
BiSikkel: A Multimode Logical Framework in Agda

JORIS CEULEMANS, KU Leuven, Belgium
ANDREAS NUYTS, KU Leuven, Belgium
DOMINIQUE DEVRIESE, KU Leuven, Belgium

Embedding Multimode Type Theory (MTT) as a library enables the usage of additional reasoning principles in
off-the-shelf proof assistants without risking soundness or compatibility. Moreover, by interpreting embedded
MTT terms in an internally constructedmodel ofMTT, we can extract programs and proofs to themetalanguage
and obtain interoperability between the embedded language and the metalanguage. The existing Sikkel library
for Agda achieves this for Multimode Simple Type Theory (MSTT) with an internal presheaf model of dependent
MTT. In this work, we add, on top of the simply-typed layer, a logical framework in which users can write
multimode proofs about multimode Sikkel programs, still in an off-the-shelf proof assistant. To this end, we
carve out of MTT a new multimode logical framework µLF over MSTT and implement it on top of Sikkel,
interpreting both in the existing internal model. In the process, we further extend and improve the original
codebase for each of the three layers (syntax, semantics and extraction) of Sikkel. We demonstrate the use
of µLF by proving some properties about functions manipulating guarded streams and by implementing an
example involving parametricity predicates.

CCS Concepts: • Theory of computation→ Type theory; Programming logic; Modal and temporal logics;
Categorical semantics.

Additional Key Words and Phrases: multimode type theory (MTT), presheaf semantics, Agda

ACM Reference Format:
Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. 2025. BiSikkel: A Multimode Logical Framework in
Agda. Proc. ACM Program. Lang. 9, POPL, Article 8 (January 2025), 31 pages. https://doi.org/10.1145/3704844

1 Introduction
In a modal type theory, all function types (and hence all variables in a context) are annotated
with a modality, which enables the programmer to express aspects of a function’s behavior that
would be cumbersome or impossible to state in a standard type theory. Examples of such aspects
include relational modalities [Nuyts and Devriese 2018] such as parametricity [Nuyts et al. 2017],
irrelevance [Abel and Scherer 2012; Barras and Bernardo 2008; Miquel 2001; Mishra-Linger and
Sheard 2008; Pfenning 2001; Reed 2003] and shape-irrelevance [Abel et al. 2017b]; guarded recur-
sion [Atkey and McBride 2013; Clouston et al. 2017; Guatto 2018; Nakano 2000]; possibility and
necessity [Pfenning and Davies 2001]; variance of functors [Abel 2006, 2008; Licata and Harper
2011; North 2018; Nuyts 2023a; Poiret et al. 2023]; freshness and transpension [Nuyts and Devriese
2024]; axiomatic cohesion [Licata and Shulman 2016]; and crispness/globality [Licata et al. 2018].

The integration of modalities in a proof assistant is an active area of research. We can generally
distinguish two approaches. On the one hand, one can try to extend an existing proof assistant and
provide support for some particular modal situations. Agda [Agda Development Team 2024], for
example, has experimental support for applications such as guarded recursion [Veltri and Vezzosi

Authors’ Contact Information: Joris Ceulemans, KU Leuven, Leuven, Belgium, joris.ceulemans@kuleuven.be; Andreas
Nuyts, KU Leuven, Leuven, Belgium, andreas.nuyts@kuleuven.be; Dominique Devriese, KU Leuven, Leuven, Belgium,
dominique.devriese@kuleuven.be.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART8
https://doi.org/10.1145/3704844

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0001-9582-0789
HTTPS://ORCID.ORG/0000-0002-1571-5063
HTTPS://ORCID.ORG/0000-0002-3862-6856
https://doi.org/10.1145/3704844
https://orcid.org/0000-0001-9582-0789
https://orcid.org/0000-0002-1571-5063
https://orcid.org/0000-0002-1571-5063
https://orcid.org/0000-0002-3862-6856
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3704844

8:2 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

Multimode Simple
Type Theory

Presheaf Models

Agda

Sound
Type-checker

Extraction

(a) Sikkel’s architecture, figure taken
from [Ceulemans et al. 2022].

Presheaf Models

Agda

MSTT
Logical

Framework

Interpretation Soundness
Proof

Reason about

Program
Extraction

Proof
Extraction

(b) BiSikkel’s architecture.

Fig. 1. Comparison between the architecture of Sikkel and BiSikkel.

2020] and crisp type theory [Licata et al. 2018]. A downside of this approach is the fact that every
new reasoning principle requires a new extension of the proof assistant’s source code. Additionally,
interactions between modal and other advanced language features often raise questions beyond
the scope of existing theoretical research. On the other hand, mitten [Stassen et al. 2023] is, and
Menkar [Nuyts and Devriese 2019] intended to be, a dedicated proof assistant specifically designed
for modal type theory. They are both based on Multimode1 Type Theory (MTT) [Gratzer et al. 2021],
a family of modal type systems parameterized by a so-called mode theory which can be instantiated
to obtain modal type systems for various applications. Although MTT puts a restriction on the
modalities it can handle2, the use of MTT has the advantage that important metatheoretic results
such as canonicity, normalization [Gratzer 2022] and a substitution algorithm [Ceulemans et al.
2024c] can be dealt with for an arbitrary mode theory and will then apply to all instantiations of
the framework, insofar as no further extensions are made.
In fact, for the implementation of modal type theories there is also a third approach recently

explored by Ceulemans et al. [2022]. They developed Sikkel, a library for modal type theory written
in Agda. Just like Menkar and mitten, Sikkel is based on MTT and is hence parameterized by
a mode theory specifying the modal situation. Given such a mode theory, Sikkel’s architecture
is outlined in Fig. 1a. A library user can write programs in a syntactic layer, providing a deep
embedding of Multimode Simple Type Theory (MSTT) in Agda. MSTT only differs from MTT
in that it does not support dependent types.3 Programs written at the syntactic layer cannot be
evaluated immediately, but they can be interpreted in Sikkel’s semantic layer, provided that they
are well-typed. This semantic layer consists of a formalization in Agda of a broad class of models
of type theory known as presheaf models [Hofmann 1997]. Finally, the denotation of certain Sikkel
programs can be extracted to obtain actual Agda programs. As such, Sikkel combines the modal
generality of dedicated modal languages (in fact, it can be regarded as one) with the benefit of
working in a non-specialized proof assistant (Agda in this case) that has a more mature ecosystem.
Another advantage of the library approach is that modal type theories can be used modularly:

1The names Multimode and Multimodal Type Theory are used interchangeably for the same system MTT which supports
both multiple modes and multiple modalities.
2Semantically, every modality should have a left adjoint. Shulman [2023] addresses this limitation to some extent.
3As a consequence, type-checking does not rely on an equational theory and in fact, Ceulemans et al. [2022] do not consider
an equational theory on the syntax at all.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:3

since Sikkel programs can be extracted to ordinary Agda programs, a user only needs to program
in the library when the modalities are actually needed. Other parts of the development can be
performed in ordinary Agda. This also makes it possible to instantiate Sikkel twice with different
mode theories (even incompatible ones) in the same development.

However, since Sikkel’s syntactic layer is simply typed, the library does not provide the possibility
to prove properties of programs that are written in it. Instead, such properties would have to
be proven in plain Agda, breaking the abstraction that Sikkel provides and forcing the user to
interact with the presheaf models of Sikkel. Of course, reasoning about functions implemented in
a multimode theory is best done in a multimode proof assistant. For reasons of performance and
usability (Sections 3.3 and 5.1), we chose a design where all dependent types are extrinsic, i.e. the
syntax for dependently typed terms is untyped and needs to be type-checked. Meanwhile, in order to
keep the type signature of this proof-checker tractable, we chose to make the programs mentioned
in these dependent types, intrinsically typed. This design choice precluded a fully dependently
typed system and led to a two-layered system called BiSikkel, consisting of an intrinsically typed
adaptation of the (formerly extrinsically typed) Sikkel library – which embeds MSTT – and an
extrinsically typed multimode logical framework on top. We name this framework µLF: a subset of
MTT that acts as a logical framework for specifying and proving properties about MSTT terms.
One can think of this as a syntactic layer for proofs: a user will prove properties of modal Sikkel
programs using corresponding modal reasoning principles.
The resulting architecture is given in Fig. 1b. Since Sikkel’s internally constructed presheaf

model is fully dependently typed, it can interpret both layers (although many additional laws
and coherence properties needed to be proven in order to handle modal type dependency). As
dependency again played an important role in the extraction mechanism, we ended up with an
architecture that reflects the two-layered syntax, with separate extraction functions for programs
and for proofs (Section 5.3). Furthermore, BiSikkel’s proof system is easy to extend with new proof
rules or proposition formers, as long as they can be interpreted in the model.

Contributions.

• µLF: a novel multimode logical framework for MSTT, carved out of MTT (Section 4).
• BiSikkel: an implementation of MSTT (intrinsically typed, Section 2.1) and µLF (extrinsically
typed with a type-checker, Section 5) as an Agda library [Ceulemans et al. 2024a,b], enabling
modal proofs about modal MSTT terms in an off-the-shelf proof assistant4. BiSikkel is
parametrized by a mode theory, just like MTT, MSTT, µLF and Sikkel.
In order to accommodate dependency of BiSikkel propositions on Sikkel terms:
– We make Sikkel intrinsically typed and extend it with an equational theory.
– We give the first implementation of Ceulemans et al.’s modal substitution algorithm [2024c],
now on intrinsically typed MSTT rather than on untyped syntax. Moreover, we prove its
substitution lemma vis-à-vis Sikkel’s presheaf model. (Section 5.4)

– We implement a fueled normalization algorithm (in itself not novel [Stassen et al. 2023]),
which outputs not just the normalized expression but also semantic evidence of its equality
to the input expression. (Section 5.4)

• We prove BiSikkel sound by modeling µLF in a refined version of Sikkel’s internal presheaf
model of MTT, extended with additional proofs of various coherence and other laws. The
proof checker outputs denotations of all well-typed proofs (Section 5.2).
• We implement a proof extraction mechanism for the dependent layer. In order to do so, we
extend Sikkel’s program extraction mechanism to non-empty contexts (Section 5.3).

4For the metatheory, we do assume function extensionality.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:4 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

• We demonstrate the use of BiSikkel by proving properties about functions manipulating
guarded streams (Section 4.3). Both the functions and proofs make use of BiSikkel’s support
for guarded recursive modes and modalities. The extraction mechanism for guarded streams
requires the use of an axiom conflating bisimilarity and equality of Agda streams. Furthermore,
we illustrate BiSikkel’s flexibility with respect to the mode theory by also implementing an
example involving unary parametricity (Section 4.4).

Overview of the Paper. We start with an overview of Ceulemans et al.’s Sikkel library [2022]
in Section 2, mainly to keep this paper as self-contained as possible but also to highlight some
differences with BiSikkel. Section 3 then introduces a running example with the concrete application
of guarded recursive type theory and motivates BiSikkel’s architecture. The core of the paper is
formed by Sections 4 and 5, in which we describe the proof system µLF and its Agda implementation.
We conclude with future and related work in Section 6.

2 A Brief Overview of Sikkel
In this section we describe all aspects of Sikkel that are needed to understand the rest of the paper.
For more details we refer to [Ceulemans et al. 2022]. Note however, that we have reworked some
parts of the library, as will be discussed more extensively here.

2.1 Syntactic Layer: Multimode Simple Type Theory (MSTT)
Sikkel’s syntactic layer consists of a deep embedding in Agda of Multimode Simple Type Theory
(MSTT), which is Multimodal Type Theory (MTT) [Gratzer et al. 2021] restricted to simple types.

Mode Theory. Just like MTT, MSTT is parameterized by a mode theory consisting of various
components. First of all, a mode theory should specify a set of modes.5 In MSTT, every type, context
and term lives at a certain mode. All standard type theory constructions (functions, products,
natural numbers, . . .) are available at every mode. However, some specific new type or term formers
might only exist in one particular mode. For example, in a system for guarded type theory, Löb
induction (Section 3.1) will be available only at a mode for time-dependent types and terms.

Next, a mode theory specifies for every two modes𝑚 and 𝑛 a set of modalities from𝑚 to 𝑛. These
will enable a programmer to transport types and terms from mode𝑚 to mode 𝑛. The modes and
modalities should form a category, i.e. there should be a designated unit modality for every mode,
modalities should compose and these operations should obey the category laws.
Finally, for every two modalities 𝜇 and 𝜌 from𝑚 to 𝑛, there is a set of two-cells from 𝜇 to 𝜌 ,

which are coercions between modalities. This makes a mode theory a strict 2-category (as we also
require a vertical and horizontal composition of two-cells and a unit two-cell for every modality).
In the Agda implementation of Sikkel, a mode theory is a record collecting the different com-

ponents described above. In other words, for a given mode theory there are Agda typesMode of
modes,Modality m n of modalities from𝑚 to 𝑛 for every𝑚,𝑛 : Mode, and TwoCell 𝜇 𝜌 of two-cells
from 𝜇 to 𝜌 for every two 𝜇, 𝜌 : Modality m n. The unit modality is written as 1 and composition of
modalities 𝜇 and 𝜌 is written as 𝜇 m○ 𝜌 .6 Furthermore, a Sikkel mode theory contains proofs of some
2-category laws, but it is of course good practice to satisfy all of them.

5Often, there is just a single mode. In that case, all modalities are endomodalities and form a monoid. Additionally, often,
two-cells between given modalities are unique when they exist, in which case the endomodalities form an ordered monoid.
6The actual implementation of a mode theory in BiSikkel is slightly more complicated than presented here. It makes sure
that e.g. the unit modality 1 is a left unit for the composition definitionally rather than propositionally. Moreover, the
representation of mode theories in BiSikkel differs at some points from the one by Ceulemans et al. [2022]. However, these
details only matter for the implementers of new mode theories and are not important to understand the rest of the paper.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:5

data Ty (m : Mode) : Set where
Nat’ : Ty m
Bool’ : Ty m
⟨_|_⟩⇛_ : Modality n m→ Ty n→ Ty m

→ Ty m
⊠ : Ty m→ Ty m→ Ty m
⟨_|_⟩ : Modality n m→ Ty n→ Ty m

data Ctx (m : Mode) : Set where
⋄ : Ctx m
„|_∈_ : (Γ : Ctx m) (𝜇 : Modality n m)

(x : String) (T : Ty n)→ Ctx m
,lock⟨⟩ : (Γ : Ctx n) (𝜇 : Modality m n)

→ Ctx m

Fig. 2. Definition of Sikkel types and contexts.7

Tm-Var

𝛼 ∈ 𝜇 ⇒ locks(Δ) idx(Δ) = i
Γ „ 𝜇 | x ∈ T , Δ ⊢ vari x 𝛼 : T @𝑚

locks(⋄) = 1

locks(Γ „ 𝜇 | x ∈ T) = locks(Γ)
locks(Γ ,lock⟨ 𝜇 ⟩) = locks(Γ) m○ 𝜇

Tm-Lam

𝜇 : Modality m n
Γ „ 𝜇 | x ∈ T ⊢ s : S @𝑛

Γ ⊢ lam[𝜇 | x ∈ T] s : ⟨ 𝜇 | T ⟩⇛ S @𝑛

Tm-App

𝜇 : Modality m n
Γ ⊢ f : ⟨ 𝜇 | T ⟩⇛ S @𝑛

Γ ,lock⟨ 𝜇 ⟩ ⊢ t : T @𝑚

Γ ⊢ f · t : S @𝑛

Tm-Mod-Intro

𝜇 : Modality m n
Γ ,lock⟨ 𝜇 ⟩ ⊢ t : T @𝑚

Γ ⊢ mod⟨ 𝜇 ⟩ t : ⟨ 𝜇 | T ⟩ @𝑛

Tm-Mod-Elim

𝜇 : Modality m n
𝜌 : Modality n o

Γ ,lock⟨ 𝜌 ⟩ ⊢ t : ⟨ 𝜇 | T ⟩ @𝑛

Γ „ 𝜌 m○ 𝜇 | x ∈ T ⊢ s : S @𝑜

Γ ⊢ let⟨ 𝜌 ⟩ mod⟨ 𝜇 ⟩ x ← t in’ s : S @𝑜

Fig. 3. Selected MSTT typing rules and definition of the function ‘locks’.

Types and Contexts. When a mode theory is fixed, Sikkel provides an Agda type Ty m of MSTT
types that live at mode𝑚. It is defined in Fig. 2. For every mode this contains at least product types
A ⊠ B, and types Bool’ and Nat’ of Booleans and natural numbers. Furthermore, every modality
𝜇 from𝑚 to 𝑛 induces a type constructor transforming a type T : Ty m to a boxed type ⟨ 𝜇 | T ⟩ :
Ty n. Function types are annotated with a modality and have the form ⟨ 𝜇 | A ⟩⇛ B, where 𝜇 is
a modality from𝑚 to 𝑛, 𝐴 is a type at mode𝑚 and 𝐵 a type at mode 𝑛. The function type itself
then lives at mode 𝑛. In case the modality 𝜇 is the unit modality, we will write this function type
as A ⇛ B. Finally, Sikkel can be easily extended with custom types that are specific for certain
applications. We will see an example of this in Section 3.1.

All MSTT contexts also live at a certain mode, and Sikkel provides the Agda type Ctx m whose
implementation is presented in Fig. 2. Basically, a context is a possibly empty list of variables and
locks. Every variable has a name of type String and is annotated with a modality (note that the
domain of this modality has to match the mode of the variable’s type). Locks will play an important
role in the typing rules for modal (boxed) types, as they serve in some sense as a left adjoint to the
modal type former. We point out that locks act contravariantly on contexts, i.e. a modality from𝑚

to 𝑛 induces a lock operation from Ctx n to Ctx m.

Terms. Figure 3 lists the most interesting typing rules of MSTT. Note that all rules make sure that
the context, term and type within one judgment live at the same mode. This mode is indicated at the
end of the judgment, e.g. a judgment at mode𝑚 ends in “@𝑚”. Variables carry a form of De Bruijn
7(1) Here Set is the Agda universe of types. (2) Identifiers with underscores aremixfix operators and the underscores indicate
where the explicit arguments are expected.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:6 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

index i (which we will omit), so the string x is only there for human readability and shadowing
is immaterial. As in MTT, variables (Tm-Var) can only be used when there is a two-cell from the
modality the variable is annotated with to the composition of all the locks in the context to the
right of that variable, as computed by the function ‘locks’ (Fig. 3). Most of the times, this will just
be the unit two-cell and then we will write svar x instead of var x id-cell. Modal functions can be
introduced via lambda abstraction (Tm-Lam); the bound variable will be annotated with the provided
modality. When applying a 𝜇-modal function, the argument will be checked in a context locked with
𝜇 (Tm-App). In order to construct a term of the boxed type ⟨ 𝜇 | T ⟩, it is sufficient to construct a term
of type 𝑇 after locking the context with 𝜇 (Tm-Mod-Intro). The modal elimination rule Tm-Mod-Elim
allows in some sense to pattern match on a term of a boxed type: when constructing a term of type
𝑆 , any term 𝑡 of type ⟨ 𝜇 | T ⟩ can be used as if it were of the form mod⟨ 𝜇 ⟩ x for some variable 𝑥 .

Intrinsically Typed Representation of Terms. When formalizing MSTT in Agda, there are several
options for encoding its terms and typing rules. This is one of the aspects where BiSikkel differs
significantly from Sikkel. Sikkel uses a so-called extrinsically typed encoding of terms, which means
that it has a data type Tm that is indexed by a mode, but not by an MSTT context or type. In other
words, values of type Tm m are only guaranteed to respect the mode system, but they are not
necessarily well-typed. Sikkel therefore needs a type checker, as indicated in Fig. 1a.

In an intrinsically typed encoding, as adopted by BiSikkel, the typing rules from Fig. 3 are directly
integrated into the Agda type of terms, which looks as follows:8

data Tm : {m : Mode}→ Ctx m→ Ty m→ Set where
mod⟨_⟩_ : (𝜇 : Modality m n)→ Tm (Γ ,lock⟨ 𝜇 ⟩) T → Tm Γ ⟨ 𝜇 | T ⟩
lam[_|_∈_]_ : (𝜇 : Modality m n) (x : String) (T : Ty m)→
Tm (Γ „ 𝜇 | x ∈ T) S→ Tm Γ (⟨ 𝜇 | T ⟩⇛ S)

. . .

Apart from being unable to represent ill-typed terms, this encoding also has the benefit of integrating
well with Agda’s interactive development features, as the expected context and type of a program
will be visible in an Agda goal. A further advantage of intrinsic typing will be covered in Section 4.1.

A downside of the intrinsically typed approach is that we cannot silently coerce terms along
type equalities. This is not too consequential in MSTT, where the only source of non-trivial type
equalities are equalities between modalities. In an extrinsically typed system, we could define
modality equality in a specific mode theory to be any (semi-)decidable relation we like. In an
intrinsically typed system, we either have to introduce a term constructor for conversion, or
explicitly invoke transport along Agda’s propositional equality, which could be stricter than the
relation we had envisioned. In particular, the extrinsic approach makes it easier to write modality-
polymorphic programs, as they only need to be well-typed after instantiation.
Unlike Ceulemans et al. [2022], we opted for the intrinsically typed approach to keep the type

signature of the proof-checker tractable (Sections 3.3 and 5.2).

2.2 Semantic Layer: Presheaf Models
One of the motivations for developing modal type theory as a library is to be able to integrate
programs that use modal primitives inside projects written in “mainstream” proof assistants.
However, we cannot directly interpret the syntax from the previous section as normal Agda
programs because they contain constructs like modalities that are not present in standard Agda.
Sikkel therefore has a semantic layer, consisting of a formalization of presheaf models [Hofmann
1997] as indicated in Fig. 1a. We will not discuss the details of this formalization as they are not
8Curly braces indicate implicit arguments, which can be omitted or passed again in curly braces.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:7

Table 1. Interpretation of the MSTT syntax in the semantic layer.

Syntax layer Semantic layer
mode base category
context presheaf
type dependent presheaf
term dependent presheaf morphism

modality dependent adjunction
two-cell natural transformation

important for the rest of the paper and, apart from some technicalities, nothing much has changed
with respect to [Ceulemans et al. 2022]. An overview of the interpretation can be found in Table 1.

MSTT contexts and types are interpreted as presheaves.9 Very broadly speaking, this means that
they are interpreted as diagrams consisting of Agda types and Agda functions. The shape of such a
diagram is determined by a parameter of the presheaf model called the base category. In (Bi)Sikkel,
a mode theory should provide a mapping from modes to base categories. In other words, types
from different modes will be interpreted as diagrams of different shapes. The interpretation of a
term then provides an Agda value of every type in this diagram, in such a way that these values
are stable under the Agda functions of the diagram.
Implementers of a new mode theory also have to provide interpretations of modalities and

two-cells. Semantically, a modality corresponds to a dependent adjunction: a left adjoint functor
acting on semantic contexts and substitutions (i.e. presheaves and presheaf morphisms) modeling
the lock operation, supplemented with a dependent right adjoint (DRA) [Birkedal et al. 2020] acting
on types and modeling the modal box type formers.10 Two-cells are then interpreted as natural
transformations between the left adjoint functors, from which transformations between the right
adjoints can be derived.

2.3 Extraction to the Metalevel
Every mode theory in BiSikkel has a distinguished trivial mode called★, which is interpreted as the
trivial base category with only one object and its identity morphism. The resulting presheaf model
is equivalent (but not equal) to the set model, so MSTT types at mode ★ are interpreted as very
simple diagrams, namely ordinary Agda types, and terms of these types are interpreted ordinary
Agda values. This makes it very easy to extract the types and terms in mode ★ to normal Agda
programs. Terms in other modes can usually be extracted by first using a modality to transport
them to the trivial mode. This approach nicely decouples program extraction from conversion
between different models.

However, the constructions in a presheaf model do not always lead to the desired Agda types for
extraction. For example, the semantic type of standard streams in guarded type theory (Section 3.1)
will be a highly involved type that is non-trivially isomorphic to the Agda type of streams. Sikkel
therefore has a type class on types at mode ★, which provides the extraction mechanism with the
intended target and proves it isomorphic to the type extracted from the presheaf model.

9Dependent ones in the case of types. The reason for this is that Sikkel’s original model was already dependently typed; a
fact which we will use when proving the soundness of the proof system.
10We remark that, since presheaf categories are democratic, a dependent adjunction is essentially the same as an adjunction
whose right adjoint is a weak CwF morphism [Birkedal et al. 2020, lemma 17 and corr. 23].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:8 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

The extraction mechanism thus has two tasks: to convert between the trivial presheaf model and
the set (i.e. type) model, and to convert between the extracted Agda type and the intended type.
We build further upon this extraction mechanism as described in Section 5.3.

Note that, contrary to the situation in BiSikkel, the existence of a trivial mode is not required for
a mode theory in MTT. However, this extra requirement does not pose a problem in practice for two
reasons. First, since mode ★ is interpreted as the trivial (i.e. final) base category, the unique functor
from any base category to this trivial category gives rise to two interesting DRAs between any
presheaf model and the trivial presheaf model [nLab authors 2024].11 Moreover, the trivial mode is
actually only required in BiSikkel for extraction. If that feature is not necessary, one can always
soundly add a trivial mode to an existing mode theory without adding interesting modalities to or
from this mode, and then not use this mode in programs or proofs.

3 Why a Dedicated Logical Framework?
Before introducing the proof system µLF, we will take a look at why such a framework is necessary.
In Section 3.1 we introduce a concrete instantiation of MSTT for guarded recursive type theory,
also covered by Ceulemans et al. [2022]. When attempting to prove a property of some programs
written in this MSTT instantiation, we will see in Section 3.2 why we need at least a framework for
modal reasoning and what are the required features for a proof system like µLF. In Section 3.3, we
discuss why we did not directly go for full-blown dependent types.

3.1 Motivating Example: Guarded Recursion
Proof assistants like Agda and Coq have support for manipulating potentially infinite objects, such as
infinite streams. This works via corecursion: when constructing an infinite stream 𝑠 , a programmer
may corecursively refer to 𝑠 itself. The stream of zeros is for instance uniquely characterized by
zeros = 0 :: zeros. However, just like recursive definitions must pass a termination check in order
for the proof assistant to be sound, corecursive definitions have to be productive, meaning that one
should be able to compute every element of an infinite stream in a finite number of steps.

In order to ensure productivity, Agda and Coq use a syntactic check: basically, a corecursive call
needs to be exactly located under a non-zero number of applications of the constructor ::. However,
this restriction is non-compositional and rejects many programs that are actually productive. For
instance, the definition of the stream of natural numbers as nats = 0 :: map suc nats is productive
but not accepted.

To mitigate these problems, Nakano [2000] proposed to express the guarded behavior of functions
in their type by means of a modal operator called the later modality. His theory also contains
a fixpoint operator that explicitly takes this modality into account. This was later turned into a
practical system for productive programming by Atkey and McBride [2013]. Gratzer et al. [2021]
then fitted guarded recursive type theory into the MTT framework, elegantly using the ability
to program in different modes. We can use their mode theory to obtain an instance of guarded
recursion in Sikkel, as was also demonstrated by Ceulemans et al. [2022].

The mode theory in Fig. 4a contains two modes: a mode 𝜔 whose values can intuitively be seen
as unfolding gradually over time, and a mode ★whose values are intuitively ordinary Agda values
and that do not have a time dependence. Consequently, the mode ★ will be interpreted as the
trivial base category at the semantic level, whereas mode 𝜔 gets interpreted in the topos of trees
(i.e. the presheaf category over the poset of natural numbers, [Birkedal et al. 2012]). The intuitive
understanding of the base modalities is as follows: later delays the unfolding process with one time

11Note however that the context functor for one of these DRAs can only be implemented in general in a metatheory with
quotient types, though it is implementable in Agda for specific base categories (including all examples in this paper).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:9

𝜔 ★

forever

later

constantly

forever m○ later = forever
forever m○ constantly = 1

1 ≤ later
constantly m○ forever ≤ 1

(a) Mode theory.

GStream : Ty ★→ Ty 𝜔

Tm-GCons

Γ ,lock⟨ constantly ⟩ ⊢ a : A@★

Γ ,lock⟨ later ⟩ ⊢ s : GStream A@𝜔

Γ ⊢ g-cons a s : GStream A@𝜔

Tm-GHead

Γ ⊢ s : GStream A @𝜔

Γ ⊢ g-head s : ⟨ constantly | A ⟩ @𝜔

Tm-GTail

Γ ⊢ s : GStream A@𝜔

Γ ⊢ g-tail s : ⟨ later | GStream A ⟩ @𝜔

Tm-Löb

Γ „ later | x ∈ T ⊢ t : T @𝜔

Γ ⊢ löb[later| x ∈ T] t : T @𝜔

(b) Additional type and term constructors.

Fig. 4. Mode theory and new type and term formers for guarded recursive type theory.

step, constantly embeds an ordinary value into the time-dependent world as a value that actually
does not unfold, and forever creates an ordinary value by applying the unfolding process infinitely
many times, making everything available at once. The mode theory for guarded recursion has at
most one two-cell between any two modalities, and hence can be seen as a poset-enriched category
rather than a 2-category.
Figure 4b illustrates that we can extend (Bi)Sikkel with type and term constructors that do not

arise from modalities but which can mention modalities in their types. Guarded streams intuitively
unfold over time by revealing one element at every time step. As a consequence, their tail is only
available as a GStream one time step from now and hence has type ⟨ later | GStream A ⟩. Löb
induction is a fixpoint operator; the variable x it binds corresponds to a corecursive call and the
fact that it is annotated with later makes sure that definitions are productive.

g-map : Tm Γ (⟨ constantly | A⇛ B ⟩⇛
GStream A⇛ GStream B)

g-map = lam[constantly | "f" ∈ A⇛ B]
löb[later | "map" ∈ GStream A⇛ GStream B]
lam["s" ∈ GStream A]
let’ mod⟨ constantly ⟩ "s-head"←

g-head (svar "s") in’
let’ mod⟨ later ⟩ "s-tail"←

g-tail (svar "s") in’
g-cons (svar "f" · svar "s-head")

(svar "map" · svar "s-tail")

(a) Mapping a function over a guarded stream.

g-iterate g-iterate’ : Tm Γ (⟨ later m○ constantly | A⇛ A ⟩⇛
⟨ constantly | A ⟩⇛ GStream A)

g-iterate = lam[later m○ constantly | "f" ∈ A⇛ A]
lam[constantly | "a" ∈ A] löb[later | "s" ∈ GStream A]
g-cons (svar "a")

(g-map · svar "f" · svar "s")

g-iterate’ = lam[later m○ constantly | "f" ∈ A⇛ A]
löb[later | "iter" ∈ ⟨ constantly | A ⟩⇛ GStream A]
lam[constantly | "a" ∈ A] g-cons (svar "a")
(svar "iter" · (svar "f" · var "a" (1≤ltr t○-hor id-cell)))

(b) Two versions of iterate for guarded streams.

Fig. 5. Guarded stream examples in BiSikkel.

We can now write some definitions of functions that manipulate guarded streams. Figure 5a
shows an implementation of the classic map function. Note that the elements of a guarded stream
live at mode ★, so we use the constantly modality to embed the mapped function into mode 𝜔 .
Before constructing the resulting stream via g-cons, we use the modal eliminator (rule Tm-Mod-Elim
from Fig. 3) twice to bind the head and tail of the argument stream to variables "s-head" and
"s-tail", annotated respectively with the constantly and later modality.12 These variables can
then be accessed via the unit two-cell because g-cons locks the context of its arguments with the
12The notation for the modal eliminator used here is syntactic sugar for the one in Fig. 3 where 𝜌 is the unit modality 1.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:10 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

right modalities. In Fig. 5b we find two alternative ways to produce a stream whose 𝑛-th element is
computed by applying a given function 𝑛 times to a given starting value (starting to count from
𝑛 = 0). Note that in both versions, the generating function is only required when constructing the
tail of the resulting stream. Hence it is not needed at the current time step, which explains the later
modality in the type signature. The version g-iterate is defined in terms of g-map and intuitively
corresponds to the corecursive definition

iterate f a = a :: map f (iterate f a), (1)

which would not be accepted by a syntactic check employed by Agda or Coq. The alternative
g-iterate’ would be allowed, as it corresponds to

iterate’ f a = a :: iterate’ f (f a). (2)

In the BiSikkel implementation, the variable "a" is annotated with modality constantly. When it is
used to construct the tail of the resulting stream, the locks to the right of this variables compose to
later m○ constantly so we access it via the horizontal composition of the two-cell witnessing that
1 ≤ later and the trivial two-cell at constantly.
Guarded streams are somewhat inflexible with respect to their “time dependence”. It is for

instance impossible to write a function that only retains the values of a guarded stream at an even
position. This issue can be very elegantly addressed by considering a type of standard streams,
defined as Stream’ A = ⟨ forever | GStream A ⟩. Since these standard streams live at the trivial
mode ★, they can also be extracted to ordinary Agda streams. For more details we refer to Gratzer
et al. [2021] and Ceulemans et al. [2022].

3.2 Proving a Property of g-iterate
In the previous section, we have seen two different implementations of the iterate function for
guarded streams. As scientists caring about formal verification, we now want to rigorously prove
that these two functions indeed produce the same result when applied to the same arguments.
Although it is not a formal proof, we can get an idea of what such a proof entails by taking a look
at the intuitive characterizations of iterate and iterate’ from Equations (1) and (2). We start with a
lemma about iterate, namely that map f (iterate f a) is equal to iterate f (f a). This can informally
be argued as follows.

map f (iterate f a) = map f (a :: map f (iterate f a)) (3a)
= f a :: (map f (map f (iterate f a))) (3b)
= f a :: (map f (iterate f (f a))) (3c)
= iterate f (f a) (3d)

Steps (3a) and (3d) are just an unfolding of the intuitive “definition” of iterate from (1) and step (3b)
is the intuitive definition of map. The crucial step is (3c), where we coinductively apply the lemma
we are proving. Making use of this lemma, a similar style of reasoning allows us to deduce that

iterate f a = a :: map f (iterate f a) = a :: iterate f (f a) =(4) a :: iterate’ f (f a) = iterate’ f a.
(4)

An obvious question is now whether and when it is actually permitted to coinductively apply a
proposition in the proof of that same proposition. Agda does not allow coinduction in proofs of
propositional equality, as equality is not a coinductive type, but one could define a coinductive
bisimilarity relation on streams as a dependent stream of equality proofs, which can then be

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:11

inhabited coinductively.13 However, even if the definition of iterate from (1) were accepted by
Agda’s productivity checker, we would still not be able to prove that iterate and iterate’ produce
bisimilar streams. One problem is in the proof of step (3c) of the lemma, where we do not directly
use the coinductive application of the lemma to prove the bisimilarity of the tails, but still have to
apply a proof that map f preserves bisimilarity. As a result, this proof would not be accepted by
Agda’s syntactic productivity check. A similar problem arises in (4), where the result of coinduction
gets combined with the lemma to prove the bisimilarity of the streams’ tails.
Since this problem seems to be similar to the one solved by guarded recursion in Section 3.1,

we might expect that the later modality could also play a role in the solution here. Indeed, we can
prove the result above for guarded streams if we can apply the following two reasoning principles.
• In order to prove that g-cons a s equals g-cons b t, we need to show now that 𝑎 equals 𝑏, but
we only need to show that 𝑠 is equal to 𝑡 one time step from now. In other words, the second
requirement would be a proof of ⟨ later | 𝑠 = 𝑡 ⟩.
• We have a version of Löb induction for proofs: in order to prove a proposition 𝜑 , we may
assume that ⟨ later | 𝜑 ⟩ holds.

Note that both principles involve the application of a modality to a proposition. This illustrates
the fact that, in order to prove useful properties of Sikkel programs, we need modal reasoning
principles, and hence a modal logical framework.

3.3 A Logical Framework vs. Dependent Types
One could argue that logical frameworks have been obsoleted by the contemporary understanding
of dependent types and indeed MSTT extended with our modal logical framework µLF is in its
entirety a subset of MTT. In fact, the original goal of this work was to make Sikkel fully dependently
typed, which would involve formalizing the syntax of MTT in Agda. For such a formalization of
dependent type theory in dependent type theory, one has the same choice as in Section 2.1 between
intrinsic and extrinsic typing.
In a non-modal setting, the intrinsically typed approach has for example been explored by

Chapman [2009] and Altenkirch and Kaposi [2016], and is generally regarded as viable when it
comes to formalization of syntax. The latter formalize the syntax as a quotient-inductive-inductive
type (QIIT) [Altenkirch et al. 2018], which is essentially the same thing as a generalized algebraic
theory (GAT) [Cartmell 1986]. This implies that definitional equality is not a separate judgment
but rather coincides with the metalanguage’s propositional equality, so that the conversion rule is
not actually an inference rule but can be proven by transport. This is fine in theory, but makes the
approach infeasible for a syntax in which users are actually expected to write programs, as they
would be forced to explicitate every invocation of the conversion rule (which allows one to silently
cast a term of type 𝐴 to type 𝐵 when 𝐴 = 𝐵 definitionally or even syntactically up to propositional
Agda equality), with an equality proof. Worse, these invocations will then proceed to haunt the
user through type dependency. Bense et al. [2024] propose to at least compute away substitutions
in intrinsic types. Furthermore, we observed that in a multimodal setting, the usage of intrinsic
dependent types causes performance problems (Section 5.1).

Abel et al. [2017a] give an extrinsically typed formalization of dependent type theory. Concretely,
they provide a conversion algorithm, internally proven sound and complete, which would form the
core part of a type-checker for the untyped syntax. However, rather than outputting a derivation
(which can be regarded as intrinsically typed syntax indexed the extrinsically typed one), we want

13Note that, despite its mention here, we will not explicitly use bisimilarity of streams in the rest of this paper, except when
proving that stream extraction is an isomorphism. In particular, the interpretation of a µLF proposition asserting equality of
guarded streams will not state the bisimilarity of the streams’ interpretations. See Section 5.3 for further details.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:12 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

our type-checker to output a denotation in the presheaf model (Section 5.2). Hence Abel et al.’s
approach was not readily usable for us. Perhaps, however, we could have taken a two-step approach
where the type-checker produces a derivation which can then be recursively interpreted in the
model (Section 6.1).

In particular, in order to keep the type signature of the proof-checker (the statement of what it
does) tractable, we want a proof’s context and proposition (‘type’) to be intrinsically typed, so that
their denotation is already clear.
For all of the above reasons, for BiSikkel we opted for a two-layer architecture with a program

layer of intrinsically typed MSTT and a proof layer of extrinsically typed µLF. This solves all of
our problems: (1) The need for conversion in MSTT is limited as equality of modalities is the only
source of non-trivial type equalities. (2) The performance problems of intrinsic modal types also
did not occur for simple types. (3) The proof-checker knows the denotation of a proof’s context
and proposition beforehand.

4 µLF, A Proof System for MSTT
In this section we introduce the proof system µLF. The core of this system is the set of axioms and
inference rules discussed in Section 4.2. The proof judgments in these rules mention propositions
and proof contexts, which are introduced in Section 4.1. We illustrate the use of our framework
in Section 4.3 with a formal proof in µLF of the equivalence of g-iterate and g-iterate’ from
Fig. 5b. Furthermore, we show that µLF can be applied to different modal situations by additionally
constructing an example involving unary parametricity in Section 4.4.

4.1 Propositions & Proof Contexts
Although we only present µLF in this section and defer its Agda implementation to Section 5, the
propositions and proof contexts of this system are introduced via their Agda definitions as this is
the most concise way of presenting them.

data bProp : {m : Mode}→ Ctx m→ Set where
⊤b ⊥b : bProp Γ

∧ : bProp Γ→ bProp Γ→ bProp Γ

≡b : Tm Γ T → Tm Γ T → bProp Γ

⟨_|_⟩⊃_ : (𝜇 : Modality m n)
→ bProp (Γ ,lock⟨ 𝜇 ⟩)→ bProp Γ→ bProp Γ

∀[_|_∈_]_ : (𝜇 : Modality m n) (x : String)
(T : Ty m)→ bProp (Γ „ 𝜇 | x ∈ T)→ bProp Γ

⟨_|_⟩ : (𝜇 : Modality m n)→ bProp (Γ ,lock⟨ 𝜇 ⟩)
→ bProp Γ

(a) µLF propositions.

locks(⋄) = 1
locks(Ξ „v 𝜇 | x ∈ T) = locks(Ξ)
locks(Ξ „b 𝜇 | x ∈ 𝜑) = locks(Ξ)
locks(Ξ ,lock⟨ 𝜇 ⟩) = locks(Ξ) m○ 𝜇

(b) Definition of the ‘locks’ function for proof contexts.

data ProofCtx (m : Mode) : Set
to-ctx : {m : Mode}→ ProofCtx m→ Ctx m

data ProofCtx m where
⋄ : ProofCtx m
„v|_∈_ : ProofCtx m→ (𝜇 : Modality n m)
(x : String) (T : Ty n)→ ProofCtx m

„b|_∈_ : (Ξ : ProofCtx m) (𝜇 : Modality n m)
→ String→ bProp (to-ctx Ξ ,lock⟨ 𝜇 ⟩)
→ ProofCtx m

,lock⟨⟩ : ProofCtx n→Modality m n
→ ProofCtx m

to-ctx ⋄ = ⋄
to-ctx (Ξ „v 𝜇 | x ∈ T) = (to-ctx Ξ) „ 𝜇 | x ∈ T
to-ctx (Ξ „b _ | _ ∈ _) = to-ctx Ξ
to-ctx (Ξ ,lock⟨ 𝜇 ⟩) = (to-ctx Ξ) ,lock⟨ 𝜇 ⟩

(c) µLF proof contexts.

Fig. 6. Definition of µLF propositions and proof contexts.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:13

Propositions. µLF has an Agda type of propositions – to be regarded as a separate judgment form –
called bProp (for BiSikkel propositions). Its definition can be found in Fig. 6a. Since a proposition
may mention terms, which in their turn can contain variables, the type bProp is indexed by a
context specifying the variables in scope. Note that µLF propositions also always live at a certain
mode, which is left implicit in the Agda type bProp Γ as it is exactly the mode of Γ.

There are standard proposition constructors for truth (⊤b), falsehood (⊥b) and conjunction (∧).14
Given two terms 𝑡 and 𝑠 of the same type 𝑇 in a context Γ, we also have a proposition t ≡b s
expressing that 𝑡 and 𝑠 are equal. Just like MSTT function types, bProp implications ⟨ 𝜇 | 𝜑 ⟩⊃ 𝜓 are
annotated with a modality 𝜇. When this modality 𝜇 is the unit modality 1, we write the implication
as 𝜑 ⊃ 𝜓 . Unsurprisingly, a universally quantified proposition ∀[𝜇 | x ∈ T] 𝜑 expresses that 𝜑
holds for all values 𝑥 of type 𝑇 . Here the proposition 𝜑 can mention 𝑥 as it is bound in its context,
annotated with the modality 𝜇. Finally, there is a proposition equivalent of boxed types, resulting
in propositions of the form ⟨ 𝜇 | 𝜑 ⟩.

Proof Contexts. When proving a proposition, we do not only need to keep track of the MSTT
variables that are in scope, but also of any assumptions that have already been made during the
proof. For example, a proof by induction on a natural number gives us an induction hypothesis
that we may use. Therefore, the proof judgments discussed in the next section mention what we
call proof contexts. They are basically lists of MSTT variables, bProp assumptions (that are also
named by a string), and locks. The precise definition is shown in Fig. 6c.
As we can see, a proof context lives at a certain mode and hence the Agda type ProofCtx m is

indexed by a mode m. The constructors for the empty proof context (⋄), extension with an MSTT
variable (_„v_|_∈_), and locks (_,lock⟨_⟩) are very similar to the ones for MSTT contexts of type
Ctx m from Fig. 2. Adding an assumption to a proof context is somewhat more involved, since
we should mention the program variables that that proposition may contain. These should be the
MSTT variables that had already been bound in the proof context. Therefore, mutually with the
definition of ProofCtx we define a function to-ctx that turns a proof context into an MSTT context
by dropping all bProp assumptions.15 This function can then be used in the type of the constructor
„b|_∈_, making the definition of ProofCtx and to-ctx an example of induction-recursion. As we
can see, assumptions are also named by a string in the proof context. This name will not really
play a role in µLF, but it will be useful in the BiSikkel implementation.

4.2 Axioms & Inference Rules
Before we can present the µLF proof system, we first need to discuss some aspects of substitution
and β-equivalence of MSTT terms.

Substitution. In some propositions and terms of the µLF inference rules, we need to substitute
a variable by a term. The presence of modality annotations and locks in contexts makes this a
considerably less easy task than in non-modal type theory [Ceulemans et al. 2024c]. Details about
how representing substitutions as a data type and about the implementation of the substitution
algorithm for terms and propositions are not necessary for the understanding of µLF, so we defer
them to Section 5.4. For now, it suffices to know that there is an Agda type Sub Γ Δ of substitutions
from Γ to Δ. Such a substitution 𝜎 can be applied to a term 𝑡 or a proposition 𝜑 in context Δ to
obtain a term t [𝜎]tm (of the same type) or a proposition 𝜑 [𝜎]bprop in Γ. There are various

14We had no need for disjunction, but it could be easily added.
15Note that the implementation of to-ctx contains two different uses of the symbol ⋄: the first one refers to a proof context,
the second one to an MSTT context. Agda is smart enough to handle this kind of constructor overloading. Something similar
happens in the case of locks.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:14 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

ways to construct substitutions, but we will most often use the following Agda functions (which
are actually implemented in terms of more basic constructors).

/ : Tm (Γ ,lock⟨ 𝜇 ⟩) T → (x : String)→ Sub Γ (Γ „ 𝜇 | x ∈ T)
// : Tm (Γ „ 𝜌 | y ∈ S ,lock⟨ 𝜇 ⟩) T → (x : String)→ Sub (Γ „ 𝜌 | y ∈ S) (Γ „ 𝜇 | x ∈ T) (5)

Note in the first argument that when we use these functions to substitute a term 𝑡 for a variable 𝑥
that is annotated with a modality 𝜇, the term 𝑡 has to live in the context locked with 𝜇.

β-equivalence for Terms. One of the key components of a type checker for a dependently typed
language is its conversion checker. During type checking, it will automatically handle definitional
equalities of the underlying type theory, which typically include β- and η-equivalence of terms
and expansion of function definitions. Although BiSikkel is not dependently typed, requiring a
user to mention all proof steps that involve β-equivalence quickly becomes impractical, even when
writing proofs of small results. For µLF, we therefore decided to have automated β-equivalence
of terms in the form of a β-normalization function that can be used in proofs. See Section 5.4 for
more details. There is no automated η-expansion (as this is used significantly less frequently than
β-reduction), but there are proof rules that can be manually used.

TmEq-Fun

𝜇 : Modality m n
Γ „ 𝜇 | x ∈ T ⊢ s : S @𝑛

Γ ,lock⟨ 𝜇 ⟩ ⊢ t : T @𝑚

Γ ⊢ (lam[𝜇 | x ∈ T] s) · t =β s [t / x]tm @𝑛

TmEq-Mod

𝜇 : Modality m n
𝜌 : Modality n o
Γ ,lock⟨ 𝜌 ⟩ ,lock⟨ 𝜇 ⟩ ⊢ t : T @𝑚

Γ „ 𝜌 m○ 𝜇 | x ∈ T ⊢ s : S @𝑜

Γ ⊢ let⟨ 𝜌 ⟩ mod⟨ 𝜇 ⟩ x ← mod⟨ 𝜇 ⟩ t in’ s
=β s [t / x]tm @𝑜

Fig. 7. Selected rules for β-equivalence of MSTT terms.

For now, instead of considering a normalization function, we take an axiomatic approach for
β-equivalence with some of the rules shown in Fig. 7. We omitted all rules making sure that =β is
an equivalence relation and is respected by all term formers. The standard β-reduction for functions
is expressed in TmEq-Fun. Note that the fact that 𝑡 lives in a context locked by 𝜇 is exactly what is
needed for the substitution on the right-hand side (see the type signature of _/_ in (5)) as well as
for the function application on the left-hand side (see Tm-App in Fig. 3) of the conclusion. The rule
TmEq-Mod covers what happens when the modal eliminator meets a modal constructor. The term on
the right-hand side in the conclusion does actually not type-check: for that to be the case, 𝑡 should
actually live in the context Γ ,lock⟨ 𝜌 m○ 𝜇 ⟩. In Gratzer et al.’s original formulation of MTT [2021],
this is solved by having a notion of definitional context equalities, which makes Γ ,lock⟨ 𝜌 m○ 𝜇 ⟩
equal to Γ ,lock⟨ 𝜌 ⟩ ,lock⟨ 𝜇 ⟩. It has since been argued [Ceulemans et al. 2024c; Nuyts 2023b] that
having such equalities is not necessarily a good idea, so MSTT does not have context equalities,
but does provide operations to transfer terms between these two contexts. For simplicity of the
exposition, we omit those in the paper.

As propositions may contain terms but do not themselves compute, we extend β-equivalence to
bProp by asking that all proposition formers propagate β-equivalence.

The Proof System. We can now finally discuss the core of the proof system µLF. It consists of a set
of inference rules that allow to derive judgments of the form Ξ ⊢ 𝜑 @𝑚 where Ξ is a proof context
and 𝜑 is a proposition, both living at mode𝑚. The intended meaning of such a judgment is that 𝜑 is
provable in context Ξ. An important invariant that we maintain in the system, is that the variables

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:15

that are in scope in 𝜑 are exactly the MSTT variables of Ξ. In other words, whenever we can derive
Ξ ⊢ 𝜑 @𝑚, we have that 𝜑 : bProp (to-ctx Ξ).

The built-in rules ofµLF can be found in Fig. 8. Note that the BiSikkel implementation is extensible
and users can add more application-specific reasoning principles, as long as they are able to model
them in the presheaf model. The notion of β-equality is introduced in the proof system via Prf-Beta.
Note that this non-algorithmic rule is not explicitly supported by the BiSikkel proof-checker. In
fact, unlike most type- or proof-checking algorithms, for performance reasons BiSikkel will never
automatically check for β-equality except when encountering an invocation of a special version of
Prf-≡b-Refl. However, in combination with Prf-≡b-Subst, we retain the same expressivity.
Assumptions work similar to MSTT variables: to use one in a proof we need a two-cell from

the modality it is annotated with to the composite of the locks to the right of the assumption
(Prf-Assumption, the ‘locks’ function for proof contexts is defined in Fig. 6b). However, since the
proposition 𝜑 lives at to-ctx Ξ, it is not necessarily well-formed in Ξ „b 𝜇 | x ∈ 𝜑 , Θ as the telescope
Θ might contain MSTT variables and locks. The inference rule therefore allows us to deduce 𝜑Θ, 𝛼 ,
which is basically 𝜑 but with the two-cell annotations modified so that they make sense in the
new proof context. Internally, we apply a renaming to 𝜑 that inserts weakenings and two-cell
modifications based on Θ and 𝛼 . This phenomenon also applies to MTT, we refer to Ceulemans
et al. [2024c] for more details.

The next batch of rules provide ways to prove and use equality of terms (Prf-≡b-. . .). Of course, Prf-
≡b-Sym and Prf-≡b-Trans follow from Prf-≡b-Refl and Prf-≡b-Subst but given that BiSikkel currently lacks
user-friendly declarations, we include these lemmas as primitives for reasons of usability. Important
to note is that the rule Prf-≡b-Subst is stronger than the elimination principle for propositional
equality in MTT. A translation of the MTT principle to µLF would give rise to the current rule
specialized to the case where 𝜇 = 1. One benefit of our rule is that it can be used to prove that
modal functions of type ⟨ 𝜇 | A ⟩⇛ B respect the bProp equality ≡b. In fact, since ≡b is modeled as
propositional equality in the presheaf model, the principle Prf-≡b-Subst is sound for any instantiation
of our library, and hence we decide to add it to µLF. The principle is also discussed by Gratzer
[2022]; Gratzer and Birkedal [2022] who call it crisp identity induction.16

The following rules are introduction and elimination rules for many of the proposition formers
from Fig. 6a. The µLF treatment of conjunction, truth and falsehood is entirely standard (Prf-∧-. . . ,
Prf-⊤b-Intro, Prf-⊥b-Elim). Modal implications follow the same pattern as modal functions in Fig. 3
(Prf-⊃-. . .). The rules for modal propositions Prf-Mod-Intro and Prf-Mod-Elim are similar to their
MSTT counterparts Tm-Mod-Intro and Tm-Mod-Elim. Finally, the rules for universal quantification
(Prf-∀-. . .) are inspired by those for modal dependent functions in MTT.

The built-in definitional equality of µLF does not cover η-expansion. However, a user of the
system can manually employ this principle for functions and products by making use of the rules
Prf-⇛-η and Prf-⊠-η. In the η-rule for functions, the term 𝑓 has to be weakened as it lives in context
to-ctx Ξ and not to-ctx Ξ „ 𝜇 | x ∈ T . This can be done via the substitution 𝜋 : Sub (Γ „ 𝜇 | x ∈ T) Γ.

Next are induction principles for some of the MSTT types (Prf-. . . -Induction). They correspond to
the dependent eliminators for Booleans, natural numbers and modal types in MTT. For example,
the last premise of Prf-Nat-Induction is the classical induction step in a proof by induction for natural
numbers: we assume the proposition 𝜑 that we try to prove, and are then required to prove 𝜑
with 𝑛 substituted by suc n. The modal induction principle allows us to see any variable of type
⟨ 𝜇 | T ⟩ as a term of the formmod⟨ 𝜇 ⟩ svar y for some variable y. Note that all induction principles
have conclusions of the form Ξ „v 𝜇 | x ∈ T ⊢ 𝜑 @𝑚 (possibly with a specific value for 𝜇), i.e. the

16Licata et al.’s flat modality ♭ [2018] disrespects this rule if we read ≡b as the path type in HoTT. However, this path type is
not modeled as propositional equality, so there is no contradiction.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:16 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

Prf-Assumption

𝛼 ∈ 𝜇 ⇒ locks(Θ)
Ξ „b 𝜇 | x ∈ 𝜑 , Θ ⊢ 𝜑Θ, 𝛼 @𝑚

Prf-≡b-Refl
to-ctx Ξ ⊢ t : T @𝑚

Ξ ⊢ t ≡b t @𝑚

Prf-≡b-Sym

Ξ ⊢ t ≡b s @𝑚

Ξ ⊢ s ≡b t @𝑚

Prf-≡b-Trans

Ξ ⊢ t ≡b s @𝑚

Ξ ⊢ s ≡b u @𝑚

Ξ ⊢ t ≡b u @𝑚

Prf-Beta

Ξ ⊢ 𝜑 @𝑚

to-ctx Ξ ⊢ 𝜑 =β 𝜓 @𝑚

Ξ ⊢ 𝜓 @𝑚

Prf-≡b-Subst

𝜇 : Modality m n
𝜑 : bProp (to-ctx Ξ „ 𝜇 | x ∈ T)

Ξ ,lock⟨ 𝜇 ⟩ ⊢ t ≡b s @𝑚

Ξ ⊢ 𝜑 [t / x]bprop@𝑛

Ξ ⊢ 𝜑 [s / x]bprop @𝑛

Prf-∧-Intro

Ξ ⊢ 𝜑 @𝑚

Ξ ⊢ 𝜓 @𝑚

Ξ ⊢ 𝜑 ∧𝜓 @𝑚

Prf-∧-Eliml

Ξ ⊢ 𝜑 ∧𝜓 @𝑚

Ξ ⊢ 𝜑 @𝑚

Prf-∧-Elimr

Ξ ⊢ 𝜑 ∧𝜓 @𝑚

Ξ ⊢ 𝜓 @𝑚

Prf-⊤b-Intro

Ξ ⊢ ⊤b @𝑚

Prf-⊥b-Elim

Ξ ⊢ ⊥b @𝑚

𝜑 : bProp (to-ctx Ξ)

Ξ ⊢ 𝜑 @𝑚

Prf-⊃-Intro

𝜇 : Modality m n
Ξ „b 𝜇 | x ∈ 𝜑 ⊢ 𝜓 @𝑛

Ξ ⊢ ⟨ 𝜇 | 𝜑 ⟩⊃ 𝜓 @𝑛

Prf-⊃-Elim

𝜇 : Modality m n
Ξ ⊢ ⟨ 𝜇 | 𝜑 ⟩⊃ 𝜓 @𝑛

Ξ ,lock⟨ 𝜇 ⟩ ⊢ 𝜑 @𝑚

Ξ ⊢ 𝜓 @𝑛

Prf-Mod-Intro

𝜇 : Modality m n
Ξ ,lock⟨ 𝜇 ⟩ ⊢ 𝜑 @𝑚

Ξ ⊢ ⟨ 𝜇 | 𝜑 ⟩ @𝑛

Prf-∀-Intro

𝜇 : Modality m n
Ξ „v 𝜇 | x ∈ T ⊢ 𝜑 @𝑛

Ξ ⊢ ∀[𝜇 | x ∈ T] 𝜑 @𝑛

Prf-∀-Elim

𝜇 : Modality m n
Ξ ⊢ ∀[𝜇 | x ∈ T] 𝜑 @𝑛

to-ctx Ξ ,lock⟨ 𝜇 ⟩ ⊢ t : T @𝑚

Ξ ⊢ 𝜑 [t / x]bprop @𝑛

Prf-Mod-Elim

𝜇 : Modality m n
𝜌 : Modality n o
Ξ ,lock⟨ 𝜌 ⟩ ⊢ ⟨ 𝜇 | 𝜑 ⟩ @𝑛

Ξ „b 𝜌 m○ 𝜇 | x ∈ 𝜑 ⊢ 𝜓 @𝑜

Ξ ⊢ 𝜓 @𝑜

Prf-⇛-η

𝜇 : Modality m n to-ctx Ξ ⊢ f : ⟨ 𝜇 | T ⟩⇛ S @𝑛

Ξ ⊢ f ≡b lam[𝜇 | x ∈ T] (f [𝜋]tm) · svar x @𝑛

Prf-⊠-η

to-ctx Ξ ⊢ p : T ⊠ S @𝑚

Ξ ⊢ p ≡b pair (fst p) (snd p) @𝑚

Prf-Bool-Induction

𝜑 : bProp (to-ctx Ξ „ 1 | x ∈ Bool’)
Ξ ⊢ 𝜑 [true’ / x]bprop @𝑚

Ξ ⊢ 𝜑 [false’ / x]bprop @𝑚

Ξ „v 1 | x ∈ Bool’ ⊢ 𝜑 @𝑚

Prf-Nat-Induction

𝜑 : bProp (to-ctx Ξ „ 1 | n ∈ Nat’)
Ξ ⊢ 𝜑 [zero / n]bprop @𝑚

Ξ „v 1 | n ∈ Nat’ „b 1 | h ∈ 𝜑 ⊢ 𝜑 [suc (svar n) // n]bprop @𝑚

Ξ „v 1 | n ∈ Nat’ ⊢ 𝜑 @𝑚

Prf-Mod-Induction

𝜇 : Modality m n
𝜌 : Modality n o

𝜑 : bProp (to-ctx Ξ „ 𝜌 | x ∈ ⟨ 𝜇 | T ⟩)
Ξ „v 𝜌 m○ 𝜇 | y ∈ T ⊢ 𝜑 [mod⟨ 𝜇 ⟩ svar y // x]bprop @𝑜

Ξ „v 𝜌 | x ∈ ⟨ 𝜇 | T ⟩ ⊢ 𝜑 @𝑜

Prf-Bool-Distinct

Ξ ⊢ ¬
(
true’ ≡b false’

)
@𝑚

Prf-Nat-Distinct1

Ξ ⊢ ∀[1 | n ∈ Nat’] ¬
(
zero ≡b suc (svar n)

)
@𝑚

Prf-Nat-Distinct2

Ξ ⊢ ∀[1 | m ∈ Nat’] ∀[1 | n ∈ Nat’] suc (svar m) ≡b suc (svar n) ⊃ svar m ≡b svar n @𝑚

Fig. 8. Inference rules and axioms of the µLF proof system.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:17

TmEq-GStream-Head

Γ ,lock⟨ constantly ⟩ ⊢ a : A@★

Γ ,lock⟨ later ⟩ ⊢ s : GStream A@𝜔

Γ ⊢ g-head (g-cons a s) =β mod⟨ constantly ⟩ a @𝜔

TmEq-GStream-Tail

Γ ,lock⟨ constantly ⟩ ⊢ a : A@★

Γ ,lock⟨ later ⟩ ⊢ s : GStream A@𝜔

Γ ⊢ g-tail (g-cons a s) =β mod⟨ later ⟩ s @𝜔

Prf-TmLöb-Beta

to-ctx Ξ „ later | x ∈ T ⊢ t : T @𝜔

Ξ ⊢ löb[later| x ∈ T] t ≡b t [(löb[later| x ∈ T] t)1≤ltr / x]tm @𝜔

Prf-Löb

Ξ „b later | x ∈ 𝜑1≤ltr ⊢ 𝜑 @𝜔

Ξ ⊢ 𝜑 @𝜔

Fig. 9. β-equivalence and proof rules specific to guarded recursive type theory.

context is extended with a variable. This is typically avoided when designing dependent type
systems, as it is unclear how substitutions should be propagated through term formers like this.
Therefore, it is more common to encounter an induction principle, for example for natural numbers,
that would take an extra premise to-ctx Ξ ⊢ 𝑚 : Nat’@𝑜 and produce a conclusion of the form
Ξ ⊢ 𝜑 [m / n]bprop@𝑜 . However, since we are not interested in the computational behavior of
proofs and µLF does not even have a notion of substitution between proof contexts, the induction
rules in Fig. 8 are unproblematic.
Finally, there are some axioms that assert the distinctness of the constructors for the types

Bool’ and Nat’ (Prf-Bool-Distinct, Prf-Nat-Distinct1 and Prf-Nat-Distinct2). Here we make use of
the negation of propositions defined as ¬ 𝜑 = 𝜑 ⊃ ⊥b. These axioms would be provable from
big elimination principles, which would let us construct predicates over Bool’ (and Nat’) by case
distinction (recursion). However, for simplicity, rather than adding big elimination, we choose to
add just a few corollaries that we are interested in.

4.3 Continuing the g-iterate Example
Now that we have the proof system µLF at our disposal, we can return to the example from
Section 3.2. Before working out the proof, we have to extend the framework with specific proof
rules related to guarded recursion. These can be found in Fig. 9.
First of all, we extend the β-equivalence of our MSTT instance for guarded recursion with

computation rules for guarded streams (TmEq-GStream-Head and TmEq-GStream-Tail). There should
also be a computation rule associated to Löb induction for terms, expressing that it indeed generates
fixpoints. This can however not be part of the β-equivalence for terms because that would lead to
loss of decidability of conversion as shown by Gratzer and Birkedal [2022]. As a result, we add this
principle as an axiom Prf-TmLöb-Beta that has to be manually invoked in proofs. In the right-hand
side of the conclusion, we need to substitute 𝑥 with a term in the context to-ctx Ξ ,lock⟨ later ⟩
but löb[later| x ∈ T] t is a term in context to-ctx Ξ. We can however transform a term from the
latter context to the former since there is a two-cell from 1 to later. This is what the construction
_1≤ltr does: internally this is again a renaming (similar to the conclusion of Prf-Assumption) that
modifies the two-cells that accompany the variables in a term. Finally, we also have a version of Löb
induction for propositions: in order to prove 𝜑 , we may assume 𝜑 under a later modality (Prf-Löb).
We now start with the lemma from Section 3.2. For the sake of readability and space, we will

from now on in this section just write a variable name "x" instead of svar "x" and similarly
"x"𝛼 instead of var "x" 𝛼 . We also define the abbreviations 𝛾 for the two-cell from constantly
to later m○ constantly obtained as 1≤ltr t○-hor id-cell and 𝛿 for the two-cell 1≤ltr t○-hor 𝛾 from
constantly to later2 m○ constantly. Furthermore, in any context where it makes sense, we use the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:18 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

abbreviation

lem = g-map · "f" · (g-iterate · "f"𝛾 · "a") ≡b g-iterate · "f"𝛾 · ("f" · "a").

We then want to prove in any context that ∀[constantly | "f" ∈ A⇛ A] ∀[constantly | "a" ∈ A] lem.
Building the proof from bottom to top, we can proceed as follows.

Ξ „v constantly | "f" ∈ A⇛ A „v constantly | "a" ∈ A „b later | "ih" ∈ lem1≤ltr ⊢ lem @𝜔
Prf-Löb

Ξ „v constantly | "f" ∈ A⇛ A „v constantly | "a" ∈ A ⊢ lem @𝜔
Prf-∀-Intro

Ξ „v constantly | "f" ∈ A⇛ A ⊢ ∀[constantly | "a" ∈ A] lem @𝜔
Prf-∀-Intro

Ξ ⊢ ∀[constantly | "f" ∈ A⇛ A] ∀[constantly | "a" ∈ A] lem @𝜔 (6)

The question remains how to prove the equality at the top of this derivation. This will be the
following sequence of equality proofs, chained together with the rule Prf-≡b-Trans.

g-map · "f" · (g-iterate · "f"𝛾 · "a")

≡b g-map · "f" · (löb[later| "s" ∈ GStream A] g-cons "a" (g-map · "f"𝛾 · "s")) (7)

≡b g-map · "f" · (g-cons "a" (g-map · "f"𝛾 · (g-iterate · "f"𝛿 · "a"𝛾))) (8)

≡b g-cons ("f" · "a") (g-map · "f"𝛾 · (g-map · "f"𝛾 · (g-iterate · "f"𝛿 · "a"𝛾))) (9)

≡b g-cons ("f" · "a") (g-map · "f"𝛾 · (g-iterate · "f"𝛿 · ("f"𝛾 · "a"𝛾))) (10)

≡b g-iterate · "f"𝛾 · ("f" · "a") (11)

Step (7) is just an unfolding of the definition of g-iterate (these are always transparent in BiSikkel),
combined with two β-reductions for functions. Hence this step can be proved via Prf-Beta and
TmEq-Fun, and will not be included in a mechanized version of the proof. In step (8) we make use of
Prf-TmLöb-Beta where "s" gets substituted with the löb term itself. For readability, we also rewrote
this löb term again to an application of g-iterate, which is just an instance of β-conversion. Note
that the operation _1≤ltr from Prf-TmLöb-Beta changed the two-cell annotations for the variables
"f" and "a". Strictly speaking, we also made use of the fact that g-map respects the equality ≡b,
a principle that can be proved using Prf-≡b-Subst. Step (9) applies a lemma that we do not prove
in the paper: it is the principle that mapping a function over a guarded stream constructed via
g-cons amounts to applying the function to the head and mapping it over the stream’s tail. This
can essentially be proved via one application of the rule Prf-TmLöb-Beta. The most interesting step
is (10), where we apply the induction hypothesis "ih" that we obtained via Löb induction in the
derivation (6) above. Since this use of Löb induction is one of the motivations from Section 3.2
for having a modal framework, let us examine in more detail why we are allowed to apply the
induction hypothesis here. First of all, we use the following principle for proving the equality of
two streams constructed via g-cons.

Admissible-Gcons-Cong

Ξ ,lock⟨ constantly ⟩ ⊢ a ≡b a’ @★ Ξ ,lock⟨ later ⟩ ⊢ s ≡b s’ @𝜔

Ξ ⊢ g-cons a s ≡b g-cons a’ s’ @𝜔

This rule is not built into µLF, but it is admissible and can be proved via Prf-≡b-Subst. In step (10),
the heads are identical, so the first premise of the rule above can be discharged with Prf-≡b-Refl.
Interesting is the fact that we need to prove the equality of the tails in a proof context locked with
later. This means that we want to apply the induction hypothesis in the following proof context,

Ξ „v constantly | "f" ∈ A⇛ A „v constantly | "a" ∈ A „b later | "ih" ∈ lem1≤ltr ,lock⟨ later ⟩

and this is indeed allowed via Prf-Assumption because we have the trivial two-cell from later to
later. Note that the two-cell 1≤ltr that is applied to lem in the induction hypothesis modifies the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:19

two-cell annotations in lem so that they exactly match those in step (10). Finally, step (11) is again
a combination of β-reduction and Prf-TmLöb-Beta, similar to steps (7) and (8).

Proving the final result, the equivalence of g-iterate and g-iterate’ now follows a similar pattern.
If we write

res = g-iterate · "f"𝛾 · "a" ≡b g-iterate’ · "f"𝛾 · "a",

we want to prove ∀[constantly | "f" ∈ A⇛ A] ∀[constantly | "a" ∈ A] res. Consequent applications
of Prf-∀-Intro, Prf-Löb, and again Prf-∀-Intro give us the following proof goal.

Ξ „v constantly | "f" ∈ A⇛ A „b later | "ih" ∈ ∀[constantly | "a" ∈ A] res „v constantly | "a" ∈ A ⊢ res.

Equational reasoning similar to the lemma then gives us the following steps.
g-iterate · "f"𝛾 · "a"

≡b g-cons "a" (g-map · "f"𝛾 · (g-iterate · "f"𝛿 · "a"𝛾) (12)

≡b g-cons "a" (g-iterate · "f"𝛿 · ("f"𝛾 · "a"𝛾)) (13)

≡b g-cons "a" (g-iterate’ · "f"𝛿 · ("f"𝛾 · "a"𝛾)) (14)

≡b g-iterate’ · "f"𝛾 · "a" (15)

Steps (12) and (15) are again the unfolding of definitions, β-reduction and the use of Prf-TmLöb-Beta.
In step (13) we use the lemma we just proved, combined with the Admissible-Gcons-Cong principle.
Since this lemma contains two universal quantifications, we apply the rule Prf-∀-Elim twice in this
step. Step (14) is then an application of the induction hypothesis. Again this is possible because we
locked the context with later when proving that the tails of the two streams are equal. Note that it
is crucial that we have an induction hypothesis of the form ∀[constantly | "a" ∈ A] res, as we now
want to apply it to the term "f"𝛾 · "a"𝛾 , which is possible thanks to Prf-∀-Elim.

From the equivalence of g-iterate and g-iterate’, it is a small step to prove a similar result about
the counterparts of these functions for standard streams of type Stream’ A (which are implemented
in terms of the functions for guarded streams) at mode ★. We refer to the Agda formalization for
the details [Ceulemans et al. 2024a,b]. Subsequently, we can apply the extraction mechanism to
obtain an equivalence result about the extracted versions of iterate and iterate’ for standard Agda
streams (although some performance issues occur here, see Section 5.3).

4.4 Another Example: Unary Parametricity
In order to demonstrate BiSikkel’s relevance to more than just a single mode theory, here we demon-
strate how its logical framework can be used to reason about parametricity predicates. Concretely,
we consider a toy example where we implement boolean disjunction in terms of conjunction and
negation, for booleans encoded as the natural numbers 0 and 1. We use parametricity to show that,
if conjunction and negation send valid booleans to valid booleans, then so does disjunction.

We use a mode theory with two modes: the obligatory trivial mode★ and a mode ↑modeled as a
base category with two objects and only one non-trivial morphism between them. A presheaf then
consists of an Agda function between two types, where we regard the domain as a predicate over
the codomain. We have two modalities forget and Σ from ↑ to ★: the former selects the codomain
(the type of all values; and thus forgets the predicate) whereas the latter selects the domain (the
type of values satisfying the predicate). There is a two-cell 𝜋 from Σ to forget, which uses the
function to get from its domain to its codomain. We have a type EncBool of booleans encoded as
natural numbers, modeled as the function Bool→ Nat sending false to 0 and true to 1, and we view
this as the natural numbers equipped with the predicate ‘encodes a valid boolean’.
Next, we extend BiSikkel with one proposition former and two inference rules (see Fig. 10

for the inference rules). For every C : Ty ↑ and every term Γ ⊢ c : ⟨ forget | C ⟩ @★, we add

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:20 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

Prf-Parametricity

C : Ty ↑
Ξ ⊢ ∀[Σ | "c" ∈ C]
Pred C (mod⟨ forget ⟩ var "c" 𝜋) @★

Prf-Extent-From

Ξ ⊢ Pred (A⇛ B) f @★

Ξ ⊢ ∀[forget | "a" ∈ A] Pred A (mod⟨ forget ⟩ svar "a")
⊃ Pred B (f ⊛ mod⟨ forget ⟩ svar "a") @★

Fig. 10. Inference rules specific to unary parametricity.

Pred 𝐶 𝑐 : bProp Γ. The semantics of Pred 𝐶 𝑐 is simply that c satisfies the predicate of C. This
is expressed by the rule Prf-Parametricity, which states that Pred 𝐶 is satisfied by all values c of
type C that are bound under modality Σ (so in other words, those values that satisfy the predicate
associated to C). Following Reynolds’s [1983] definition of the logical relation for the function
type, we also assert one half of the logical equivalence of Pred (A⇛ B) 𝑓 and the assertion that
Pred 𝐴 "a" implies Pred 𝐵 (𝑓 ⊛ "a") for all "a", where ⊛ is the applicative operator of the modal
type (Prf-Extent-From, since the quantification in that rule contains a forget modality, we have to
apply modal constructors to the variable "a").17 Both rules from Fig. 10 have been proven sound in
the model.

We add primitive conjunction ∧’ and negation ¬’ operators for EncBool at mode ↑ to the MSTT
part of the BiSikkel instance, with arbitrary behaviour on naturals greater than 1. Using these
primitives, we can implement disjunction ∨’ for EncBool. Making use of the rules from Fig. 10, we
can then prove the proposition

∀[1 | "a" ∈ ⟨ forget | A ⟩] ∀[1 | "b" ∈ ⟨ forget | B ⟩] Pred EncBool (svar "a") ⊃
Pred EncBool (svar "b") ⊃ Pred EncBool ((mod⟨ forget ⟩ ∨’) ⊛ svar "a" ⊛ svar "b").

We refer to the Agda code for details [Ceulemans et al. 2024a,b]. Extracting this proof, we should
learn that the extraction ofmod⟨ forget ⟩ ∨’, a function on naturals, really does send valid booleans
to valid booleans. However, similar to proofs about streams, Agda is too slow to verify that the
extracted proof has the expected type (see also Section 5.3).

5 Implementation of µLF in Agda
Now that we know the proof system µLF and how it can be used in practice, we take a look at how it
is implemented as an Agda library. As announced in Sections 1 and 3.3, BiSikkel uses an extrinsically
typed representation of proofs. The motivation for this choice is discussed in Section 5.1. As a result
of this extrinsic typing, it is possible to write invalid BiSikkel proofs. The library therefore comes
with a proof checker, presented in Section 5.2. We then continue in Section 5.3 with a discussion
how BiSikkel proofs can be extracted to Agda proofs and conclude in Section 5.4 with details on
the implementation of substitution and normalization for MSTT.

5.1 Agda Representation of Proofs
Just like in Section 2.1 where we had to consider the Agda representation for MSTT terms, we now
have to choose a representation for µLF proofs. Again we can distinguish between an intrinsically
and an extrinsically typed encoding, where we regard propositions as types and their proofs as
terms. In the intrinsically typed approach, we would have an Agda data type of proofs that is
indexed by a proof context and a proposition. The constructors of this type are direct encodings of
the proof rules from Fig. 8:

17As mentioned, the rule Prf-Extent-From actually expresses a logical equivalence so the rule where conclusion and premise
are swapped can be added to the system as well. However, this is not necessary for the current example.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:21

data IProof : (Ξ : ProofCtx m)→ bProp (to-ctx Ξ)→ Set where
subst : (𝜑 : bProp (to-ctx Ξ „ 𝜇 | x ∈ T))→ IProof (Ξ ,lock⟨ 𝜇 ⟩) (t ≡b s)

→ IProof Ξ (𝜑 [t / x]bprop)→ IProof Ξ (𝜑 [s / x]bprop)
⊃-intro : IProof (Ξ „b 𝜇 | x ∈ 𝜑)𝜓 → IProof Ξ (⟨ 𝜇 | 𝜑 ⟩⊃ 𝜓)
∀-intro : IProof (Ξ „v 𝜇 | x ∈ T) 𝜑 → IProof Ξ (∀[𝜇 | x ∈ T] 𝜑)
∀-elim : IProof Ξ (∀[𝜇 | x ∈ T] 𝜑)→ (t : Tm (to-ctx Ξ ,lock⟨ 𝜇 ⟩) T)

→ IProof Ξ (𝜑 [t / x]bprop)
. . .

This intrinsically typed approach has advantages discussed before: We can leverage the Agda type
checker for verifying that the proofs we write are valid, and we can use Agda holes to interact with
the logical framework, as the Agda goal is a µLF judgment that needs to be derived. This means
we do not have to implement our own type-checker, substitution or normalization algorithm, and
interaction mechanism. We also mentioned the drawbacks: (1) invocations of the conversion rule
are not silent, but become explicit invocations of Agda’s transport lemma with explicit equality
proof, and (2) we noticed poor performance for intrinsic dependent types in a modal setting.

We clarify this latter point here. When experimenting with the above encoding, we constructed
a term of type IProof to prove the commutativity of natural number addition (so there were even
no modal phenomena taking place). However it took Agda more than 30s to type-check this term,
leaving us no hope to prove more interesting results in this way. We suspect that the issue is caused
by computation taking place in indices. For example the last argument of the constructor subst
has a substitution taking place in the proposition index. This should result in a proposition that is
comparable to 𝜑 , but the implementation of substitution for MSTT is quite intricate [Ceulemans
et al. 2024c] and it seems to be the case that Agda does not fully normalize this application of
substitution when checking the sub-proof of subst. This results in a large Agda term as index, a
problem that gets worse when many IProof constructors are being combined.

Because of the drawbacks of intrinsic typing, BiSikkel adopts an extrinsically typed representation
of proofs. In other words, the Agda type of BiSikkel proofs is not indexed by a proof context or a
proposition. It is however necessary to mention terms or propositions in some proof constructors
(e.g. subst or ∀-intro), and their Agda types are indexed by an MSTT context. Hence we arrive at
the following data type of proofs, indexed by an MSTT context describing the MSTT variables but
not the proof assumptions that are in scope:

data Proof : Ctx m→ Set where
subst : (𝜑 : bProp (Γ „ 𝜇 | x ∈ T)) (t1 t2 : Tm (Γ ,lock⟨ 𝜇 ⟩) T)

→ Proof (Γ ,lock⟨ 𝜇 ⟩)→ Proof Γ→ Proof Γ
⊃-intro : (x : String)→ Proof Γ→ Proof Γ
∀-intro : (𝜇 : Modality n m) (x : String) (T : Ty n)→ Proof (Γ „ 𝜇 | x ∈ T)→ Proof Γ
∀-elim : (𝜇 : Modality n m) (𝜑 : bProp Γ)→ Proof Γ→ (t : Tm (Γ ,lock⟨ 𝜇 ⟩) T)→ Proof Γ
. . .

Notice that we obtain the type signature of the constructors from the ones in IProof by applying
to-ctx to all proof contexts and setting Γ = to-ctx Ξ. Moreover, some constructors now require
extra annotations that are needed when type-checking a proof. For example, the constructor subst
now also requires both sides of the equation we are eliminating to be given as arguments.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:22 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

5.2 The Proof Checker
Since our proof syntax is now untyped, BiSikkel has a proof checker that, given a proof context Ξ,
a proof 𝑝 and a proposition 𝜑 , will verify whether 𝑝 is really a valid proof of 𝜑 in context Ξ. Since
the actual type signature of the proof checker is quite complex, we will build it up step by step.
As a first approximation, we might expect the proof checker to take a proof context, proof and

proposition as argument, and return a Boolean representing the result of the checking process
(success or failure). In other words, we would get the following Agda function.

check-proof : (Ξ : ProofCtx m)→ Proof (to-ctx Ξ)→ bProp (to-ctx Ξ)→ Bool

Note that this type signature already enforces the invariant that we imposed on the proof judgment
Ξ ⊢ 𝜑 @𝑚 in Section 4.2: in order to check whether there might be a proof of 𝜑 in a proof context
Ξ, it must already be the case that 𝜑 is a valid proposition in to-ctx Ξ.

If we look back at Fig. 1b depicting BiSikkel’s architecture, we see that there is a soundness proof
of the system µLF. This is actually part of the proof checker, which is sound by construction. By
that we mean that whenever the proof checker declares a proof to be valid, it needs to provide
evidence by outputting a semantic term of the semantic type corresponding to the proposition we
are trying to prove. More concretely, BiSikkel provides functions that interpret proof contexts and
bProps as semantic contexts and semantic types in a presheaf model (recall that these are already
dependently typed, which explains why a semantic type depends on a semantic context).

J_Kpctx : ProofCtx m→ SemCtx J m Kmode
J_Kbprop : bProp Γ→ SemTy J Γ Kctx
to-ctx-subst : (Ξ : ProofCtx m)→ (J Ξ Kpctx⇒ J to-ctx Ξ Kctx)

Given a proof context Ξ and a proposition 𝜑 , we want the proof checker to return upon success a
semantic term in the semantic context J Ξ Kpctx of the semantic type J 𝜑 Kbprop. However, the latter
semantic type lives in the semantic context J to-ctx Ξ Kctx. To bridge this gap, BiSikkel implements
a semantic substitution to-ctx-subst Ξ that goes from J Ξ Kpctx to J to-ctx Ξ Kctx for any Ξ and that
can be applied to J 𝜑 Kbprop to obtain a semantic type that lives in the right context. To deal with
potential failure of the proof checking process, we also introduce the proof checking monad PCM.

data PCM (A : Set) : Set where
ok : A→ PCM A
error : String→ PCM A

This is essentially an error monad with strings as error messages. We now get the following
approximation of the type signature for the proof checker.

check-proof : (Ξ : ProofCtx m)→ Proof (to-ctx Ξ)→ (𝜑 : bProp (to-ctx Ξ))
→ PCM (SemTm J Ξ Kpctx (J 𝜑 Kbprop M.[to-ctx-subst Ξ]))

Here the operation _M.[_] applies a substitution to a type at the semantic level (the prefixM stands
for model and serves to disambiguate syntactic and semantic operations).
To get to the final type signature of check-proof, recall from Section 5.1 that a disadvantage of

the extrinsically typed approach is the fact that we cannot use Agda’s interactive development
features to write partial proofs and inspect goals. This makes it difficult to write even simple proofs.
For this reason, we allow holes in BiSikkel proofs via a special constructor hole : String→ Proof Γ
that receives an identifier for the hole as argument. When reaching such a hole during proof
checking, we do not immediately raise an error but record the proof state (i.e. the proof context
and proposition to prove) and at the end we provide a list of all the goals that were encountered.
Figure 11a shows the definition of a record type Goal that describes all the information that should

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:23

record Goal : Set where
constructor goal
field
gl-identifier : String
gl-mode : Mode
gl-ctx : ProofCtx gl-mode
gl-prop : bProp (to-ctx gl-ctx)

(a) Agda definition of goals.

SemGoals : List Goal→ Set
SemGoals [] = ⊤
SemGoals (goal _ _ Ξ 𝜑 :: gls) =
SemTm J Ξ Kpctx (J 𝜑 Kbprop M.[to-ctx-subst Ξ]) × SemGoals gls

record PCResult (Ξ : ProofCtx m) (𝜑 : bProp (to-ctx Ξ)) : Set where
field
goals : List Goal
denotation : SemGoals goals
→ SemTm J Ξ Kpctx (J 𝜑 Kbprop M.[to-ctx-subst Ξ])

(b) The result type of a successful run of the proof checker.18

Fig. 11. BiSikkel’s support for holes in proofs.

be recorded when reaching a hole. Upon success, the proof checker will return an Agda value of
the record type PCResult implemented in Fig. 11b. As already mentioned, the result will contain a
list of goals. Furthermore, there should still be semantic evidence of the proof checker’s decision,
but this time it will be conditional: we can give a semantic term of the proposition we are trying to
prove provided that we are given semantic terms corresponding to all holes that were encountered
in the proof. This last part is taken care of by the dependent Agda type SemGoals goals, which just
collects all semantic evidence for the goals. Finally, the actual type signature of BiSikkel’s proof
checker is as follows.

check-proof : (Ξ : ProofCtx m)→ Proof (to-ctx Ξ)→ (𝜑 : bProp (to-ctx Ξ))
→ PCM (PCResult Ξ 𝜑)

5.3 Proof Extraction
As we saw in the previous section, BiSikkel’s proof checker provides semantic evidence whenever it
declares a proof to be valid. This evidence consists of a semantic term in the internally constructed
presheaf model. In order to interact well with Sikkel’s extraction mechanism, we would like to be
able to extract not just terms but also proofs at mode ★.

Γ : Ctx ★ ⇝ extract-ctx Γ : Set
𝑇 : Ty ★ ⇝ extract-ty 𝑇 : Set

𝑡 : Tm Γ 𝑇 ⇝ extract-tm 𝑡 : extract-ctx Γ→ extract-ty 𝑇
𝜑 : bProp Γ ⇝ extract-bprop 𝜑 : extract-ctx Γ→ Set

Ξ : ProofCtx ★ ⇝ extract-pfctx Ξ : Set
𝑝 : Proof ⋄ ⇝ extract-pf-⋄ 𝑝 𝜑 : extract-bprop 𝜑 _

Fig. 12. BiSikkel extraction signatures (only applicable to contexts,
types, . . .which are indeed extractable). Note that proofs can also be
extracted in other proof contexts than ⋄, but this is not shown here.

To this end, we extend Ceule-
mans et al.’s extraction mech-
anism [2022] (Section 2.3) as
outlined in Fig. 12. In order
to extract propositions, which
may contain program variables
bound by ∀[_|_∈_]_, we need
to be able to extract terms in a
non-empty context (this was not
needed in Sikkel). Therefore, we
introduce a type class on syntac-
tic contexts Γ at the trivial mode
★, an instance of which should provide an Agda type extract-ctx Γ and an Agda isomorphism
between this type and Γ’s denotation in the presheaf model. The story for types is similar, and a
18Here ⊤ is Agda’s unit type, containing no information, and × is the Agda type constructor for (non-dependent) product
types. Contrary to Section 3, :: here is the Agda constructor for lists.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:24 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

term can then be extracted as a function between its context’s and type’s extractions. Propositions
are extracted as Agda type families over their context’s extraction, so effectively as (potentially
proof-relevant) predicates. Again, an instance should also provide a dependent isomorphism be-
tween this type family and the proposition’s denotation. Finally, there is a function that extracts a
proof of an extractable proposition in an extractable proof context to the correct dependent Agda
function. In Fig. 12, we only show the version for the empty proof context.

Returning to the example from Section 4.3, we note that MSTT streams of type Stream’ Nat’ are
interpreted in the presheaf model as dependent Agda functions of type∀ n→ VecN (suc n) (together
with a coherence condition). Consequently, the evidence produced by the proof checker for a valid
equality proof of such streams consists of an equality proof of the corresponding vector-producing
Agda functions (the implementation of the proof checker makes use of function extensionality). We
can provide an extractability instance for Stream’ Nat’, extracting this type as the type Stream N of
standard Agda streams. In order to prove one of the required isomorphism equalities, we need an
axiom conflating bisimilarity and equality of such Agda streams (this axiom is not used anywhere
else in the BiSikkel code).
It is now theoretically possible to extract the equivalence proof of iterate and iterate’ from

Section 4.3 and obtain an equivalence proof of the extracted Agda functions. However, in practice
this does not work due to performance of Agda type checking (it is possible to extract the proof,
but not to verify that the Agda type of the extracted proof matches the type we expect). Complete
extraction of proofs is possible for smaller examples; we extracted a proof of commutativity of
natural number addition (implemented in BiSikkel) as an example.

5.4 Substitution and (Fueled) Normalization for MSTT
As we have seen in Section 4, our proof system critically depends on substitution and normalization
for MSTT. These operations are not needed in Sikkel [Ceulemans et al. 2022], which does not have
a computational theory at the syntactic level. Since the implementation of both procedures is quite
intricate, we spend some time in this section to look at the details.

Substitution. In a non-modal type theory, a substitution from a context Γ to a context Δ basically
assigns to every variable of type𝑇 in Δ a term of type𝑇 in Γ. When modalities are added to the story,
this situation gets considerably more complicated. Moreover, we want substitution for terms to be
an operation on the syntax that computes, unlike MTT [Gratzer 2022] where there is a constructor
for applying a substitution to a term (i.e. MTT uses explicit substitutions). In other words, we want
to construct a substitution algorithm for MSTT. Such an algorithmic description of substitution is
described for MTT in [Ceulemans et al. 2024c]. In BiSikkel, we provide the first implementation of
this algorithm for a the simply typed fragment MSTT of MTT. This means that just like Ceulemans
et al., we first define the action of renamings on terms (which in a modal-setting includes more
than just renaming, e.g. also applying a two-cell to a term) and then the action of substitutions.
Moreover, we use the same representation of renamings and substitutions, including the distinction
between atomic and regular renamings and substitutions.

Furthermore, we also prove soundness of our substitution algorithm with respect to the presheaf
model of MSTT. More concretely, we show that J t [𝜎]tm Ktm and J t Ktm [J 𝜎 Ksubst] are equal
in the model, where J 𝜎 Ksubst is the denotation of 𝜎 as a presheaf morphism. This proof is used
multiple times in the soundness proof for BiSikkel’s proof checker.

Fueled Normalization. As mentioned in Section 4.2, the proof checker makes use of a decision proce-
dure for β-equivalence of terms. This amounts to the implementation of a β-normalization function
for MSTT in Agda. However, convincing Agda that such a function terminates is highly non-trivial.
Although normalization for MTT has been proven on paper in [Gratzer 2022] and implemented for

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:25

certain mode theories [Stassen et al. 2023], in BiSikkel we opt for a fueled normalization function
that takes an extra natural number as argument which will decrease in non-structurally recursive
calls. The normalizer will then fail to produce a result when it has no fuel left.

Recall that the proof checker is sound by construction, providing semantic evidence whenever it
validates a proof. Since we want to integrate the normalizer into the proof checker, it too should
produce some evidence that its result is semantically equal to its argument. We pack the normalized
term and the semantic preservation proof in a record.

record NormalizeResult (t : Tm Γ T) : Set where
field
nt : Tm Γ T
pres-sem : J t Ktm �tm J nt Ktm

The normalizer then has the following Agda type.

normalize : N→ (t : Tm Γ T)→Maybe (NormalizeResult t)

Normalization for e.g. function redexes is implemented in terms of the substitution operations
defined above. This is in contrast to for example mitten [Stassen et al. 2023], which employs
normalization by evaluation.

6 Conclusion, Related Work and Future Work
6.1 Universal Algebra and Formalizations of Type Theory
Sikkel and BiSikkel are based on a deep embedding: their syntax is defined inductively and inter-
preted in the presheaf model. Such deep embeddings can be understood categorically via algebraic
theories. The simplest form of algebraic theories are un(i)sorted ones, examples of which are the
theories of groups, monoids, real vector spaces, These are specified by a set of operations, each
with an arity, and a number of axioms that the operations need to satisfy. A record containing
the above data is also called a container [Abbott et al. 2005]. An algebra or model of the theory
(e.g. a group, monoid, or real vector space) is then a carrier (a set) on which the operations are
defined and the axioms are satisfied. The syntax of the theory is the initial such algebra and its
carrier is the set of expressions freely generated by the operations and quotiented out by the
axioms.19 This carrier can be regarded as a quotient inductive type (QIT) and initiality exactly
expresses there is a unique, recursively defined interpretation function from the syntax to any
model of the theory. Richer notions of algebraic theories include multisorted algebraic theories
corresponding to indexed containers [Altenkirch and Morris 2009] and whose syntax is an in-
dexed QIT; second-order algebraic theories which support abstraction [Allais et al. 2021; Fiore and
Szamozvancev 2022]; and generalized algebraic theories (GATs) [Cartmell 1986] whose syntax is a
quotient-inductive-inductive type (QIIT) [Altenkirch et al. 2018].

Type theory has been formalized within type theory using QIITs [Altenkirch and Kaposi 2016].
Such QIIT formalization is necessarily intrinsically typed, and as mentioned before (Section 3.3),
practical programming is not feasible in such a system. Nevertheless, it would be interesting to
maximally categorify (Bi)Sikkel. To this end, we would formalize either MSTT with µLF or MTT
as an algebraic theory, obtaining in this way an intrinsically typed syntax as well as an abstract
notion of model. This intrinsically typed syntax could then be inserted as an additional layer in
the (Bi)Sikkel architecture, between the extrinsic syntax and the semantic layer. The type-checker
(which would still rely on fueled normalization) would output intrinsically typed terms instead of

19In the above examples, one would need to extend the theory with constants (nullary operations) or metavariables in order
to obtain anything that is not the neutral element.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

8:26 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

semantic ones, and an interpretation of the intrinsically typed syntax in any model – including but
not limited to the presheaf model – would be obtained by initiality.

6.2 Integration with Existing Category Libraries
Currently, (Bi)Sikkel relies on its own ad hoc implementation of the relevant categorical concepts,
as the original Sikkel code predates the agda-categories library [Hu and Carette 2021]. There is an
alternative formalization for category theory in the Agda cubical library [Agda Community 2024;
Vezzosi et al. 2021], but the falsehood of uniqueness of identity proofs (UIP) would significantly
complicate the construction of the presheaf model. Integration with a mature library for category
theory would ease the use of categorical ideas and thus simplify further development of (Bi)Sikkel.

6.3 Equality in the Metatheory
In this section, we first discuss a number of possible metatheories and formalization paradigms in
which one could implement a project such as (Bi)Sikkel, with their advantages and drawbacks, all
related to equality. A variant of XTT that could be reasonably implemented in Agda, would suit
our needs entirely. Afterward, we explain how (Bi)Sikkel strikes a balance between the different
options, avoiding as many drawbacks as we were able to, but resulting in the near-impossibility to
implement a semantic universe.20

Extensional Type Theory (ETT). Extensional type theory features the reflection rule, which promotes
propositional to judgmental equality. Consequences are function extensionality and uniqueness of
identity proofs. In this system, we would have no problems whatsoever; however since extensional
equality is undecidable [Hofmann 1995], ETT cannot be supported by a proof assistant such as
Agda.

Intensional Type Theory (ITT). In intensional type theory, function extensionality is not provable
but can be soundly postulated as an axiom. A naïve presheaf model of type theory in which equality
in the object language is modeled as propositional equality, would rely on function extensionality.
This is especially problematic in the case of type equality, where transport along equality models
the conversion rule, while its computation may be blocked by function extensionality. This may
ultimately block extracted (Bi)Sikkel programs. If we enable axiom K [Cockx et al. 2014], then we
have computational UIP. It is worth noting that Lean has UIP and quotient types (implying function
extensionality) by default, and while these can block computation at type-checking time, transport
along them would be compiled away [Avigad et al. 2017, ch. 11].

Setoid Hell in ITT. Setoid hell is the ubiquitous usage of setoids and is, as the term suggests,
cumbersome: one needs to provide, for every type concerned, an equivalence relation and prove,
for every function one implements, that it respects equivalence. Moreover, if we want UIP for our
custom equivalence, this leads to an additional axiom in the definition of a setoid. On the bright
side, function extensionality is for free, since we can take it as the definition of function equivalence.
Modeling a universe in setoid hell is difficult, as it is unclear how to define equivalence of types (or
even setoids) depending on elements of other setoids. Altenkirch et al. [2021] build an inductive
universe instead, which is laborious especially as part of a presheaf model.

Cubical Agda. Cubical Agda [Vezzosi et al. 2021] is an implementation of cubical type theory [Cohen
et al. 2018], itself a computational variant of homotopy type theory (HoTT) [Univalent Foundations
Program 2013], in which function extensionality is provable and UIP is false. In this setting, it

20Note that, despite the limited dependency available in µLF, we could imagine a universe of propositions Prop’ at the
program level and a predicate El’ over it.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

BiSikkel: A Multimode Logical Framework in Agda 8:27

would be sensible to model (Bi)Sikkel in h-set-valued presheaves. However, the type of h-set-valued
presheaves is not an h-set but an h-groupoid, which precludes the construction of a universe of
types based on cubical Agda’s universe. Again, we could build an inductive universe instead.

XTT. XTT [Sterling et al. 2019] uses cubical techniques to strike a balance between ITT and ETT. It is
a decidable type system featuring definitional UIP and provable function extensionality. We believe
that XTT would suit our needs, but to our knowledge it currently has no mature implementation.
There are open feature requests to provide a version of Cubical Agda without univalence and with
computational non-definitional UIP21, which would suit our needs equally well.

Observational Type Theory (OTT). Observational type theory [Altenkirch et al. 2007] is a system
where the equality type of any concrete type𝑇 reduces to its characterization, e.g. equality at 𝐴×𝐵
reduces to the product of equality at 𝐴 and at 𝐵. In this system, function extensionality is proven
by the identity function and UIP could reduce in a similar fashion as the identity type itself. This
system, too, would suit our needs, but to our knowledge it currently has no mature implementation.

BiSikkel. BiSikkel is currently implemented in ITT: partially in plain ITT, partially in setoid hell and
partially in groupoid hell. Specifically, our presheaves are set-valued (not setoid or groupoid-valued).
Context and type equality are modeled as isomorphism of (dependent) presheaves (a groupoid
structure), because this yields better computational behaviour than the inductive identity type
which only computes in trivial cases. Term equality is modeled as pointwise equality (a setoid
structure) rather than propositional equality, which saves an invocation of function extensionality.
Term equality could not be modeled as pointwise equivalence in some sense, as the presheaf
that models the type is set-valued and does not specify a notion of equivalence. By consequence,
congruence of the abstraction rule does rely on function extensionality. The fact that the collection
of types constitutes a groupoid while the cells of a type form a set, rules out the most sensible
implementations of the universe.22

6.4 Reflection
It would be practical if the syntax of a subset of a future version of Agda with better modal support,
could double as an intrinsically typed syntax of BiSikkel. One could use reflection techniques to
quote the Agda syntax and analyze the abstract syntax tree. The proof assistant Coq has a rich
tradition of Coq-to-Coq translations. In particular, Jaber et al. [2012] interpret non-modal Coq
syntax in an internal presheaf model different from Hofmann’s [1997], and Jaber et al. [2016] even
manage to preserve conversion. This alternative presheaf model has not, to our knowledge, been
studied as a model of multimode type theory.

Data Availability Statement
We provide a virtual machine on which the BiSikkel library, as well as compatible versions of
Agda and its standard library, have been installed [Ceulemans et al. 2024b]. All code related to the
examples in this paper is also included. Furthermore, the BiSikkel library and code for the examples
is also available on GitHub [Ceulemans et al. 2024a].

21https://github.com/agda/agda/issues/3750 and https://github.com/agda/agda/issues/6696
22More precisely, we cannot support a type encoding rule (for converting types to universe terms), nor can we allow the
decoding rule to reflect judgmental equality. Nothing prevents us, of course, from extending BiSikkel with an inductive
universe, just as we can extend BiSikkel with other inductive types.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

https://github.com/agda/agda/issues/3750
https://github.com/agda/agda/issues/6696

8:28 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

Acknowledgments
Joris Ceulemans held a PhD fellowship (1184122N) of the Research Foundation – Flanders (FWO)
while working on this research. Andreas Nuyts holds a Postdoctoral fellowship (1247922N and
12AB225N) of the Research Foundation – Flanders (FWO). This research is partially funded by the
Research Fund and Internal Funds KU Leuven, and by the Research Foundation – Flanders (FWO,
G0G0519N and G030320N).

References
Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers: Constructing Strictly Positive Types.

Theoretical Computer Science 342, 1 (2005), 3–27. https://doi.org/10.1016/j.tcs.2005.06.002
Andreas Abel. 2006. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph. D. Dissertation. Ludwig-Maximilians-

Universität München.
Andreas Abel. 2008. Polarised Subtyping for Sized Types. Mathematical Structures in Computer Science 18, 5 (2008), 797–822.

https://doi.org/10.1017/S0960129508006853
Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2017a. Decidability of Conversion for Type Theory in Type Theory.

Proc. ACM Program. Lang. 2, POPL, Article 23 (dec 2017), 29 pages. https://doi.org/10.1145/3158111
Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical

Methods in Computer Science Volume 8, Issue 1 (March 2012), 1–36. https://doi.org/10.2168/LMCS-8(1:29)2012
Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. 2017b. Normalization by Evaluation for Sized Dependent Types.

Proc. ACM Program. Lang. 1, ICFP, Article 33 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110277
The Agda Community. 2024. A Standard Library for Cubical Agda. https://github.com/agda/cubical
The Agda Development Team. 2024. Agda. https://wiki.portal.chalmers.se/agda
Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. 2021. A Type- and Scope-safe

Universe of Syntaxes with Binding: Their Semantics and Proofs. J. Funct. Program. 31 (2021), e22. https://doi.org/10.
1017/S0956796820000076

Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Filippo Sestini. 2021. Constructing a Universe
for the Setoid Model. In Foundations of Software Science and Computation Structures, Stefan Kiefer and Christine Tasson
(Eds.). Springer International Publishing, Cham, 1–21. https://doi.org/10.1007/978-3-030-71995-1_1

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Forsberg. 2018. Quotient Inductive-
Inductive Types. In Foundations of Software Science and Computation Structures, Christel Baier and Ugo Dal Lago (Eds.).
Springer International Publishing, Cham, 293–310. https://doi.org/10.1007/978-3-319-89366-2_16

Thorsten Altenkirch and Ambrus Kaposi. 2016. Type Theory in Type Theory Using Quotient Inductive Types. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 18–29. https://doi.org/10.1145/2837614.2837638

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational Equality, Now!. In Proceedings of the
2007 Workshop on Programming Languages Meets Program Verification (Freiburg, Germany) (PLPV ’07). Association for
Computing Machinery, New York, NY, USA, 57–68. https://doi.org/10.1145/1292597.1292608

Thorsten Altenkirch and Peter Morris. 2009. Indexed Containers. In Proceedings of the 24th Annual IEEE Symposium on
Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. IEEE Computer Society, Washington D.C.,
277–285. https://doi.org/10.1109/LICS.2009.33

Robert Atkey and Conor McBride. 2013. Productive Coprogramming with Guarded Recursion. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13). Association
for Computing Machinery, New York, NY, USA, 197–208. https://doi.org/10.1145/2500365.2500597

Jeremy Avigad, Leonardo de Moura, and Soonho Kong. 2017. Theorem Proving in Lean. https://leanprover.github.io/
theorem_proving_in_lean/index.html

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent
Types. Springer Berlin Heidelberg, Berlin, Heidelberg, 365–379. https://doi.org/10.1007/978-3-540-78499-9_26

Viktor Bense, Ambrus Kaposi, and Szumi Xie. 2024. Strict Syntax of Type Theory via Alpha-normalisation. In 30th
International Conference on Types for Proofs and Programs (TYPES). 65–67. https://types2024.itu.dk/abstracts.pdf#page=75

Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, and Bas Spitters. 2020. Modal
Dependent Type Theory and Dependent Right Adjoints. Mathematical Structures in Computer Science 30, 2 (2020),
118–138. https://doi.org/10.1017/S0960129519000197

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First Steps in Synthetic Guarded
Domain Theory: Step-indexing in the Topos of Trees. Logical Methods in Computer Science Volume 8, Issue 4 (Oct. 2012),
45 pages. https://doi.org/10.2168/LMCS-8(4:1)2012

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1145/3158111
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/3110277
https://github.com/agda/cubical
https://wiki.portal.chalmers.se/agda
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1007/978-3-030-71995-1_1
https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1109/LICS.2009.33
https://doi.org/10.1145/2500365.2500597
https://leanprover.github.io/theorem_proving_in_lean/index.html
https://leanprover.github.io/theorem_proving_in_lean/index.html
https://doi.org/10.1007/978-3-540-78499-9_26
https://types2024.itu.dk/abstracts.pdf#page=75
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.2168/LMCS-8(4:1)2012

BiSikkel: A Multimode Logical Framework in Agda 8:29

John Cartmell. 1986. Generalised Algebraic Theories and Contextual Categories. Ann. Pure Appl. Log. 32 (1986), 209–243.
https://doi.org/10.1016/0168-0072(86)90053-9

Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. 2022. Sikkel: Multimode Simple Type Theory as an Agda
Library. In Proceedings Ninth Workshop on Mathematically Structured Functional Programming (Electronic Proceedings in
Theoretical Computer Science, Vol. 360), Jeremy Gibbons and Max S. New (Eds.). Open Publishing Association, Munich,
Germany, 2nd April 2022, 93–112. https://doi.org/10.4204/EPTCS.360.5

Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. 2024a. BiSikkel. https://github.com/JorisCeulemans/bisikkel.
Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. 2024b. BiSikkel (a multimode logical framework in Agda) VM.

https://doi.org/10.5281/zenodo.13939916
Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. 2024c. A Sound and Complete Substitution Algorithm for

Multimode Type Theory. In 29th International Conference on Types for Proofs and Programs (TYPES 2023) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 303), Delia Kesner, Eduardo Hermo Reyes, and Benno van den Berg
(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 4:1–4:23. https://doi.org/10.4230/LIPIcs.
TYPES.2023.4

James Chapman. 2009. Type Theory Should Eat Itself. Electronic Notes in Theoretical Computer Science 228 (2009), 21–36.
https://doi.org/10.1016/j.entcs.2008.12.114 Proceedings of the International Workshop on Logical Frameworks and
Metalanguages: Theory and Practice (LFMTP 2008).

Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. 2017. The Guarded Lambda-Calculus: Programming
and Reasoning with Guarded Recursion for Coinductive Types. Logical Methods in Computer Science Volume 12, Issue 3
(April 2017), 39 pages. https://doi.org/10.2168/LMCS-12(3:7)2016

Jesper Cockx, Dominique Devriese, and Frank Piessens. 2014. Pattern Matching without K. SIGPLAN Not. 49, 9 (aug 2014),
257–268. https://doi.org/10.1145/2692915.2628139

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. Cubical Type Theory: A Constructive Interpreta-
tion of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 5:1–5:34. https://doi.org/10.4230/LIPIcs.TYPES.2015.5

Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal Metatheory of Second-order Abstract Syntax. Proc. ACM Program.
Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498715

Daniel Gratzer. 2022. Normalization for Multimodal Type Theory. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science (Haifa, Israel) (LICS ’22). Association for Computing Machinery, New York, NY, USA, Article
2, 13 pages. https://doi.org/10.1145/3531130.3532398

Daniel Gratzer and Lars Birkedal. 2022. A Stratified Approach to Löb Induction. In 7th International Conference on
Formal Structures for Computation and Deduction (FSCD 2022) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 228), Amy P. Felty (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 23:1–23:22.
https://doi.org/10.4230/LIPIcs.FSCD.2022.23

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021. Multimodal Dependent Type Theory. Logical Methods
in Computer Science Volume 17, Issue 3 (July 2021), 67 pages. https://doi.org/10.46298/lmcs-17(3:11)2021

Adrien Guatto. 2018. A Generalized Modality for Recursion. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY,
USA, 482–491. https://doi.org/10.1145/3209108.3209148

Martin Hofmann. 1995. Extensional Concepts in Intensional Type Theory. Ph. D. Dissertation. University of Edinburgh.
College of Science and Engineering. https://era.ed.ac.uk/handle/1842/399

Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. Cambridge University Press, Cambridge, Chapter 4,
79–130.

Jason Z. S. Hu and Jacques Carette. 2021. Formalizing Category Theory in Agda. In Proceedings of the 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs (Virtual, Denmark) (CPP 2021). Association for Computing
Machinery, New York, NY, USA, 327–342. https://doi.org/10.1145/3437992.3439922

Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau, and Nicolas Tabareau. 2016. The Definitional Side
of the Forcing. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (New York, NY, USA)
(LICS ’16). Association for Computing Machinery, New York, NY, USA, 367–376. https://doi.org/10.1145/2933575.2935320

Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. 2012. Extending Type Theory with Forcing. In Proceedings of the
27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012) (Dubrovnik, Croatia). IEEE Computer Society
Press, Washington D.C., 395–404. https://doi.org/10.1109/LICS.2012.49

Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. Electr. Notes Theor. Comput. Sci. 276 (2011),
263–289. https://doi.org/10.1016/j.entcs.2011.09.026

Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018. Internal Universes in Models of Homotopy Type Theory.
In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018) (Leibniz International

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.4204/EPTCS.360.5
https://github.com/JorisCeulemans/bisikkel
https://doi.org/10.5281/zenodo.13939916
https://doi.org/10.4230/LIPIcs.TYPES.2023.4
https://doi.org/10.4230/LIPIcs.TYPES.2023.4
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.2168/LMCS-12(3:7)2016
https://doi.org/10.1145/2692915.2628139
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3209108.3209148
https://era.ed.ac.uk/handle/1842/399
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/2933575.2935320
https://doi.org/10.1109/LICS.2012.49
https://doi.org/10.1016/j.entcs.2011.09.026

8:30 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

Proceedings in Informatics (LIPIcs), Vol. 108), Hélène Kirchner (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 22:1–22:17. https://doi.org/10.4230/LIPIcs.FSCD.2018.22

Daniel R. Licata and Michael Shulman. 2016. Adjoint Logic with a 2-Category of Modes. In Logical Foundations of
Computer Science - International Symposium, LFCS 2016, Deerfield Beach, FL, USA, January 4-7, 2016. Proceedings (Lecture
Notes in Computer Science, Vol. 9537), Sergei N. Artëmov and Anil Nerode (Eds.). Springer, Cham, 219–235. https:
//doi.org/10.1007/978-3-319-27683-0_16

Alexandre Miquel. 2001. The Implicit Calculus of Constructions. In Typed Lambda Calculi and Applications, Samson
Abramsky (Ed.). Springer, Berlin, Heidelberg, 344–359. https://doi.org/10.1007/3-540-45413-6_27

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems. In Foundations of Software
Science and Computational Structures, Roberto Amadio (Ed.). Springer, Berlin, Heidelberg, 350–364. https://doi.org/10.
1007/978-3-540-78499-9_25

Hiroshi Nakano. 2000. A Modality for Recursion. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer
Science. IEEE, Washington D.C., 255–266. https://doi.org/10.1109/LICS.2000.855774

nLab authors. 2024. Functoriality of Categories of Presheaves. https://ncatlab.org/nlab/show/functoriality+of+categories+
of+presheaves. Revision 7.

Paige Randall North. 2018. Towards a Directed Homotopy Type Theory. CoRR abs/1807.10566 (2018), 17 pages.
arXiv:1807.10566 http://arxiv.org/abs/1807.10566

Andreas Nuyts. 2023a. Higher Pro-arrows: Towards a Model for Naturality Pretype Theory. In Workshop on Homotopy Type
Theory / Univalent Foundations. 4 pages. https://hott-uf.github.io/2023/HoTTUF_2023_paper_1410.pdf

Andreas Nuyts. 2023b. A Lock Calculus for Multimode Type Theory. In 29th International Conference on Types for Proofs and
Programs (TYPES). 3 pages. https://lirias.kuleuven.be/retrieve/720873

Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance,
Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing
Machinery, New York, NY, USA, 779–788. https://doi.org/10.1145/3209108.3209119

Andreas Nuyts and Dominique Devriese. 2019. Menkar: Towards a Multimode Presheaf Proof Assistant. In TYPES. 4 pages.
https://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_33

Andreas Nuyts and Dominique Devriese. 2024. Transpension: The Right Adjoint to the Pi-type. Logical Methods in Computer
Science Volume 20, Issue 2 (June 2024), 54 pages. https://doi.org/10.46298/lmcs-20(2:16)2024

Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Parametric Quantifiers for Dependent Type Theory. Proc.
ACM Program. Lang. 1, ICFP, Article 32 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110276

Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In LICS ’01. IEEE,
Washington D.C., 221–230. https://doi.org/10.1109/LICS.2001.932499

Frank Pfenning and Rowan Davies. 2001. A Judgmental Reconstruction of Modal Logic. Mathematical Structures in Computer
Science 11, 4 (2001), 511–540. https://doi.org/10.1017/S0960129501003322

Josselin Poiret, Lucas Escot, Joris Ceulemans, Malin Altenmüller, and Andreas Nuyts. 2023. Read the Mode and Stay Positive.
In 29th International Conference on Types for Proofs and Programs (TYPES). 3 pages. https://lirias.kuleuven.be/retrieve/
720869

Jason Reed. 2003. Extending Higher-Order Unification to Support Proof Irrelevance. In Theorem Proving in Higher Order
Logics, David Basin and Burkhart Wolff (Eds.). Springer, Berlin, Heidelberg, 238–252. https://doi.org/10.1007/10930755_16

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of
the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983, R. E. A. Mason (Ed.). North-Holland/IFIP,
Amsterdam, 513–523.

Michael Shulman. 2023. Semantics of Multimodal Adjoint Type Theory. Electronic Notes in Theoretical Informatics and
Computer Science Volume 3 - Proceedings of MFPS XXXIX (Nov. 2023), 19 pages. https://doi.org/10.46298/entics.12300

Philipp Stassen, Daniel Gratzer, and Lars Birkedal. 2023. mitten: A Flexible Multimodal Proof Assistant. In 28th International
Conference on Types for Proofs and Programs (TYPES 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 269),
Delia Kesner and Pierre-Marie Pédrot (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
6:1–6:23. https://doi.org/10.4230/LIPIcs.TYPES.2022.6

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. 2019. Cubical Syntax for Reflection-Free Extensional Equality. In
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 31:1–31:25. https://doi.org/10.4230/LIPIcs.FSCD.2019.31

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. http:
//homotopytypetheory.org/book, Institute for Advanced Study.

Niccolò Veltri and Andrea Vezzosi. 2020. Formalizing 𝜋-Calculus in Guarded Cubical Agda. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1109/LICS.2000.855774
https://ncatlab.org/nlab/show/functoriality+of+categories+of+presheaves
https://ncatlab.org/nlab/show/functoriality+of+categories+of+presheaves
https://ncatlab.org/nlab/revision/functoriality+of+categories+of+presheaves/7
https://arxiv.org/abs/1807.10566
http://arxiv.org/abs/1807.10566
https://hott-uf.github.io/2023/HoTTUF_2023_paper_1410.pdf
https://lirias.kuleuven.be/retrieve/720873
https://doi.org/10.1145/3209108.3209119
https://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_33
https://doi.org/10.46298/lmcs-20(2:16)2024
https://doi.org/10.1145/3110276
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1017/S0960129501003322
https://lirias.kuleuven.be/retrieve/720869
https://lirias.kuleuven.be/retrieve/720869
https://doi.org/10.1007/10930755_16
https://doi.org/10.46298/entics.12300
https://doi.org/10.4230/LIPIcs.TYPES.2022.6
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

BiSikkel: A Multimode Logical Framework in Agda 8:31

Computing Machinery, New York, NY, USA, 270–283. https://doi.org/10.1145/3372885.3373814
Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2021. Cubical Agda: A Dependently Typed Programming Language

with Univalence and Higher Inductive Types. J. Funct. Program. 31 (2021), e8. https://doi.org/10.1017/S0956796821000034

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 8. Publication date: January 2025.

https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1017/S0956796821000034

	Abstract
	1 Introduction
	2 A Brief Overview of Sikkel
	2.1 Syntactic Layer: Multimode Simple Type Theory (MSTT)
	2.2 Semantic Layer: Presheaf Models
	2.3 Extraction to the Metalevel

	3 Why a Dedicated Logical Framework?
	3.1 Motivating Example: Guarded Recursion
	3.2 Proving a Property of g-iterate
	3.3 A Logical Framework vs. Dependent Types

	4 µLF, A Proof System for MSTT
	4.1 Propositions & Proof Contexts
	4.2 Axioms & Inference Rules
	4.3 Continuing the g-iterate Example
	4.4 Another Example: Unary Parametricity

	5 Implementation of µLF in Agda
	5.1 Agda Representation of Proofs
	5.2 The Proof Checker
	5.3 Proof Extraction
	5.4 Substitution and (Fueled) Normalization for MSTT

	6 Conclusion, Related Work and Future Work
	6.1 Universal Algebra and Formalizations of Type Theory
	6.2 Integration with Existing Category Libraries
	6.3 Equality in the Metatheory
	6.4 Reflection

	Acknowledgments
	References

