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Abstract

It is well-known that a functor between base categories, leads to an adjoint triple between presheaf
categories. Here, we discuss how a profunctor between base categories, leads to an adjoint pair between
presheaf categories. The former result can be recovered from the latter: a functor has a companion and
a conjoint profunctor, each of which leads to an adjoint pair between the presheaf categories. It turns
out that these pairs have one functor in common and as such constitute an adjoint triple. We give
explicit constructions, but the result also follows from well-known categorical facts, so no particular
novelty is claimed.

Notation 0.1. We use the presheaf notations from earlier work [Nuy20, §2.3.1], concretely:

• The application of a presheaf Γ ∈ Psh(W) to an object W ∈ W is denoted W ⇒ Γ. An element
γ : W ⇒ Γ is called a cell of Γ of shapeW .

• The restriction of γ : W ⇒ Γ by φ : V → W , i.e. the action of Γ on φ applied to γ, is denoted
γ ◦ φ or γφ : V ⇒ Γ.

• The application of a presheaf morphism σ : Γ → ∆ to γ : W ⇒ Γ is denoted σ ◦ γ or σγ. By
naturality of σ, we have σ ◦ (γ ◦ φ) = (σ ◦ γ) ◦ φ.

If W has a terminal object, then we call a cell ⊤ ⇒ Γ a point.

Notation 0.2. We will always regard profunctors as functors to presheaf categories, i.e. a profunctor
Wop × V → Set will be studied in swapped-curried form V → Psh(W).

1 Lifting Functors
This section is taken verbatim from [Nuy20, §2.3.8].

Theorem 1.1. Any functor F : V → W gives rise to functors F! ⊣ F ∗ ⊣ F∗, with a natural isomorphism
F! ◦ y ∼= y ◦ F : V → Psh(W). [Sta19, nLa24b]

The operation ⌞⌟∗ : Catcoop → Cat sending F : V → W to F ∗ : Psh(W) → Psh(V) is a strict
2-functor. Hence ⌞⌟!, ⌞⌟∗ : Cat → Cat are pseudofunctors.

Proof. Using quantifier symbols for ends and co-ends, we can define:

W ⇒ F!Γ := ∃V.(W → FV )× (V ⇒ Γ),

V ⇒ F ∗∆ := FV ⇒ ∆

W ⇒ F∗Γ := ∀V.(FV → W ) → (V ⇒ Γ) = (F ∗yW → Γ).

By the co-Yoneda lemma, we have, naturally in W :

W ⇒ F!yV = ∃V ′.(W → FV ′)× (V ′ → V )
∼= (W → FV ) = (W ⇒ yFV ),
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i.e. F!yV ∼= yFV .
Adjointness also follows from applications of the Yoneda and co-Yoneda lemmas. [Sta19]
It is evident from the definition of ⌞⌟∗ that it preserves identity and composition on the nose, and easy

to check that it turns around natural transformations. By uniqueness of the left/right adjoint, ⌞⌟! and ⌞⌟∗
are then pseudofunctors.

2 Lifting Profunctors
Theorem 2.1. Any profunctor F : V → Psh(W) gives rise to functors F⊙ ⊣ F⊙, with a natural
isomorphism F⊙ ◦ y ∼= F . The functor F⊙ is therefore called the Yoneda-extension of F [nLa24c].

Proof. Using quantifier symbols for ends and co-ends, we define:

W ⇒ F⊙Γ := ∃V.(W ⇒ FV )× (V ⇒ Γ),

V ⇒ F⊙∆ := ∀W.(W ⇒ FV ) → (W ⇒ ∆).

By the co-Yoneda lemma, we have, naturally in W :

W ⇒ F⊙yV = ∃V ′.(W ⇒ FV ′)× (V ′ → V )
∼= (W ⇒ FV ),

i.e. F⊙yV ∼= FV .
To see adjointness, we have a chain of natural isomorphisms:

F⊙Γ → ∆ = ∀W.(W ⇒ F⊙Γ) → (W ⇒ ∆)

= ∀W.(∃V.(W ⇒ FV )× (V ⇒ Γ)) → (W ⇒ ∆)
∼= ∀W.∀V.(W ⇒ FV ) → (V ⇒ Γ) → (W ⇒ ∆)
∼= ∀V.(V ⇒ Γ) → ∀W.(W ⇒ FV ) → (W ⇒ ∆)

= ∀V.(V ⇒ Γ) → (V ⇒ F⊙∆)

= Γ → F⊙∆.

Remark 2.2. When we view profunctors W ↛ V as functors Wop × V → Set, then

• the identity profunctor V ↛ V is the functor Hom : Vop × V → Set,
• the composite of Q : W ↛ V and P : V ↛ U is given by:

(Q⊗P)(U,W ) = ∃V.Q(W,V )× P(V,U).

If instead we view profunctors W ↛ V as functors V → Psh(W), then

• the identity profunctor V ↛ V is the functor y : V → Psh(V),
• the composite of G : V → Psh(W) and F : U ↛ Psh(V) is given by:

W ⇒ (F >=>G)U = ∃V.(W ⇒ GV )× (V ⇒ FU)

= W ⇒ G⊙FU.

On a side note: yes, Psh is a 2-monad1 with unit y and yes, the 2-category of categories and profunctors
is the Kleisli-2-category of Psh, just like the category of sets and relations is the Kleisli-category of the
powerset monad.

Theorem 2.3. The operations ⌞⌟⊙ and ⌞⌟⊙ are pseudofunctors w.r.t. identity and composition of pro-
functors.

1If we ignore size issues, otherwise it is may be only a relative 2-monad.
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Proof. By adjointness, it suffices to show this for ⌞⌟⊙. For the identity, we have:

V ⇒ y⊙Γ = ∃V ′.(V ⇒ yV ′)× (V ′ ⇒ Γ)

= ∃V ′.(V → V ′)× (V ′ ⇒ Γ)
∼= V ⇒ Γ

For composition, we have:

W ⇒ (G⊙F )⊙Θ = ∃U.(W ⇒ G⊙FU)× (U ⇒ Θ)

= ∃U.(∃V.(W ⇒ GV )× (V ⇒ FU))× (U ⇒ Θ)
∼= ∃V.(W ⇒ GV )× (∃U.(V ⇒ FU)× (U ⇒ Θ))

= ∃V.(W ⇒ GV )× (V ⇒ F⊙Θ)

= W ⇒ G⊙F⊙Θ.

We do not consider the associahedra.

3 Lifting Companion and Conjoint Profunctors
Remark 3.1. To a functor F : V → W , we can generally associate

• a companion profunctor Hom(F⌞⌟, ⌞⌟) : Vop ×W → Set,
• a conjoint profunctor Hom(⌞⌟, F⌞⌟) : Wop × V → Set.

Viewing profunctors as functors to the presheaf category, we get instead:

• as the companion, the functor F ∗ ◦ y : W → Psh(V),
• as the conjoint, the functor y ◦ F : V → Psh(W).

Theorem 3.2. For a functor F : V → W , we have:

(y ◦ F )⊙ = F!, (y ◦ F )
⊙ ∼= F ∗ ∼= (F ∗ ◦ y)⊙, F∗ = (F ∗ ◦ y)⊙.

Proof. We have

W ⇒ (y ◦ F )⊙Γ = ∃V.(W ⇒ yFV )× (V ⇒ Γ)

= ∃V.(W → FV )× (V ⇒ Γ)

= F!Γ,

V ⇒ (y ◦ F )
⊙
∆ = ∀W.(W ⇒ yFV ) → (W ⇒ ∆)

= ∀W.(W → FV ) → (W ⇒ ∆)
∼= FV ⇒ ∆ = V ⇒ F ∗∆,

V ⇒ (F ∗ ◦ y)⊙∆ = ∃W.(V ⇒ F ∗yW )× (W ⇒ ∆)

= ∃W.(FV → W )× (W ⇒ ∆)
∼= FV ⇒ ∆ = V ⇒ F ∗∆,

W ⇒ (F ∗ ◦ y)⊙Γ = ∀V.(V ⇒ F ∗yW ) → (V ⇒ Γ)

= F ∗yW → Γ = W ⇒ F∗Γ.

4 At a Higher Level
I personally like to brute-force presheaf details, but the existence of pseudofunctorial operations ⌞⌟⊙
and ⌞⌟⊙ can also be argued at a higher level. It is known that Psh(W) is the free cocompletion of W ,
with y : W → Psh(W) embedding the original. Then it is clear that a profunctor F : V → Psh(W)

3



can be extended cocontinuously along y : V → Psh(V) to F⊙ : Psh(V) → Psh(W), since Psh(W) is
cocomplete. Now F⊙ is a cocontinuous functor between cocomplete categories and thus [nLa24a] has a
right adjoint F⊙.

If we want to define ⌞⌟! at a high level, we would simply specialize the above reasoning to a pure
functor, i.e. we define F! = (y ◦ F )⊙. We could similarly define F∗ = (F ∗ ◦ y)⊙, where F ∗ is defined by
precomposition, as usual.

Finally, we need to show
(y ◦ F )

⊙ ∼= F ∗ ∼= (F ∗ ◦ y)⊙.

Since colimits in presheaf categories are taken pointwise, F ∗ is clearly cocontinuous, so we can prove that
F ∗ ∼= (F ∗ ◦ y)⊙ by proving that they extend the same functor W → Psh(V) along y : W → Psh(W).
Now by construction of ⌞⌟⊙, we have (F ∗ ◦ y)⊙ ◦ y ∼= F ∗ ◦ y, so this is in fact trivial.

Finally, using just a small amount of brute force, the construction of right adjoint functors to cocon-
tinuous functors between presheaf categories, works by setting (W ⇒ RΓ) := (LyW → Γ). When we
apply this to (y ◦ F )

⊙, we find:

W ⇒ (y ◦ F )
⊙
Γ = (y ◦ F )⊙yW → Γ

∼= yFW → Γ
∼= W ⇒ F ∗Γ.
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