) @n410

Adding the µµ to the left of the lock telescope Λ, we get v [σ .µµ]Λaren,var = v [σ]µµ .Λ
aren,var.411

case s̀f ¤
β∈Θ⇒Ψ
Γ̂ aren(Γ̂ .Ψ→ Γ̂ .Θ) @n412

We have that Γ̂ .Θ .Λ s̀f v var @m and that β ∈ locks (Θ)⇒ locks (Ψ). This means that413

β ? 1locks(Λ) ∈ locks (Θ .Λ) ⇒ locks (Ψ .Λ). Using Lemma 4, we can use this 2-cell to414

obtain a variable in Γ̂ .Ψ .Λ, so v
[
¤
β∈Θ⇒Ψ
Γ̂

]Λ
aren,var

= v
[
β ? 1locks(Λ)

]Θ .Λ⇒Ψ .Λ
2-cell .415

case s̀f σ.w aren(Γ̂→ ∆̂ . µ) @n416

We know that ∆̂ . µ .Λ s̀f v var @m (where Λ contains only locks) and perform a case417

split on v.418

case ∆̂ . µ .Λ s̀f vα0 var @m419

In this case we have a 2-cell α ∈ µ⇒ locks (Λ). Moreover, from the way the substitution420

is constructed we know that Γ̂ .µµ s̀f w var @m. We can then use Lemma 4 with lock421

telescopes Θ = µµ and Ψ = Λ to transform w to a variable in Γ̂ .Λ. In other words,422

vα0 [σ.w]Λaren,var = w [α]µµ⇒Λ
2-cell .423

case ∆̂ . µ .Λ s̀f suc (v) var @m424

Now we know that ∆̂ .Λ s̀f v var @m and that s̀f σ aren(Γ̂ → ∆̂) @n. Con-425

sequently, we can use the induction hypothesis to obtain a variable in Γ̂ .Λ. So426

suc (v) [σ.w]Λaren,var = v [σ]Λaren,var. J427

Note that the algorithm presented in the proof of Lemma 3 is indeed structurally recursive:428

in every recursive call the substitution gets structurally smaller (and moreover the algorithm429

in the proof of Lemma 4 does not depend on that of Lemma 3).430

Together with the equations from Section 3.2.1, we have now proved the following.431

I Lemma 5 (Admissibility of atomic renaming). If s̀f σ aren(Γ̂→ ∆̂) @m and ∆̂ s̀f t expr @m,432

then we can deduce Γ̂ s̀f t [σ]aren expr @m.433

3.2.3 Atomic substitutions acting on variables434

We now describe the action of atomic substitutions on variables. This will produce an435

SFMTT expression, that is not necessarily a variable anymore (as was the case for atomic436

renamings). We have a result very similar to Lemma 3.437

I Lemma 6. If we have an SFMTT atomic substitution s̀f σ asub(Γ̂ → ∆̂) @n, a lock438

telescope Λ : LockTele(n → m) and an SFMTT variable ∆̂ .Λ s̀f v var @m, then we can439

deduce Γ̂ .Λ s̀f v [σ]Λasub,var expr @m.440

Proof. Again we proceed by case distinction and induction on σ. The cases for !, ida, σ .µµ441

and ¤
β∈Θ⇒Ψ
Γ̂ are similar to the proof of Lemma 3 so we omit them.442

case s̀f weaken(σ) asub(Γ̂ . µ→ ∆̂) @n443

We have that ∆̂ .Λ s̀f v var @m, so we can use the induction hypothesis to obtain444

an expression in Γ̂ .Λ. Then we can apply Lemma 5 with the atomic renaming π .Λ445

(i.e. applying all the locks from Λ to π) to obtain an expression in Γ̂ . µ .Λ as required.446

Consequently, we have v [weaken(σ)]Λasub,var =
(
v [σ]Λasub,var

)
[π .Λ]aren.447

case s̀f σ.t asub(Γ̂→ ∆̂ . µ) @n448

We know that ∆̂ . µ .Λ s̀f v var @m and perform a case split and induction on v.449

CVIT 2016

23:14 Admissibility of Substitution for Multimode Type Theory

case ∆̂ . µ .Λ s̀f vα0 var @m450

In this case α ∈ µ ⇒ locks (Λ) and Γ̂ .µµ s̀f t expr @m. Therefore, we can apply451

Lemma 5 with the renaming ¤
α∈µµ⇒Λ
Γ̂ and the expression t to obtain an expression452

in Γ̂ .Λ. In other words vα0 [σ.t]Λasub,var = t
[
¤
α∈µµ⇒Λ
Γ̂

]
aren

.453

case ∆̂ . µ .Λ s̀f suc (v) var @m454

Now ∆̂ .Λ s̀f v var @m, so we can apply the induction hypothesis to v and σ. Hence455

suc (v) [σ.t]Λasub,var = v [σ]Λasub,var. J456

Note that all of the cases in the previous proof are similar to the corresponding cases in the457

proof of Lemma 3. The most important difference is that the result of applying a substitution458

is an expression and not a variable. In order to transform the results from recursive calls,459

we therefore make use of the fact that atomic renamings act on expressions as proved in460

Lemma 5 (as opposed to directly manipulating variables as in the proof of Lemma 3). This461

is reminiscent of how renaming gets used in the definition of substitution in [21, 4].462

As a corollary, we get the following.463

I Lemma 7 (Admissibility of atomic substitution). If s̀f σ asub(Γ̂ → ∆̂) @m and ∆̂ s̀f464

t expr @m, then we can deduce Γ̂ s̀f t [σ]asub expr @m.465

3.2.4 Regular renamings/substitutions466

We now turn to regular renamings and substitutions. There is no need to distinguish between467

these two as the procedure for renamings and substitutions will be exactly the same. Since a468

regular rensub is a sequence of atomic rensubs, we can just sequentially apply the results469

from the previous sections. We therefore get the following.470

t [id]ren/sub = t t [σ a© τ]ren/sub =
(
t [σ]ren/sub

)
[τ]aren/asub471

472

As a conclusion, we have proved the following theorem.473

I Theorem 8 (Admissibility of renaming and substitution). Given a renaming or substitution474

s̀f σ ren/sub(Γ̂ → ∆̂) @m and an SFMTT expression ∆̂ s̀f t expr @m, we can deduce475

Γ̂ s̀f t [σ]ren/sub expr @m.476

Note that we do not actually need the action of full renamings on SFMTT expressions in477

order to define the action of atomic substitutions, atomic renamings suffice for that purpose.478

Although we are not really concerned with performance in this paper, we note that479

optimisations are certainly possible. For example, as it is currently described, the algorithm480

will, when applying a regular substitution consisting of n atomic ones to an expression481

t, perform n traversals of t, one for every atomic substitution. This could be reduced by482

traversing the expression just once and applying lifting (+) or locks to all atomic substitutions483

simultaneously when required.484

3.3 Interpretation of WSMTT Expressions in SFMTT485

We now turn to the relation between WSMTT and SFMTT. Using the substitution algorithm486

just defined, we will show that WSMTT expressions can be translated to SFMTT expressions,487

essentially proving that explicit substitutions can be computed away. The reverse direction is488

easier: apart from variables, every SFMTT expression constructor also appears in WSMTT489

so we can almost trivially embed the former system into the latter. We define the two490

translations here and consider their meta-theoretical properties (particularly soundness and491

completeness) in the next sections.492

J. Ceulemans, A. Nuyts and D. Devriese 23:15

3.3.1 Translation from WSMTT to SFMTT493

The translation from WSMTT to SFMTT is defined mutually recursively for both expressions494

and substitutions. In other words, for any WSMTT expression Γ̂ ẁs t expr @m we get an495

SFMTT expression Γ̂ s̀f JtK expr @m and for any WSMTT substitution ẁs σ sub(Γ̂ →496

∆̂) @m we get an SFMTT (regular) substitution s̀f JσK sub(Γ̂ → ∆̂) @m. We only show497

some of the cases for the different expression constructors.498

Jv0K = v1µ

0 JπK = id a©weaken(ida)499

J(µ p A)→ BK = (µ p JAK)→ JBK Jσ ◦ τK = JσK ++ JτK500

Jt [σ]wsK = JtK [JσK]sub Jσ .µµK = JσK .µµ501

J!K = id a© !
r
¤
α∈Θ⇒Ψ
Γ̂

z
= id a©¤

α∈Θ⇒Ψ
Γ̂502

JidK = id Jσ.tK = JσK+ a© (ida. JtK)503
504

When translating an (explicitly) substituted WSMTT expression t [σ]ws, we translate both505

the expression t and the substitution σ and then apply Theorem 8 (i.e. the algorithm from506

the previous section). Translation of a composite substitution involves the concatenation of507

the two translated substitutions, which are regular SFMTT substitutions so sequences of508

atomic SFMTT substitutions. Recall that the operations _ .µµ and + for regular SFMTT509

substitutions are defined at the end of Section 3.1. Finally, one could wonder why in the510

translation of σ.t we first add JtK to the identity atomic substitution and then apply the lifted511

version of JσK where it would seem easier to first apply (the non-lifted) JσK and then extend512

ida with JtK. The answer is that in that case we would JtK would live in the wrong scoping513

context: if JσK goes from Γ̂ to ∆̂, then JtK lives in Γ̂ .µµ but if we want the translation of514

σ.t to be of the form (ida.?) a© JσK, then we need some term in scoping context ∆̂ .µµ at the515

place of the question mark.516

3.3.2 Embedding of SFMTT into WSMTT517

We only provide an embedding of SFMTT expressions to WSMTT expressions (so not for518

substitutions). Apart from the constructor for variable expressions, all SFMTT expression519

constructors also occur in WSMTT. We therefore only specify how to embed variables.520

embed(vα0) = v0

[
¤
α∈µµ⇒Θ
Γ̂

]
ws

521

embed(suc (v)) = embed(v) [π .Θ]ws522
523

The lock telescopes Θ in both cases are inferred from the scoping context (recall that we524

consider SFMTT expressions to be intrinsically scoped).525

As a result, for every SFMTT expression Γ̂ s̀f t expr @m we get a corresponding WSMTT526

expression Γ̂ ẁs embed(t) expr @m.527

4 Soundness528

In the previous section, we introduced a translation from WSMTT to SFMTT that uses our529

substitution algorithm to translate away WSMTT’s explicit substitution. In this section and530

the next, we establish the translation’s key properties: soundness and completeness of the531

translation with respect to σ-equivalence in WSMTT. First, in this section, we establish532

soundness: translating a WSMTT expression to SFMTT and embedding the result back533

CVIT 2016

23:16 Admissibility of Substitution for Multimode Type Theory

into WSMTT should produce a WSMTT expression that is σ-equivalent to the original.534

Next, Section 5 will establish completeness: any two σ-equivalent WSMTT expressions are535

mapped to equal SFMTT terms. Soundness and completeness combined give us the result536

that SFMTT expressions can be regarded as the σ-normal forms of WSMTT expressions.537

Specifically, in this section we prove the following result.538

I Theorem 9 (Soundness). Given a WSMTT expression Γ̂ ẁs t expr @m, we have that539

Γ̂ ẁs embed(JtK) =σ t expr @m.540

In other words, if we start with a WSMTT expression, apply the translation where all explicit541

substitutions are computed away, and then embed the result back into WSMTT, we get a542

result that is σ-equivalent to the original expression.543

Although we did not provide an embedding of substitutions in Section 3.3.2, the proof of544

Theorem 9 is easiest to formulate when we have such an embedding. The reason for this is545

that we will perform an induction on the WSMTT expression t, but WSMTT expressions546

are defined mutually recursively with WSMTT substitutions as can be seen in Figure 3. We547

therefore define the following for both atomic and regular SFMTT substitutions.548

embed(!) = ! embed
(
¤
α∈Λ⇒Θ
Γ̂

)
= ¤

α∈Λ⇒Θ
Γ̂549

embed(ida) = id embed(σ.t) = embed(σ) .embed(t)550

embed(weaken(σ)) = embed(σ) ◦ π embed(id) = id551

embed(σ .µµ) = embed(σ) .µµ embed(σ a© τ) = embed(σ) ◦ embed(τ)552
553

The proof of Theorem 9 proceeds by induction and case analysis on the WSMTT expression554

t. The crucial case is when t is of the form s [σ]ws. In that case the induction hypothesis555

would give us ∆̂ ẁs embed(JsK) =σ s expr @m and ẁs embed(JσK) =σ σ sub(Γ̂ → ∆̂) @m.556

In order to derive the desired result from this, we need the following lemma.557

I Lemma 10. Given an SFMTT expression ∆̂ s̀f t expr @m and substitution s̀f σ sub(Γ̂→558

∆̂) @m, we have that Γ̂ ẁs embed(t [σ]sub) =σ embed(t) [embed(σ)]ws expr @m.559

This lemma tells us that computing away a substitution in SFMTT and embedding the560

result in WSMTT should give an expression that is σ-equivalent to the result of applying the561

WSMTT substitution constructor to the embedded substitution. The proof of Lemma 10 is562

technically quite involved (it proceeds by induction on t and σ, the most difficult cases being563

weakening and key substitutions) and can therefore be found in the technical report.564

Using Lemma 10, we can sketch the proof of Theorem 9. In fact we will prove the565

following stronger result.566

I Theorem 11. For every WSMTT expression Γ̂ ẁs t expr @m we have Γ̂ ẁs embed(JtK) =σ
567

t expr @m and for every WSMTT substitution ẁs σ sub(Γ̂→ ∆̂) @m we have ẁs embed(JσK) =σ
568

σ sub(Γ̂→ ∆̂) @m.569

Sketch of proof. This proof proceeds by induction on the expression t and the substitution570

σ. We only show 3 cases for t, the other cases can be found in the technical report.571

case Γ̂ . µ .µµ ẁs v0 expr @m572

Now we have that embed(Jv0K) = embed
(

v1µ

0

)
= v0

[
¤

1µ∈µµ⇒µµ

Γ̂ . µ

]
ws
. This last expres-573

sion is indeed σ-equivalent to v0 because of the functoriality of key substitutions.574

case Γ̂ ẁs t [σ]ws expr @m575

In this case embed(Jt [σ]wsK) = embed(JtK [JσK]sub) =σ embed(JtK) [embed(JσK)]ws where576

J. Ceulemans, A. Nuyts and D. Devriese 23:17

the last σ-equivalence holds because of Lemma 10. We can now apply the induction577

hypothesis to t to obtain embed(JtK) =σ t and to σ to get embed(JσK) =σ σ, which proves578

the desired result.579

case Γ̂ ẁs λ
µ (t) expr @m580

By definition of the translation and embedding between WSMTT and SFMTT, we have581

that embed(Jλµ (t)K) = λµ (embed(JtK)). Hence the result follows from the induction582

hypothesis applied to the subterm t. J583

5 Completeness584

Completeness of our algorithm with respect to σ-equivalence states that whenever two585

WSMTT expressions are σ-equivalent, the results when computing away all substitutions in586

these expressions should be the same. Hence we want to prove the following theorem.587

I Theorem 12 (Completeness). If we can deduce Γ̂ ẁs t =σ s expr @m, then JtK = JsK.588

Recall that σ-equivalence for WSMTT expressions is defined mutually recursively with σ-589

equivalence for WSMTT substitutions (see Figure 5). Therefore, in order to prove Theorem 12,590

we need to first extend it so as to also make a claim about σ-equivalent WSMTT substitutions.591

However, in SFMTT, syntactic equality of substitutions is not a good notion of equivalence.592

Instead, we will use the following.593

I Definition 13 (Observational equivalence). We say that two SFMTT substitutions s̀f594

σ, τ sub(Γ̂ → ∆̂) @m are observationally equivalent when t [σ]sub = t [τ]sub for every595

expression ∆̂ s̀f t expr @m. We will write this as σ ≈obs τ .596

This notion of observational equivalence is actually quite strong because it quantifies over all597

possible SFMTT expressions. That means that both substitutions might get pushed under a598

lot of expression constructors, with locks or lifts added along the way. The technical report599

proves the following lemma, which makes it easier to prove observational equivalence.600

I Lemma 14. Let s̀f σ, τ sub(Γ̂ → ∆̂) @n be two SFMTT substitutions and suppose that601

v [σ .Λ]sub = v [τ .Λ]sub for every lock telescope Λ : sTele(n → m) and every variable602

∆̂ .Λ s̀f v var @m. Then σ ≈obs τ .603

I Remark 15. If we instantiate SFMTT on the trivial mode theory (by which we mean the604

terminal 2-category) then variables are non-modal De Bruijn indices and lock telescopes can605

be essentially ignored. In this setting, what Lemma 14 really says is that a substitution is606

uniquely determined, up to observational equivalence, by its action on De Bruijn indices.607

Since there exists exactly one De Bruijn index for every variable in the context, this means608

that we have an injection from substitutions, up to observational equivalence, to lists of609

terms. In plain dependent type theory, substitutions are often defined as lists of terms, or610

at least it is clear that they can be uniquely represented in this way. In other words, the611

aforementioned injection is actually a bijection. In general SFMTT, this is no longer the612

case: we have a non-bijective injection, proving that the structure of substitutions in modal613

type theory is fundamentally more complex than that of plain dependent type theory. An614

example that proves the failure of surjectivity is given in the technical report.615

We can now prove an extension of Theorem 12.616

I Theorem 16. Given two σ-equivalent WSMTT expressions Γ̂ ẁs t =σ s expr @m, we617

have that JtK = JsK. Furthermore, given two σ-equivalent WSMTT substitutions ẁs σ =σ
618

τ sub(Γ̂→ ∆̂) @m, we have that JσK ≈obs JτK.619

CVIT 2016

23:18 Admissibility of Substitution for Multimode Type Theory

Sketch of proof. We proceed by induction on a derivation of the σ-equivalence judgment,620

going over all inference rules from Figure 5. Only some cases are covered, the other can be621

found in the technical report.622

case Γ̂ ẁs t [σ ◦ τ]ws =σ t [σ]ws [τ]ws expr @m623

For the left-hand side we get that Jt [σ ◦ τ]wsK = JtK [JσK ++ JτK]sub, whereas for the624

right-hand side we have Jt [σ]ws [τ]wsK = JtK [JσK]sub [JτK]sub. Since applying a regu-625

lar substitution to an SFMTT expression amounts to applying all constituent atomic626

substitutions, both expressions are equal.627

case Γ̂ ẁs t [τ]ws =σ s [σ]ws expr @m628

The premises of this inference rule tell us that Γ̂ ẁs t =σ s expr @m and ẁs τ =σ
629

σ sub(∆̂ → Γ̂) @m. From the induction hypothesis it then follows that JtK = JsK and630

JτK ≈obs JσK. By the definition of ≈obs we therefore have that Jt [τ]wsK = JtK [JτK]sub =631

JsK [JσK]sub = Js [σ]wsK.632

case Γ̂ ẁs (λµ (t)) [σ]ws =σ λµ (t [σ+]ws) expr @m633

Since all atomic SFMTT substitutions can be pushed through λµ (_) and the lifting of a634

regular substitution consists of the lifted atomic substitutions, we have J(λµ (t)) [σ]wsK =635

Jλµ (t)K [JσK]sub = λµ (JtK) [JσK]sub = λµ
(
JtK
[
JσK+

]
sub

)
. On the other hand we know636

that Jλµ (t [σ+]ws)K = λµ (JtK [Jσ+K]sub). We conclude that both expressions are indeed637

equal because Jσ+K ≈obs JσK+ by a lemma proved in the technical report.638

case ẁs (σ ◦ τ) .µµ =σ (σ .µµ) ◦ (τ .µµ) sub(Γ̂ .µµ → Ξ̂ .µµ) @n639

This case is trivial since a lock is applied to every atomic substitution in a sequence and640

hence it distributes over sequence concatenation. J641

As a consequence of the soundness and completeness of our algorithm, we have the642

following result.643

I Theorem 17. Given two WSMTT expressions Γ̂ ẁs t, s expr @m, then Γ̂ ẁs t =σ
644

s expr @m if and only if JtK = JsK. From this it follows that SFMTT expressions are the645

σ-normal forms of WSMTT expressions, and J−K is the normalization function.646

Proof. The direction from left to right is exactly Theorem 12. Conversely, suppose that647

JtK = JsK. Then we know that t =σ embed(JtK) = embed(JsK) =σ s. To show that SFMTT648

expressions are the σ-normal forms of WSMTT expressions, we only need to prove that every649

SFMTT expression is in the image of the J−K function. This is easily seen to be the case650

since Jembed(t)K = t for all Γ̂ s̀f t expr @m (which is provable via a trivial induction on651

t). J652

6 Related and Future Work653

6.1 Normalization by Evaluation for MTT654

Normalization of MTT w.r.t. σβη-equality had already been proven by Gratzer [15][16, ch.655

8]. He uses a normalization by evaluation (NbE) argument [5, 3], structured using the more656

recent technique of Synthetic Tait Computability (STC) [29][16, ch. 4]. We compare Gratzer’s657

work with ours both in terms of approach and of implications.658

Implications An NbE algorithm will take as input a term Γ ` t : T (considered up to659

σβη-equality) and a value environment ρ : env(∆ → Γ) and return a σβη-normal form660

∆ ` nbe(t, ρ) : T [ρ]. When we instantiate ρ with the identity environment, which substitutes661

every variable with itself or its η-expansion, then we are really just normalizing t. When662

J. Ceulemans, A. Nuyts and D. Devriese 23:19

instead we are only interested in syntax up to σβη-equality, and thus not in σβη-normalization663

which is inobservable up to σβη-equality, then the algorithm really just applies the substitution664

ρ to the term t. So in this sense an NbE algorithm already allows for substitution and indeed665

this is sufficient for a proof-of-concept implementation of MTT [28].666

However, for conceptual, didactical and practical reasons, we see a role for a substitution667

and σ-normalization algorithm unreliant on βη-equality as presented in the current paper.668

Conceptually, there is the fact that substitution originates as a find-replace operation that669

replaces every occurrence of a given variable with a term of the same type. While the670

admissibility of such an operation becomes more difficult to prove with the introduction671

of variable binding, dependent types, . . . , it is still a reasonable expectation and indeed a672

sanity check to ask that this operation be admissible, without referring to computation or673

βη-equality. It ensures that, even before considering computation, variables can be thought674

of as placeholders, and that programs are not permanently tied to the context in which they675

are defined, but merely use the context as an interface. Didactically, since computation relies676

on substitution, it is desirable to be able to explain substitution first, and especially without677

having to introduce NbE. Practically, when working in a dependently typed proof-assistant,678

we want to get type goals that are not in σβη-normal form. For example, an η-normal679

form of an advanced algebraic structure will typically be a big nested record type listing all680

carriers and implementing all available operations, which may not be quite as readable as681

the more intensional way in which the algebra was constructed. A proof-assistant that relies682

on NbE for substitution, will not be able to type a function application f a of a dependently683

typed function f without normalizing the codomain of f . Our algorithm, on the other hand,684

will cleanly push substitutions through all non-substitution-related syntax constructors and685

merely find and replace variables.686

Approach A first stark difference between NbE and the current work is that NbE considers687

a type system’s syntax up to σβη-equality, i.e. it considers the type system’s initial model688

in which important type formers can be characterized by their universal properties. In689

order to speak about σ-equality, we need to distinguish βη-equal terms and lose some of the690

categorical tooling. In particular, the category of models of a type system is of little use and691

most type formers do not satisfy their universal properties up to σ- or syntactic equality.692

Similarly, because typing relies on βη-equality and we want to get the complications of693

substitution out of the way before considering βη-equality (e.g. because of the conceptual694

and didactical reasons above), we work with intrinsically scoped untyped syntax, whereas695

NbE generally works with intrinsically typed syntax.696

NbE arguments generally feature at least five ‘collections of program representations’:697

variables, neutrals, normal forms, values, and σβη-equivalence classes9 of terms. An NbE698

proof involves several operations on and between these collections, and each of them is stable699

under renaming, which is necessary to deal with λ-abstraction and application. In the current700

work, we do not ever need to construct or eliminate functions, so while we do need to apply701

scoping telescopes to renamings and substitutions , it turns out there is no need to prove702

that every operation featured in the proof, is stable under renaming. Furthermore, while703

MTT and SFMTT can be regarded as the collections of terms and normal forms respectively,704

and we also have a definition of SFMTT variables, we do not need to distinguish between705

values and normal forms (which in NbE has mostly to do with η-equality) and we do not706

9 When formalizing type theory in type theory, one would not use set-theory-style quotients based on
equivalence classes, but instead use quotient-inductive-inductive types [6].

CVIT 2016

23:20 Admissibility of Substitution for Multimode Type Theory

need a separate collection of neutrals (as σ-reduction, unlike β-reduction, is never stuck on a707

variable).708

6.2 Second-order Algebraic Theories709

Allais, Atkey, Chapman, McBride and McKinna [4] implement renaming and substitution710

(among many other things) at once for a large class of languages, which Fiore and Szamoz-711

vancev [14] identify to be second-order multisorted algebraic theories (SOMATs). Here,712

multisorted means simply-typed, and second-order means that they accommodate variable-713

binding, but no other context features, i.e. it is assumed that contexts, renamings and714

substitutions are lists of types, variables and terms respectively. More recently and in a715

more categorical perspective, Uemura has defined the corresponding class of dependently716

typed languages, which in the larger naming scheme would be called second-order generalized717

algebraic theories (SOGATs). A similar general substitution result should be possible for718

SOGATs, and in any case it is very well understood (but considered tedious) how to prove719

admissibility of substitution for specific SOGATs, which is why there is nowadays little720

attention for this problem in the metatheory of specific non-modal languages.721

The necessity of the current work arises from the fact that, due to the presence of722

locks, MTT is not a SOGAT. A generalization of second-order algebraic theories that would723

subsume MTT or at least Multimode Simple Type Theory (MSTT) [11] is work in progress724

[22] and will be informed by our current findings.725

6.3 Other Approaches to Modal Contexts and/or Substitution726

Lock calculi Bahr, Grathwohl and Møgelberg [7] introduce Clocked Type Theory (CloTT),727

a system for guarded type theory which features a later modality B for every clock listed in728

the clock context. If we keep the clock context fixed, then to a large extent CloTT can be729

regarded as an instance of MTT,10 but the ‘lock’ operation for each later modality is named.730

To clarify, we put the introduction rules for the later types for a clock κ in MTT and CloTT731

side by side:732

Γ .µBκ ` t : T
Γ ` modBκ (t) : 〈Bκ | T 〉

Γ, α : κ ` t : T
Γ ` λ(α : κ).t : B(α : κ).T733

The variable α is called a tick of the clock κ, but we can more generally call it a lock734

variable. The specific mode theory for CloTT is enforced by requiring that α be used735

substructurally. This slightly complicates the type system but on the bright side, substitutions736

in CloTT are simply variable and tick replacement operations and do not have the complex737

categorical structure they have in MTT, facilitating implementation in Agda [31]. Dependent738

quantification over an affine or cartesian interval variable in cubical homotopy or parametric739

type theory [9, 13, 8] can also be regarded as an instance of this approach, with the interval740

variable being analogous to the tick.741

We could similarly try to assign a lock variable to every lock in MTT and extend MTT742

with a substructural lock calculus [23]. This is challenging however, as we need to deal with743

arbitrarily complex mode theories and the lock calculus admits in general neither weakening,744

exchange nor contraction.745

10Alternatively, we could regard the clock context as the mode, in which case we have an instance of MTT
where clock substitution and quantification are also modalities. However, our discussion about lock
calculi does not apply if we take that perspective.

J. Ceulemans, A. Nuyts and D. Devriese 23:21

2-posetal MTT If MTT is instantiated on a mode theory that is a 2-poset, meaning that746

the 2-cell of a given domain and codomain is unique if it exists, and if moreover this existence747

is decidable, then rather than listing 2-cell information on variables and in substitutions, the748

unique existence of the necessary 2-cells can be checked. Then all the remaining information749

in a substitution is a list of terms, and the substitution operation is again merely a find-replace750

operation. In the implementation of the proof-assistant Mitten [28], this fact is used to751

optimize the NbE algorithm (Section 6.1) for implementation.752

Left division MTT is based on a line of work on type systems using a left division operation753

[2, 26, 25, 24], which in turn can be regarded as a generalization of a dual-context approach754

[27]. Rather than having a context constructor µµ which is semantically left adjoint to the755

modality, it is assumed that there exists a left division operation µ _ left adjoint to µ ◦_756

on modalities, and this operation extends to contexts by applying it to the modal annotation757

of every variable. In systems based on left division, contexts are lists of modality-annotated758

types, and substitutions are lists of terms. The difficult question there is not whether759

substitution is admissible, but whether left division of contexts is functorial. This question760

has to our knowledge never been properly studied for general mode theories. Moreover,761

left division of contexts is itself an admissible operation on syntax and, unlike substitution,762

typically does not have clean denotational semantics.763

Fitch-style calculi Logics and type systems that feature typically a single modality � and764

a left adjoint context constructor µ, but no modal annotations on variables, are referred to765

as Fitch-style calculi [12]. Given the presence of only a single modality, Example 2 applies766

only if there is a non-trivial and non-horizontally-decomposable two-cell between powers767

of �, e.g. the duplication δ ∈ � ⇒ �� of a comonad. Gratzer, Sterling and Birkedal [19]768

implement type theory with an S4-style �-modality (i.e. an applicative comonad) and indeed769

our counterexample applies. They do not prove admissibility of substitution and instead770

use NbE. Valliappan, Ruch and Cortiñas [30] prove NbE for four modal systems, where771

� is an applicative functor with optionally a co-unit ε ∈ � ⇒ 1 and/or a duplication δ.772

Each time, they define a modal accessibility relation ∆ C Γ on contexts which entails the773

existence of a substitution Γ→ ∆ .µ involving only weakening and 2-cells. As such, unlike774

MTT, their system has a composition-free substitution Γ .µ.A .µ → Γ .µ. Still, they do775

not claim admissibility of composition of substitution (only identity), nor do they prove776

admissibility of substitution, instead using NbE. For pointed modalities and monads, on the777

other hand, we refer back to the lock calculi discussed above, with the later modality and778

interval quantification as examples.779

Acknowledgements780

This research is partially funded by the Research Fund KU Leuven. This work was partially781

supported by a research project of the Research Foundation - Flanders (FWO).782

References783

1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. In Proceedings784

of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,785

POPL ’90, page 31–46, New York, NY, USA, 1989. Association for Computing Machinery.786

doi:10.1145/96709.96712.787

CVIT 2016

https://doi.org/10.1145/96709.96712

23:22 Admissibility of Substitution for Multimode Type Theory

2 Andreas Abel. Polarised subtyping for sized types. Mathematical Structures in Computer788

Science, 18(5):797–822, 2008. doi:10.1017/S0960129508006853.789

3 Andreas Abel. Normalization by evaluation: Dependent types and impredicativity. Habilitation790

thesis, Ludwig-Maximilians-Universität München, Germany, 2013.791

4 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A792

type- and scope-safe universe of syntaxes with binding: their semantics and proofs. Journal of793

Functional Programming, 31:e22, 2021. doi:10.1017/S0956796820000076.794

5 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of795

a reduction free normalization proof. In David H. Pitt, David E. Rydeheard, and Peter T.796

Johnstone, editors, Category Theory and Computer Science, 6th International Conference,797

CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings, volume 953 of Lecture Notes in798

Computer Science, pages 182–199. Springer, 1995. doi:10.1007/3-540-60164-3_27.799

6 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive800

types. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual801

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,802

St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/803

2837614.2837638.804

7 Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The clocks are ticking:805

No more delays! In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,806

LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.807

8005097.808

8 Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of809

parametric type theory. Electron. Notes in Theor. Comput. Sci., 319:67 – 82, 2015. doi:http:810

//dx.doi.org/10.1016/j.entcs.2015.12.006.811

9 Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in Cubical812

Sets. In 19th International Conference on Types for Proofs and Programs (TYPES 2013),813

volume 26, pages 107–128, Dagstuhl, Germany, 2014. URL: http://drops.dagstuhl.de/814

opus/volltexte/2014/4628, doi:10.4230/LIPIcs.TYPES.2013.107.815

10 Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts,816

and Bas Spitters. Modal dependent type theory and dependent right adjoints. Mathematical817

Structures in Computer Science, 30(2):118–138, 2020. doi:10.1017/S0960129519000197.818

11 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. Sikkel: Multimode simple type819

theory as an agda library. In Jeremy Gibbons and Max S. New, editors, Proceedings820

Ninth Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS821

2022, Munich, Germany, 2nd April 2022, volume 360 of EPTCS, pages 93–112, 2022.822

doi:10.4204/EPTCS.360.5.823

12 Ranald Clouston. Fitch-style modal lambda calculi. In Christel Baier and Ugo Dal Lago,824

editors, FOSSACS 2018, Held as Part of ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,825

Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 258–275. Springer,826

2018. doi:10.1007/978-3-319-89366-2_14.827

13 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:828

A constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, 21st829

International Conference on Types for Proofs and Programs, TYPES 2015, May 18-21, 2015,830

Tallinn, Estonia, volume 69 of LIPIcs, pages 5:1–5:34. Schloss Dagstuhl - Leibniz-Zentrum für831

Informatik, 2015. doi:10.4230/LIPIcs.TYPES.2015.5.832

14 Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract syntax.833

Proc. ACM Program. Lang., 6(POPL):1–29, 2022. doi:10.1145/3498715.834

15 Daniel Gratzer. Normalization for multimodal type theory. In Proceedings of the 37th Annual835

ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, 2022. doi:10.1145/3531130.836

3532398.837

16 Daniel Gratzer. Syntax and semantics of modal type theory. PhD thesis, Aarhus University,838

Denmark, 2023. URL: Syntaxandsemanticsofmodaltypetheory.839

https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2015.12.006
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.4204/EPTCS.360.5
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398
Syntax and semantics of modal type theory

J. Ceulemans, A. Nuyts and D. Devriese 23:23

17 Daniel Gratzer, Alex Kavvos, Andreas Nuyts, and Lars Birkedal. Type theory à la mode.840

Pre-print, 2020. URL: https://lirias.kuleuven.be/retrieve/635295.841

18 Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal Dependent842

Type Theory. Logical Methods in Computer Science, Volume 17, Issue 3, July 2021. URL:843

https://lmcs.episciences.org/7713, doi:10.46298/lmcs-17(3:11)2021.844

19 Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a modal dependent type845

theory. Proc. ACM Program. Lang., pages 107:1–107:29, 2019. doi:10.1145/3341711.846

20 Per Martin-Löf. Intuitionistic type theory. In Studies in proof theory. Bibliopolis, 1984.847

21 Conor McBride. Type-preserving renaming and substitution. Unpublished note, 2005. URL:848

http://strictlypositive.org/ren-sub.pdf.849

22 Andreas Nuyts. Contextual algebraic theories: Generic boilerplate beyond abstraction850

(extended abstract). In Workshop on Type-Driven Development (TyDe), 9 2022. URL:851

https://anuyts.github.io/files/cmat-tyde22-abstract.pdf.852

23 Andreas Nuyts. A lock calculus for multimode type theory. In 29th International Conference853

on Types for Proofs and Programs (TYPES), 6 2023. URL: https://lirias.kuleuven.be/854

retrieve/720873.855

24 Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for856

parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent857

type theory. In Logic in Computer Science (LICS) 2018, Oxford, UK, July 09-12, 2018, pages858

779–788, 2018. doi:10.1145/3209108.3209119.859

25 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent860

type theory. PACMPL, 1(ICFP):32:1–32:29, 2017. URL: http://doi.acm.org/10.1145/861

3110276, doi:10.1145/3110276.862

26 Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In863

LICS ’01, pages 221–230, 2001. doi:10.1109/LICS.2001.932499.864

27 Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical865

Structures in Computer Science, 11(4):511–540, 2001. doi:10.1017/S0960129501003322.866

28 Philipp Stassen, Daniel Gratzer, and Lars Birkedal. {mitten}: A Flexible Multimodal Proof867

Assistant. In Delia Kesner and Pierre-Marie Pédrot, editors, 28th International Conference on868

Types for Proofs and Programs (TYPES 2022), volume 269 of Leibniz International Proceedings869

in Informatics (LIPIcs), pages 6:1–6:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-870

Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/871

LIPIcs.TYPES.2022.6, doi:10.4230/LIPIcs.TYPES.2022.6.872

29 Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory873

of Cubical Type Theory. PhD thesis, Carnegie Mellon University, USA, 2022. URL: https:874

//doi.org/10.1184/r1/19632681.v1, doi:10.1184/R1/19632681.V1.875

30 Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas. Normalization for fitch-style876

modal calculi. 6(ICFP), aug 2022. doi:10.1145/3547649.877

31 Niccolò Veltri and Andrea Vezzosi. Formalizing π-calculus in guarded cubical agda. In Jasmin878

Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International879

Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January880

20-21, 2020, pages 270–283. ACM, 2020. doi:10.1145/3372885.3373814.881

CVIT 2016

https://lirias.kuleuven.be/retrieve/635295
https://lmcs.episciences.org/7713
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3341711
http://strictlypositive.org/ren-sub.pdf
https://anuyts.github.io/files/cmat-tyde22-abstract.pdf
https://lirias.kuleuven.be/retrieve/720873
https://lirias.kuleuven.be/retrieve/720873
https://lirias.kuleuven.be/retrieve/720873
https://doi.org/10.1145/3209108.3209119
http://doi.acm.org/10.1145/3110276
http://doi.acm.org/10.1145/3110276
http://doi.acm.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1017/S0960129501003322
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.6
https://doi.org/10.4230/LIPIcs.TYPES.2022.6
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/R1/19632681.V1
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3372885.3373814

	1 Introduction
	1.1 Renaming and Substitution in the Simply Typed Lambda Calculus
	1.2 Multimode Type Theory
	1.3 Contributions and Overview

	2 Multimode Type Theory (MTT)
	2.1 Background on the MTT Type System
	2.2 Alternative Presentation: Extrinsically Typed, Intrinsically Scoped
	2.2.1 Substitution Calculus
	2.2.2 Lock Telescopes vs. Strict Functoriality of Locks

	2.3 σ-equivalence

	3 Substitution Algorithm
	3.1 Substitution-free Multimode Type Theory (SFMTT)
	3.1.1 SFMTT Expressions
	3.1.2 SFMTT Renamings and Substitutions

	3.2 Renaming and Substitution Algorithm for SFMTT
	3.2.1 Atomic rensubs acting on non-variable expressions
	3.2.2 Atomic renamings acting on variables
	3.2.3 Atomic substitutions acting on variables
	3.2.4 Regular renamings/substitutions

	3.3 Interpretation of WSMTT Expressions in SFMTT
	3.3.1 Translation from WSMTT to SFMTT
	3.3.2 Embedding of SFMTT into WSMTT

	4 Soundness
	5 Completeness
	6 Related and Future Work
	6.1 Normalization by Evaluation for MTT
	6.2 Second-order Algebraic Theories
	6.3 Other Approaches to Modal Contexts and/or Substitution

