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Vulgariserende samenvatting

Topologie is voor elastische voorwerpen wat meetkunde is voor starre voorwerpen. In de
meetkunde werken we doorgaans in het vlak, de ruimte of een meer-dimensionale veral-
gemening, en we beschrijven de dingen aan de hand van een assenstelsel, coördinaten en
een notie van afstand. In topologie werken we in een topologische ruimte; hier kan je in
veel gevallen over nadenken als een verzameling (meer-dimensionale) elastische voorwer-
pen. Omdat je deze kan uitrekken en vervormen, zijn coördinaten en afstand geen goede
manier om topologische ruimten te beschrijven; in de plaats worden open en gesloten
verzamelingen gebruikt om de vorm van de ruimte te karakteriseren.

Type theory is een wiskundige formulering van een veiligheidsmechanisme dat gebruikt
wordt in statisch getypeerde programmeertalen. In dergelijke talen heeft elke waarde, en
elk hokje dat een waarde kan bevatten, een type, en het is slechts toegestaan een waarde in
een hokje te steken als de types overeenkomen. Bijvoorbeeld, in een klantendatabase heeft
elke klant een geboortejaar en een geboorteplaats. Het geboortejaar heeft als type ‘geheel
getal’, de geboorteplaats ‘string’ (een opeenvolging van letters). Als de programmeur zich
vergist en het geboortejaar toekent aan het hokje voor de geboorteplaats, zal de compiler
opmerken dat deze types verschillen, en dit programma niet aanvaarden.

Dependent type theory, een gesofisticeerdere variant van type theory, laat toe om elke
wiskundige stelling te vertalen in het type van alle bewijzen van die stelling. Zo kan een
programmeur een programma doorspekken met bewijzen over het gedrag van datzelfde
programma. Als een bewijs niet correct blijkt, zal de compiler opmerken dat het niet het
juiste type heeft en het programma niet aanvaarden. Dit laat de ontwikkeling van veilige
software toe, en maakt het ook mogelijk om wiskundige bewijzen te laten verifiëren door
een computer.

Categorietheorie is een tak van de wiskunde die de notie van transformaties in hoge
algemeenheid bestudeert. Een categorie is gedefinieerd als een collectie objecten, met voor
elke twee objecten x en y een verzameling van alle ‘morfismen’ (transformaties) die x tot
y transformeren. Elk object heeft een ‘identiek’ morfisme naar zichzelf, dat overeenkomt
met niets doen. Verder kunnen we een morfisme van x naar y samenstellen met een
morfisme van y naar z om een morfisme van x naar z te bekomen. Een hogere categorie
bevat niet enkel morfismen tussen objecten, maar ook morfismen tussen morfismen tussen
objecten, en morfismen tussen morfismen tussen morfismen tussen objecten, en zo tot in
het oneindige. Een∞-groupoid is een hogere categorie waarin alle morfismen omkeerbaar
zijn.

Homotopy type theory (HoTT) is een recente ontwikkeling van dependent type theory
die een verband legt tussen topologische ruimten, ∞-groupoids en types. Dit verband
laat toe om aan computergeverifieerde topologie en categorietheorie te doen, en leidt
anderzijds tot nieuwe inzichten in dependent type theory.

ix



x VULGARISERENDE SAMENVATTING

Het doel van deze thesis is om homotopy type theory aan te passen zodat het verband
met∞-groupoids verruimt tot een verband met hogere categorieën in het algemeen. Niet-
omkeerbare morfismen, die dus een vaste oriëntatie hebben, krijgen dan een tegenhanger
in type theory. Men spreekt van georiënteerde of directed type theory. Dit lijkt de
expressiviteit van HoTT aanzienlijk te versterken, wat zowel de software- als wiskundige
toepassingen ten goede komt.



English abstract

Type theory is a mathematical formulation of a safety mechanism for programming lan-
guages. Dependent type theory (such as Martin-Löf type theory, MLTT) is a more in-
volved variant of type theory that is a sufficiently expressive environment for doing logic.
As such, it can serve as a foundation for mathematics [Uni13], and it also brings flexible
formal proving to programming languages, which is promising when it comes to writing
software for critical applications where bugs could endanger lives.

In MLTT, objects can be judgementally equal, meaning they are absolutely the same
and indistinguishable, or propositionally equal, meaning one is ‘as good as’ the other.
Ordinary MLTT basically interprets the latter notion as the former: an object is only
equal to itself and only in one way. Homotopy type theory (HoTT) is a recent development
of MLTT, which revises the way we think about equality. It starts from the observation
that any notion of isomorphism fulfils all the axioms that are required of propositional
equality, except the principle of uniqueness of identity proofs [Uni13, §7.2], which states
that two objects can only be equal in a single way.

Based on that observation, HoTT replaces uniqueness of identity proofs with the uni-
valence axiom, which asserts that any two equivalent (i.e. isomorphic) types are equal.
This axiom turns out to imply a similar principle in more generality, for example [Uni13,
§2.14] proves that isomorphic semigroups are equal. That is an extremely useful fea-
ture when using type theory as a foundation for mathematics, as we are even using this
principle in mathematics founded on set theory, where strictly speaking, it doesn’t hold.

The structure of a collection of objects with a sense of isomorphism, is captured by a
groupoid: a category in which all morphisms are invertible. This indicates that in HoTT,
we should think of types as groupoids. Since the isomorphisms between two objects are
also contained in a type, they form a groupoid again. So we are really dealing with
groupoids enriched over groupoids enriched over . . . , which is called ∞-groupoids. The
homotopy hypothesis [Uni13, §2.intro] provides a further interpretation of∞-groupoids as
topological spaces, in which isomorphisms between objects correspond to paths between
points. This means that, apart from allowing exciting new ideas and results in type
theory, HoTT also allows us to do ∞-groupoid theory and topology in a constructive,
computer-verified manner.

Groupoids are a special case of categories and algebraic topology has been generalized
to directed algebraic topology [Gra09] with unidirectional paths. It has been investi-
gated how we could modify type theory to create a notion of unidirectional equality (i.e.
morphism) [LH11][Lic11][Shu11][War13]. Licata and Harper [LH11][Lic11] restrict the
problem to two-dimensional categories. All of the cited approaches are successful at, or
have good hopes of proving consistency of the modified theory; all of them have limited
success at fully describing functorial behaviour and morphism types with succinct, elegant

xi
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and familiar inference rules.
In this thesis, I propose a modification of HoTT that allows us to reason about mor-

phisms, without sacrificing any concepts from the original theory. The core idea is that
although we want as many things as possible to be functorial, either co- or contravariant,
some functions simply aren’t. This leads to the conclusion that we need invariant func-
tions that do not preserve morphisms, although they do preserve propositional equality
(isomorphisms) just as functions in HoTT do. A fourth kind of variance, called isovari-
ance, maps morphisms to equality. Combined with dependent types, isovariant functions
turn out to be extremely valuable when reasoning about commuting diagrams.

Chapter 1 contains an informal introduction to type theory, homotopy type theory
and the work presented in this thesis.

Chapter 2 defines homotopy type theory step by step and immediately generalizes
every step to the directed case. Additionally, a few aspects of directed HoTT that are
not generalizations of something in symmetric HoTT (which is just a name that we shall
use for HoTT in order to emphasize the contrast), such as opposite types and morphism
types, are also defined.

Chapter 3 takes the core ideas and results from symmetric HoTT and generalizes
them to directed HoTT. Many of them turn out to become richer and sometimes a bit
more obscure. There will be two univalence axioms, relating the ∞-groupoid structure
on every type induced by propositional equality, the category structure on every type
induced by the morphism type, and the category structure on the universe – the type of
types – induced by functions. These will be justified from their analogy with the original
univalence axiom, and from an analogy with a treatment of categories within HoTT given
in [Uni13, ch.9].

Chapter 4 contains a stub of a consistency proof, relative to MLTT. It is neither formal
nor complete, partially due to time restrictions, partially because we will actually run into
problems. I think these problems are not necessarily symptomatic of inconsistency; rather,
they indicate that the categorical counterpart of something simple and elegant in type
theory, may be extremely complicated.

A peculiar phenomenon that gets some attention in every chapter, are bridges. This
is a kind of additional and unexpected structure that appears to be present in every type.
It is suspect, because it does not seem to have a counterpart in category theory; zigzags
of morphisms

a boo // c doo // e foo

seem to be the closest, yet they are quite different. It is unclear to me at this point
whether bridges are a genuinely interesting concept, or rather a consequence of a poor
design choice in the theory’s definition. Surprisingly, they are not the number one problem
in the consistency argument in chapter 4. In fact, we can find an ad hoc interpretation
of bridges in every type.

Finally, chapter 5 concludes the thesis with a demonstration of the directed version of
the idea that isomorphic structures are equal: an informal proof that a group morphism
implies a type theoretical morphism; followed by a brief discussion of possible applications
and interesting directions for future research.



Nederlandstalige abstract

Typetheorie is een wiskundige formulering van een veiligheidsmechanisme in program-
meertalen. Dependent type theory (zoals Martin-Löf type theory, MLTT) is een uitge-
breidere variant van typetheorie die voldoende expressief is om mee aan logica te doen.
Het kan daardoor dienen als fundering voor de wiskunde [Uni13], en maakt een flexibele
vorm van formele bewijzen mogelijk in programmeertalen, wat veelbelovend is met het oog
op software voor kritische toepassingen, waar bugs bijvoorbeeld levens in gevaar zouden
kunnen brengen.

In MLTT kunnen objecten enerzijds oordeelsmatig gelijk zijn, wat betekent dat ze
absoluut dezelfde en ononderscheidbaar zijn; en anderzijds propositioneel gelijk, wat
betekent dat ze ‘voor elkaar kunnen doorgaan.’ Gewone MLTT interpreteert proposi-
tionele gelijkheid in feite als oordeelsmatige gelijkheid: een object is alleen gelijk aan
zichzelf en dat slechts op één manier. Homotopy type theory (HoTT) is een recente on-
twikkeling van MLTT die de manier waarop we over gelijkheid nadenken, herbekijkt. Het
uitgangspunt is de observatie dat eenderwelke notie van isomorfisme aan alle axioma’s
voldoet die we opleggen aan gelijkheid, behalve aan het principe van uniciteit van geli-
jkheidsbewijzen [Uni13, §7.2], dat stelt dat twee objecten slechts op één enkele manier
gelijk kunnen zijn.

Omwille van die observatie vervangt HoTT de uniciteit van gelijkheidsbewijzen door
het univalentieaxioma, dat elke twee equivalente (d.w.z. isomorfe) types gelijkstelt. Dit
axioma blijkt een gelijkaardig maar algemener principe te impliceren, zo bewijst [Uni13,
§2.14] bijvoorbeeld dat isomorfe halfgroepen gelijk zijn. Dat is een erg nuttige eigenschap
als we typetheorie als fundering voor de wiskunde willen gebruiken, aangezien we dat
principe zelfs toepassen wanneer we wiskunde schragen op verzamelingenleer, hoewel het
dan strikt genomen niet geldt.

De structuur van een verzameling objecten met een notie van isomorfisme kan men
vatten in het concept van een groupoid: een categorie waarin alle morfismen inverteerbaar
zijn. Dit duidt erop dat we types in HoTT moeten zien als groupoids. Aangezien de iso-
morfismen tussen twee objecten ook bevat zijn in een type, vormen ook zij een groupoid.
We hebben dus te maken met groupoids, verrijkt over groupoids verrijkt over . . . , wat
we ∞-groupoids noemen. De homotopiehyptohese [Uni13, §2.intro] laat een verdere in-
terpretatie van ∞-groupoids als topologische ruimten toe, waarbij isomorfismen tussen
objecten overeenkomen met paden tussen punten. Dit betekent dat HoTT niet alleen
leidt tot boeiende nieuwe ideeën en resultaten in typetheorie, maar ook toelaat om aan
∞-groupoidtheorie en zelfs topologie te doen op een constructieve, computergeverifieerde
manier.

Groupoids zijn een speciaal geval van categorieën en algebräısche topologie is ver-
algemeend naar georiënteerde algebräısche topologie met eenrichtingspaden. Men heeft
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onderzocht hoe we typetheorie kunnen aanpassen om een notie van georiënteerde geli-
jkheid (m.a.w. morfisme) te creëren [LH11][Lic11][Shu11][War13]. Licata en Harper
[LH11][Lic11] beperken het probleem tot tweedimensionale categorieën. Alle geciteerde
benaderingen van het probleem slagen erin of hebben er een goed oog op dat ze de con-
sistentie van de aangepaste theorie kunnen bewijzen; alle boeken ze minder succes als het
erop aankomt functorieel gedrag en morfismetypes te beschrijven met bondige, elegante
en vertrouwde inferentieregels.

In deze thesis stel ik een aanpassing van HoTT voor die toelaat om over morfismen
te redeneren, zonder enige concepten uit de originele theorie op te offeren. Het centrale
idee is dat, hoewel we zoveel mogelijk verbanden functorieel willen houden (co- of con-
travariant), sommige functies gewoon geen functoren zijn. Dit leidt tot de conclusie dat
we invariante functies nodig hebben die geen morfismen bewaren, hoewel ze wel propo-
sitionele gelijkheid (isomorfisme) bewaren, net zoals functies in HoTT dat doen. Een
vierde soort variantie, genaamd isovariantie, beeldt morfismen af op gelijkheid. In com-
binatie met dependent types, blijken isovariante functies buitengewoon waardevon in het
redeneren over commutatieve diagrammen.

De inleiding in hoofdstuk 1 bevat een informele kennismaking met typetheorie, homo-
topy type theory en het werk dat in deze thesis wordt uiteengezet.

Hoofdstuk 2 definieert homotopy type theory stap voor stap en veralgemeent on-
middellijk elke stap naar het georiënteerde geval. Verder worden enkele aspecten van
georiënteerde HoTT gedefinieerd die geen veralgemening zijn van iets uit symmetrische
HoTT (zo zullen we HoTT noemen om het contrast met georiënteerde HoTT te beklem-
tonen), zoals opposite types en types van morfismen.

Hoofdstuk 3 presenteert de centrale ideeën en resultaten van symmetrische HoTT
en veralgemeent deze naar georiënteerde HoTT. Veel ervan blijken rijker te worden en
sommige ook iets obscuurder. Er zullen twee univalentieaxioma’s nodig zijn, die de
∞-groupoidstructuur op elk type gëınduceerd door propositionele gelijkheid, de cate-
goriestructuur op elk type gëınduceerd door morfismen, en de categoriestructuur op het
universum (het type van types) gëınduceerd door functies, aan elkaar relateren.

Hoofdstuk 4 bevat een aanzet tot consistentiebewijs vanuit de consistentie van MLTT.
Dit bewijs is noch formeel, noch volledig; deels omwille van tijdgebrek en deels omdat
er zich wezenlijke problemen voordoen. Ik denk niet dat die problemen per se symp-
tomen zijn van inconsistentie; ze duiden er wellicht eerder op dat de categorietheoretische
tegenhanger van iets wat eenvoudig en elegant is in typetheorie, extreem ingewikkeld kan
zijn.

Een merkwaardig fenomeen dat enige aandacht krijgt in elk hoofdstuk, zijn bruggen.
Dit is een soort van onverwachte, bijkomdende structuur die aanwezig schijnt te zijn in
elk type. Het is verdacht, omdat er geen tegenhanger in categorietheorie te vinden lijkt
te zijn; zigzags van morfismen

a boo // c doo // e foo

komen het dichtste in de buurt, maar verschillen niettemin wezenlijk. Het is me op dit
moment niet duidelijk of bruggen een echt interessant concept zijn, of eerder een gevolg
van een suboptimale designkeuze bij het vastleggen van de theorie. Verbazend genoeg zijn
bruggen niet het hoofdprobleem in het consistentieargument in hoofdstuk 4. We kunnen
er integendeel voor elk type een ad hoc interpretatie voor vinden.
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De thesis eindigt in hoofdstuk 5 met een demonstratie van de georiënteerde versie van
het idee dat isomorfse structuren gelijk zijn: een informeel bewijs dat een groepsmorfisme
een typetheoretisch morfisme impliceert; gevolgd door een korte discussie van mogelijke
toepassingen en interessante pistes voor verder onderzoek.
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Chapter 1

Introduction

1.1 Dependent type theory

At the most fundamental level, we can only say two things in type theory. We can say
that an object a lives in type A, denoted a : A, and we can say that two elements a and b
of the same type A are judgementally equal: a ≡ b : A. These two kinds of assertions are
called judgements. Both objects a and b, as well as the type A may depend on variables
xi that are assumed to take values in certain types Ti of our choice. These assumptions
are an integral part of the judgement: if we want to be explicit, we can write

x1 : T1, . . . , xn : Tn ` a : A. (1.1)

This means that we cannot, ever, talk about a value without mentioning its type, and
we cannot state that a type contains a value without giving it. Moreover, it means that
at the most fundamental level, there are no implications, conjunctions, etc. The following
claim is therefore nonsense – it is not true or untrue; rather, it cannot be said:

If x ≡ y : A, then z : C. (1.2)

And yet in the abstract we claimed that MLTT is sufficiently expressive for doing logic
and even founding mathematics. How does this work?

The answer is the following: propositions correspond to types. We can encode a
proposition as the type of all its proofs, and we can read a type A as the proposition
‘A is inhabited’. To see that these are inverses, note that the proposition ‘The types of
proofs of P is inhabited’ is logically equivalent to P , and that the type of proofs that A
is inhabited, is simply A.1

If propositions can take the form of types, then we need a way to say that a type is
“true”. There is no specific judgement available for this. Instead, we will just reuse the
judgement x : X to say that X is true. So we cannot say “X is true” as such, but we
can say “x proves X.” And when we use the theorem X to prove the theorem Y , then
we will have to use the proof x to construct a proof y : Y . This means there is no way to
get rid of the proof. It remains with us forever.

1Both claims are disputable; they are intended as informal arguments.

1
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The Curry-Howard correspondence

This section is based on [Uni13, §1.11].
In this section, we will establish the Curry-Howard correspondence between propo-

sitions and types. The easiest and least exciting direction is to translate a type into a
proposition: whenever we have a type A, we can read it as “A is inhabited.” In the
rest of this section, we will consider all components of formulas from first order logic and
see if we can find a counterpart in MLTT, thus establishing the other direction of the
correspondence. As we go, we will also discover the basic types of MLTT, which will be
defined more elaborately in chapter 2.

> The proposition “true” is translated into the type 1, which has a single element ? : 1.
Indeed, it holds, as is proven by ?. We could also have translated “true” into the
naturals, which hold too (e.g. ` 7 : N), but 1 has the advantage that it has a unique
proof.

⊥ The proposition “false” should not have any terms. Hence, we translate it into the
empty type 0. There is no judgement to say that a proposition does not hold, but
the inference rules of MLTT allow us to create an element of any type from an
element of 0, i.e. to prove any proposition from 0. Then at least 0 is the falsest
type available.

∧ If A and B are true, then they both have a proof. We put those proofs in a pair and
find that the cartesian product A× B is true. Conversely, if A× B is true, we use
the coordinate projections to find that both A and B are true.

⇒ If A implies B, then surely from a proof of A, we can craft a proof of B. Thus we
can build a function A→ B. Conversely, if f : A→ B and a : A, then f(a) : B.

⇔ In first order logic, the formula ϕ⇔ χ is equivalent to (ϕ⇒ χ)∧ (χ⇒ ϕ). Similarly,
in type theory, we will state “A if and only if B” as the type (A→ B)× (B → A).
When this type contains a term, we will say that A and B are logically equivalent.
Because there is more to say about a type than whether or not it has a term, there
will be stronger notions of sameness; see section 3.3.

∨ The coproduct A+B contains for any element a : A an element inl a : A+B, and for
any b : B an element inr b : A+B. As such, we can prove A+B from either A or B.
Conversely, if C holds whenever A or B holds (so that we have proofs f : A → C
and g : B → C), then we can prove A + B → C by mapping inl a to f(a) and inr b
to g(b).

¬ Although we have a notion of truth, there is no obvious notion of falsehood. One
might suggest that a type is false if it is not inhabited, but there is no judgement for
stating that a type is empty. However, we may state that A implies a contradiction:
A → 0. Take heed, though, because there is no general way to create a term of
A from a term of (A→ 0) → 0. So in type theory, we generally drop the law of
excluded middle A+ (A→ 0), which is stronger than ((A→ 0)→ 0)→ A.

∀ How could we formulate the proposition “For every term a of A, it is true that P (a)”?
The proposition P (a) is a type, so we can see the property P as a function from A
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to the universe, which is the type of types: P : A→ U. Then, given a : A, we need
to find a term p(a) : P (a). So apparently p is a function for which the type of the
output depends on the value of the input. Such functions are called dependent
functions and their appearance is typical for dependent type theories. The type of
dependent functions is denoted using a product sign,

∏
a:A P (a), as we can view it

as the cartesian product of all types P (a).

∃ How could we formulate “There is an a : A so that P (a)”? If we want to prove it, we
should give an a : A and a proof p : P (a). So we need a type of pairs, where the
type of the second component depends on the value of the first component. Such
pairs are called dependent pairs, and again, they are characteristic for dependent
type theories. The type of dependent pairs is denoted using a summation sign,∑

a:A P (a), because we can view it as the coproduct or disjoint union of all types
P (a).

∈ Here, we arrive at a point where type theoretical logic differs strongly from set theory’s
first order logic. Whereas x ∈ X is a proposition as any other, x : X is a judgement
and cannot be incorporated in a proposition. It would not be useful anyway, because
in type theory, a judgement never contains a term that we do not know the type of.
However, in specific cases, there may be an appropriate translation. For example, for
a function f : X → Y , the proposition y ∈ imf is equivalent to ∃x ∈ X : f(x) = y,
which translates into the type

∑
x:X f(x) =Y y.

= We need to be able to say that two objects a, b : A are propositionally equal, so
apparently there has to be a type a =A b of proofs that a and b are equal. MLTT
usually has uniqueness of identity proofs, which asserts that a =A b can have at
most one element. In HoTT, this rule is abandoned in favour of the interpretation
of elements of a =A b as isomorphisms from a to b. If we interpret types as ∞-
groupoids, then a =A b is the Hom-groupoid between a and b. If we think of them
as topological spaces, then a =A b is the path space. These so-called identity types
are defined in section 2.15.

≡ Judgemental equality cannot be stated as a proposition, only as a judgement, which
is why it is called judgemental equality. Moreover, a type that encodes a ≡ b can
be shown to break down the ∞-groupoid structure of types in HoTT.

Proving and programming

In a statically typed programming language such as Java, every value has a type and we
have a type checker which gives errors at compile time when we use a value of a certain
type in a location where a different type is required. In such a language, we can write
expressions, define methods, define classes, define interfaces etc. These things are by no
means equivalent.

A functional programming language such as Haskell has first class functions, which
means that defining a function becomes a special case of spelling out an expression.
However, we still have types and typeclasses, which are fundamentally different from
expressions. Calculating a Haskell function has no side effects, which means that if we
apply the same function call with the same arguments twice, the returned values must
be interchangeable. Then an object is entirely determined by its construction. This is
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also the case in MLTT: an object can be seen as a tuple of symbols and these symbols
describe how the object was created.

The functional programming language Agda comes even closer to MLTT. It has not
only first class dependent functions, but also first class types, so that even defining a
type becomes a special case of spelling out an expression. It allows so-called inductive
type definitions, which allows programmers to define all the types from the Curry-Howard
correspondence and many more, and it has a pattern matching syntax that is analogous
to MLTT’s rules for creating functions. Typeclasses are not available in Agda and can
actually be built using dependent pair types.

To summarize: absolutely the only thing one can do (and would want to do) in Agda
is spelling out expressions, have them type checked and give them a name. This sounds
a lot like what we are doing in MLTT! In fact, it is as good as the same thing: an Agda-
program is an expression and an expression is an object. This is interesting, because a
proof is also an object, and if Agda can type check an object, then it can check whether a
proof belongs to the type it is supposed to belong to, i.e. whether it proves the theorem it
is supposed to prove. So if we found mathematics on MLTT, then software for verifying
proofs is already available.

For more about Haskell, see [Lip11]. For more about Agda, see [Nor09] or [BD09].

Proof relevance and constructiveness

A proof of the proposition “For every a : A, there exists a b : B so that P (a, b)” is a term
p :
∏

a:A

∑
b:B P (a, b). Then given a : A, we can actually compute a value b :≡ prl(p(a)) : B

that satisfies P (a, b). This is a remarkable feature of MLTT: every proof is constructive.
The price we paid for this, is that we dropped the law of excluded middle. Indeed, if we
would postulate an axiom

lem :
∏
A:Ui

A+ (A→ 0), (1.3)

then we can prove many more theorems, but their proofs would contain the ugly term
lem which we know nothing about and which obstructs computation. Moreover, it would
be inconsistent with the univalence axiom [Uni13, intro].

Remember that there is no way of saying X is true, without saying x : X, and that
whenever we prove a theorem Y from X, we will be using x in the construction of y.
This means that we should think twice before choosing how to prove a theorem. Because
suppose we give a proof x for a basic theorem X today, and tomorrow someone uses it
to give a proof p of

∏
a:A

∑
b:B P (a, b) as above. The proof p is constructive and yields a

function f :≡ λa.prl(p(a)) : A → B. Then the choices we made in constructing x, may
influence the output values of the function f .

In type theory, we are doing proof relevant mathematics: the fact that a type may
have multiple, distinct values, means that a proposition may have multiple substantially
different proofs, and it matters which proof we give. In terms of programming, we might
say that the announcement of a theorem is the declaration of a variable, and the proof is
the definition of its value.
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1.2 Homotopy type theory

Classical MLTT has uniqueness of identity proofs [Uni13, §7.2] (or equivalently, axiom
K), which states that two objects can be propositionally equal only in one way, i.e. all
elements of a =A b are equal. Using the Curry-Howard correspondence, we can write it
as

uip :
∏
a,b:A

∏
p,q:a=b

p =a=b q. (1.4)

Here,
∏

a,b:A should be seen as an abbreviation of
∏

a:A

∏
b:A. With this rule, we can

interpret any type as a set with an equivalence relation: elements of the type are inter-
preted as elements of the set, judgemental equality is interpreted as being the same, and
propositional equality is interpreted as being equivalent.

Homotopy type theory (HoTT) starts from the observation that after removing uip,
the inference rules of type theory allow propositional equality to be interpreted as a weak
∞-groupoid structure. A groupoid is a category in which all morphisms are invertible, an
∞-groupoid is roughly a groupoid enriched over the∞-groupoids. Ours are weak, because
they only satisfy the∞-groupoid laws up to isomorphism. In this interpretation, elements
of a type correspond to objects of the ∞-groupoid, judgemental equality corresponds to
being the same, identity types correspond to Hom-groupoids, and proofs of equality thus
correspond to isomorphisms.

Of course, if we just remove uip, there is a degree of arbitrariness to what this groupoid
structure means, as is evident from the fact that it is sound to unremove uip. Voevodsky’s
univalence axiom determines the meaning of propositional equality by postulating that
propositional equality of types is the same as equivalence (a name used in this context for
isomorphism). This assertion turns out to be sufficient to conclude a more general these:
isomorphism of any kind of structures is the same as propositional equality.

Every topological space has a fundamental ∞-groupoid and every ∞-groupoid has
a geometric realization as a topological space. The homotopy hypothesis/theorem (de-
pending on your definition of ∞-groupoids) asserts that these two functors are adjoint
and preserve homotopy theory: the subdiscipline of topology that studies only notions
that can be formulated in terms of points and paths [Uni13, §2.intro]. This means in
particular that it is more or less justified to think of∞-groupoids, and therefore of types,
as topological or at least homotopical spaces. In this interpretation, elements of a type
correspond to points in the space, judgemental equality corresponds to being the same,
identity types correspond to path spaces, proofs of equality correspond to paths, and a
proof that two paths are equal corresponds to a homotopy between them.

As propositional equality is supposed to be a notion of equality, we expect to be able
to construct from a function f : A → C, a proof of (a =A b) → (f(a) =C f(b)) for all
a, b : A. Fortunately, the rules of type theory allow us to do this (see section 3.2). In
the groupoid interpretation, this means that such functions preserve isomorphisms, which
are the only morphisms present in a groupoid. In other words, they are functors. In the
homotopical interpretation, this means that functions preserve paths, which can be seen
as a notion of continuity.

Of course, in dependent type theory, we also have dependent functions f :
∏

a:AC(a).
They, too, should preserve equality, but it is a bit less straightforward to state this.
Suppose that we have elements a, b : A and a path p : a =A b (note that we are importing
topological terminology to type theory here). Then we would like to prove that f(a) and
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f(b) are equal, but they live in different types: f(a) : C(a) and f(b) : C(b). These types
are not necessarily judgementally equal, so we cannot state equality just like that. Of
course, as C : A → U is a non-dependent function from A to the type of types U (called
the universe), we do know that C(a) =U C(b) and fortunately, one can prove that any two
propositionally equal types are also equivalent. Thus, we have a function p∗ : C(a)→ C(b)
that allows us to transport f(a) to C(b). Then we can state that p∗(f(a)) =C(b) f(b).
This will be how dependent functions preserve equality.

Homotopy type theory can serve as a foundation for mathematics, where it provides the
principle that isomorphism implies equality, which is absent in set theory, notwithstanding
its everyday use by mathematicians. Moreover, it allows us to ‘program’ topological spaces
and in particular do contructive algebraic topology in a computer verified way.

Finally, if computational problems of HoTT can be solved (the univalence axiom
gets in the way of computation by asserting that a function is invertible without giving
the inverse), then this could allow programmers to switch flexibly between equivalent
representations of the same data.

1.3 Directed type theory

There have been some investigations already to modifying type theory so as to broaden the
correspondence of types with ∞-groupoids to general higher categories with potentially
non-invertible morphisms. The to my knowledge most elaborate and only published work
is on two-dimensional directed type theory, by Licata and Harper [LH11][Lic11]. After
a brief overview of their work and a mention of other efforts, follows an overview of
the approach to directed HoTT taken here and a discussion of what I think are the
contributions of this thesis to the subject.

1.3.1 Two-dimensional directed type theory

This part is based on [LH11] and [Lic11, ch.7-8], which also contains research conducted
jointly with R. Harper. Notations are adapted to suit better with the rest of this thesis.

Licata and Harper present a theory called two-dimensional directed type theory (2DTT).
It is directed, in the sense that for any type A, we can speak of unidirectional morphisms
ϕ : a  b between terms a, b : A which generalize the notion of invertible paths from
HoTT. It is two-dimensional, in the sense that a type A may have several distinct terms,
and there may be several distinct morphisms a b, but two morphisms ϕ, χ : a b are
either judgementally equal or different. There is no family of objects that express some
other particular relation between ϕ and χ.

Although we can speak of morphisms, they are not contained in a type. Rather, on
top of the judgements a : A and a ≡ b : A, there are judgements for reasoning about
morphisms:

ϕ : a b : A ϕ is a morphism from a : A to b : A,

ϕ ≡ χ : a b : A ϕ and χ are judgementally equal morphisms from a : A to b : A.

All of these judgements can be stated in a context of variables xi that are assumed to
live in types Ti of our choice. What is notably different from MLTT, is that each of these
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variables gets a variance vi and can only be used in vi-variant positions. An example of
a complete judgement is:

x1 :v1 T1, . . . , xn :vn Tn ` ϕ : a b : A. (1.5)

When we have a morphism ϕ : a  a′ : A and for every x :+ A a type B[x],
i.e. when B[x] is a type family covariant in x, then we can build from this a function
ϕ∗ : B[a] → B[a′], where X → Y is, just as in MLTT, the type of functions from X to
Y .2 However, if for every x :− A we have a type C[x], i.e. when C[x] is a type family
contravariant in x, then we get a function ϕ∗ : C[a′]→ C[a].

There is a generalization of dependent types. When B[x] is a type family contravariant
in x :− A, then we can form the type of dependent functions

∏
x:AB[x]. When for every

x :− A, b[x] : B[x] is a term depending contravariantly on x, then we can form

f :≡ x 7→ b[x] :
∏
x:A

B[x], (1.6)

and whenever ϕ : x y : A, we will find some χ : ϕ∗(b[y]) b[x] : B[x].
Consistency of this theory is shown by interpreting every judgement as a statement

about the category Cat of categories, where types are interpreted as objects of Cat,
i.e. categories, and the elements/morphisms of a type are (roughly) interpreted as ob-
jects/morphisms of the corresponding category.

There are a few drawbacks to this generalization of MLTT that will be addressed in
by the theory presented in this thesis:

• 2DTT is finite dimensional and therefore it only limitedly accommodates the corre-
spondence between type theory, higher category theory and algebraic topology on
which HoTT is based. The authors write encouragingly:

“Although it is not necessary for the applications we consider here, it
seems likely that 2DTT could be extended to higher dimensions, and that
more general interpretations are possible.” [LH11]

• The fact that every assumption has to be either co- or contravariant, means that
we have to abolish the Martin-Löf identity type. Indeed suppose that a = 2 is
covariant. Then if we have a morphism ϕ : a b : A, it yields a function ϕ∗ : (a =
a) → (a = b), so ϕ∗(refl a) proves a = b. Then unidirectional morphism implies
identity which is precisely what we didn’t want to happen. A similar argument
shows that a = 2 cannot be contravariant.

In [Lic11, §8.2.5], a way of discretizing types is suggested: for every type A, there
would be a type !A which has the same elements but forgets the morphism part of
A. Then we could express that elements a, b : A are equal by saying !a  !b : !A.
However, as all functions in 2DTT are either co- or contravariant, there can be no
function !2 : A→ !A; there is only !−1 : !A→ A.

The directed HoTT presented here will remedy this situation by allowing also in-
variant functions which do not preserve all morphisms. There will be a type Acore

that is analogous to the discretization found in [Lic11].

2In fact, the paper does not explicitly introduce a type of covariant, non-dependent functions. However,
at the very least, we may prove Γ, b :+ B[a] ` ϕ∗(b) : B[a′], where Γ is the context needed to derive the
premises.



8 CHAPTER 1. INTRODUCTION

• 2DTT does not distinguish between variance of types and variance of their elements.
In particular, the judgement x :+ S, y :− T ` a : A (in which x and y are variable
symbols and the rest are expressions) can only be derived when a and A both depend
contravariantly on y and covariantly on x. Moreover, because a is covariant in y, the
variance of T in x must be opposite to the variance of a and A in x: contravariant.
In other words, the variance of T in x, a in y and A in y are all determined by a
single boolean.

To see that this is a problem, suppose we want to derive x :+ S ` (y 7→ c[y]) :∏
y:T C[y]. As the dependent function type should be contravariant in its domain,

this means that T must be contravariant in x so that
∏

y:T C[y] depends covariantly
on x through T , as required.

The intended judgement is derived from a judgement of the form x :+ S, y :2 T `
c[y] : C[y]. Since T is contravariant in x, we can only fill out the hole with a
minus, for contravariance. This means that all dependent functions have to be
contravariant. Indeed, [LH11] only allows the creation of contravariant functions.
Covariant dependent functions are suggested in [Lic11, §8.2.4], but they diverge
from the familiar notion of covariant functions. In particular, the type itself takes
a context and a substitution as arguments, and is covariant in its domain.

The theory presented in this thesis distinguishes between variance of types and their
elements and allows dependent function and pair types of every variance, over type
families that possibly have different variance.

• There is no type of morphisms and in particular, there is no induction principle. In
section 2.16, I propose a definition of morphism types that is remarkably similar to
the definition of identity types.

A clear drawback of the theory described in this thesis, is that consistency is an open
problem.

1.3.2 Other related work

There have been other, non-published efforts at developing a directed homotopy type
theory. Michael Warren [War13] suggests a rule that allows one to define functions that
take a string of three morphisms

a // b // c // d (1.7)

as argument, by only providing function values for

b
id b // b // c

id c // c, (1.8)

subject to a few further constraints that make it impossible to prove equality from a
morphism. His theory does not keep track of variance judgementally.

Michael Shulman [Shu11] axiomatizes the internal logic of a 2-category. It does not
keep track of variance judgementally, as all morphisms in a 2-category behave like covari-
ant functors. As such, there is a functoriality rule that asserts that any function preserves
morphisms. Most of the axioms will be provable in directed HoTT as presented here,
many are actually proven in chapter 3.
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1.3.3 Directed homotopy type theory

The goal of this thesis is to make small and/or elegant modifications to the foundations of
homotopy type theory in order to obtain types of morphisms without losing the identity
types. This means that there will be two structures on every type: an ∞-groupoid
structure induced by the identity type, and a category structure induced by the morphism
type. Each of these have a degree of arbitrariness in them. Just like the univalence axiom
related the identity types to the category structure induced by functions on the universe,
we will have two univalence axioms: one that states that a proof of equality is the same
as an isomorphism, and one that states that a morphism between types is the same as a
covariant function. This will, again, lead to a more general principle analogous to the idea
that isomorphic structures can always be identified: a morphism in the context-dependent
sense will be the same as a morphism in the type-theoretic sense, as demonstrated in
section 5.1.

Just like 2DTT, we will be keeping track of variance judgementally. As the problems
with identity types in 2DTT indicated, we need a third kind of variance on top of co- and
contravariance, for functions that are essentially non-functorial: invariance.

Calling them non-functorial is a bit too reckless, however: we want any function,
even invariant ones, to respect propositional equality, and our univalence axioms state
that propositional equality is the same as isomorphism. As such, an invariant function
is one that maps isomorphisms to isomorphisms, but potentially discards non-invertible
morphisms.

Now that we’ve broken the taboo of inventing new kinds of variance, why stop? Given
objects a, b : A and a function f : A→ C, we have five obvious relations between its func-
tion values: f(a)  C f(b), f(a)  C f(b), f(a) =C f(b), 1 and 0. Covariant functions
map a morphism ϕ : a A b to the first, contravariant functions to the second, and invari-
ant functions to the fourth. Functions that map any morphism to a path/isomorphism,
will be called isovariant. What about functions that map any non-invertible ϕ : a A b
to 0? Such a function is essentially a function of arbitrary variance plus a proof that its
domain is a groupoid. Groupoids will be an important concept in directed HoTT and are
investigated in sections 2.12 and 3.7.

Just like a contravariant function A
−→ C is the same as a covariant function Aop +→ C,

there will be a type Acore (the core of A), which is A with all non-invertible morphisms
removed, and a type Aloc (the localization of A), which is A with all morphisms turned

into isomorphisms, so that an invariant function A
×→ C is the same as a covariant

function Acore +→ C, and an isovariant function A
=→ C is the same as a covariant function

Aloc +→ C. The operations 2core and 2loc, seen as 1-functors from the category of categories
Cat to the category of groupoids Grpd, are right and left adjoint to the forgetful functor
Grpd → Cat. [nLa12] This can be seen as an indication that isovariance and invariance
are actually the interesting notions to consider.

Variance in higher categories is extremely subtle, however. Consider the functor 2op:
it preserves morphisms. Indeed, by the univalence axioms, morphisms between types are

covariant functions, and a covariant function f : A
+→ C clearly leads to a covariant

function f ′ : Aop +→ Cop. However, take two covariant functions f, g : A
+→ C and a

natural transformation ν : f  g. This will give rise to a reversed natural transformation
ν ′ : g′  f ′. So 2op preserves morphisms contravariantly. This indicates that, to fully
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express the variance of a function, we need an infinite sequence of tokens in {+,−,=,×}.
In the remainder of this thesis, we take the following approach, which originally seemed
simplifying but in hindsight was not necessarily a good idea:

• A covariant function A
+→ C is a function that is covariant at all levels.

• A contravariant function A
−→ C is a function that reverts morphisms covariantly.

The corresponding sequence of tokens is −0 +1 +2 +3 . . . This is, for example, the
variance of 2 b.

• An isovariant function A
=→ C maps morphisms to proofs of equality. As the identity

type can be shown to be a groupoid, higher variance is immaterial.

• An invariant function A
×→ C discards morphisms, so higher variance, at first sight,

is immaterial.

• Functions of any other variance will be weakened to match one of these four. This
is always possible, since invariance is the weakest possible variance.

What about dependent functions? In symmetric HoTT (i.e. classical HoTT without
directed morphisms), the only relation to be preserved is propositional equality, and
whenever a =A b, we know that C(a) = C(b) so that in particular, these types are
equivalent and elements can be transported to and fro.

In directed HoTT, a first thing to be noted is that the variance of the function need
not match the variance of the type family. For example, it makes sense to consider

contravariant functions f :
∏−

x:AC(x) for a covariant type family C : A
+→ U. Indeed, if

we have a morphism ϕ : a  A b, then we get a function ϕ∗ : C(a)
+→ C(b) so that f(a)

can be transported to ϕ∗(f(a)) : C(b) and contravariance of f should allow us to find a
morphism f(b) C(b) ϕ∗(f(a)).

Although the variance of C and f do not match in this example, we did critically use
the fact that C somehow preserves the structure from A. Can we allow invariant type
families?

We first take a look at a special case of invariant functions: if C(a, b) is contravariant

in a and covariant in b, then a
×7→ C(a, a) is an invariant function A

×→ U. This is all
but a rare situation: any function that is constructed from co-, contra- and isovariant,
but not invariant functions takes this form. Now can we speak of a covariant function
f :
∏+

x:AC(x, x)? In fact, the notion does make sense: from a morphism ϕ : a  A b, we
get functions

C(a, a)
ϕ∗−→ C(a, b)

ϕ∗←− C(b, b), (1.9)

which allow us to transport f(a) and f(b) to a common type C(a, b). Then the covariance
of f should allow us to find a morphism ϕ∗(f(a)) C(a,b) ϕ

∗(f(b)).

Suppose that C(A,A) is the type of binary operations on A: C(A,B) :≡ A
+→ A

+→ B.

Then if we have a morphism, i.e. a covariant function f : A
+→ B and we want to

transport operations ∗ : A
+→ A

+→ A and � : B
+→ B

+→ B to the common type

A
+→ A

+→ B for comparison, then one can show that the transported values become
f(2 ∗ 2) and f(2) � f(2) respectively. This already smells of a general definition of
morphisms; promising!



1.3. DIRECTED TYPE THEORY 11

In section 3.4, we show that we can even consider variance of dependent functions into

a truly invariant type family, such as a
×7→ f(a) = g(a), which clearly should not preserve

morphisms and also does not allow obviously transport to a common type. Therefore, we
will allow dependent function and pair types over any type family of any variance.

The observation that invariant type families C allow us to compare elements of C(a)
and C(b) ‘along’ a morphism ϕ : a b, indicates that invariant functions do not entirely
discard morphisms and in particular, that Acore contains more structure than just the
isomorphisms of A. We will call this structure ‘bridges’ and this thesis contains a lot of
pondering and very few formal statements about them.

In particular, this means that we have to consider how functions act on bridges. As
the category structure on bridges is not entirely clear at this point, the reasoning about
variance will be a bit less thought out when it comes to bridges. The mother of all invariant

functions is the function A
×→ Acore, which apparently maps morphisms to bridges. We

conclude that invariant functions map morphisms to bridges. Because a composition of
invariant functions is again invariant, they should also preserve bridges.

• As invariance has to be the weakest of all variances (so that we can weaken any
complicated variance to invariance), we cannot make any assumptions about the
variance of the action of invariant functions on bridges and morphisms. We will
assume that invariant functions map bridges and morphisms to bridges invariantly.

• It seems reasonable to assume that co- and contravariant functions preserve bridges
covariantly.

• Isovariant functions will map bridges to isomorphisms. As the identity type is a
groupoid, the variance of the action of isovariant functions on bridges is unimpor-
tant.

I believe that the fact that invariant type families map morphisms to relations is a
correct and important observation, but the reader will agree that the treatment here in
terms of bridges is in many ways unsatisfactory.

1.3.4 Contributions

This thesis contains a systematic and careful analysis of the variance of most basic de-
pendencies in homotopy type theory, and seems to be the first effort of this kind and size.
The idea to consider invariance and isovariance as worthy peers of co- and contravariance
appears to be novel; invariance appears in other work under the same name, I have not
found any account of isovariance. Both concepts pop up naturally when analysing HoTT.

Section 2.16 presents the first inductive definition for a morphism type family, along
with an induction principle that matches the definition.

Although a distant analogue may exist in category theory, most likely in the context
of Grothendieck fibrations, the observation that invariant type families map morphisms
to relations, so that it makes sense to speak of co-, contra- and isovariant dependent
functions into invariant type families, is new for a notion of invariance that is as broad as
the one we have here.

The absence of a credible consistency proof and the poor understanding of bridges,
somewhat reduce the value of the work. However, I hope that the reader will find enough
arguments throughout the text to see past these flaws.
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Chapter 2

Dependent type theory, symmetric
and directed

In the previous chapter, we gave an informal introduction to MLTT, HoTT and directed
HoTT. In this chapter and the next one, we will construct a more formal theory for
(symmetric) HoTT (heavily based on [Uni13]) and, simultaneously, for directed HoTT.
We will do this incrementally, by presenting a morsel of formal HoTT, then adapting
this to the directed case, and then moving on to the next morsel. The directed parts
are marked with a line in the margin as a reminder of where you are. The main and
ever-recurring challenge in these parts is to get the variances right.

In this chapter, we are mostly concerned with basic MLTT which does not especially
exploit the groupoid structure of types. It is nevertheless recommendable to keep the
groupoid interpretation in mind, as the directed generalization of MLTT will take the
higher category structure of types into consideration. We will be mostly defining basic
types, postponing the analysis of their behaviour to the next chapter.

The parts about MLTT and HoTT are generally heavily based on [Uni13], whereas
the parts about directed HoTT are my own work, sometimes inspired by [LH11].

2.1 Judgements and contexts

This section is based on [Uni13, §1.1 and A.2].

In symmetric HoTT

Presumably the first question one wants to have answered when introduced to type theory
is: What is a type? However, the problem is that types, just like sets, are a fundamental
concept of their theory and thus have no definition as such. Rather, their properties
emerge from the underlying logic. Therefore, it is useful to start this introduction by
answering the question: what are the most fundamental assertions, the so called judge-
ments we can make in type theory? Before we answer that question, let us ask the same
question about set theory with first order logic.

There, the objects we are manipulating in the metatheory are formulas, whereas the
sets are simply a metaphor used for making sense of the formulas. For example, the
formula

∃z : z ∈ x ∧ (∀y : ¬(y ∈ z)) (2.1)

13
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could be read as “The set x has an element z that is empty,” and of course the inference
rules of first order logic and the axioms of set theory are designed for this interpretation
to be sensible, but in the end the formula is just a list of symbols. In first order logic,
any formula ϕ gives rise to a judgement

` ϕ (2.2)

which should be read “The formula ϕ is provable”, and any judgement is of this form
[Uni13, §1.1]. We then have a collection of inference rules that state under what cir-
cumstances we may conclude that a judgement holds. For example we have an inference
rule

` ϕ ` ϕ⇒ χ

` χ
(2.3)

which states that for any formulas ϕ and χ, we may deduce ` χ if we know that ` ϕ and
` ϕ⇒ χ.

Now we go back to type theory. There, our judgements take a more complicated form.
They may look, for example, like this:

x1 : A1, x2 : A2, . . . , xn : An ` b : B. (2.4)

where x1, . . . , xn are variable symbols and A1, . . . , An, b and B are terms (tuples of
symbols). Every term Ai may contain the symbols x1, . . . , xi−1; and the terms b and
B may contain all variable symbols introduced on the left. The judgement could be
pronounced: “When x1 is an element of type A1, x2 is an element of type A2, . . . , xn is
an element of type An, then b is an element of type B.” The part on the left of the ` is
called the context. There are only three kinds of judgements:

Γ ` b : B, (2.5)

Γ ` b ≡ c : B, (2.6)

Γ ` Ctx. (2.7)

The first one states, just as above, that under the assumptions of the context Γ, b is an el-
ement of type B. The second one states that in the context Γ, b and c are judgementally
equal terms of B, which will have a meaning of being completely identifiable; the same
by definition. The third one is more technical and simply states that Γ is a meaningful
context.

In addition, we have an impressive collection of inference rules at our disposal to
conclude new judgements from old ones. Given the nature of our judgements, it is unsur-
prising that the inference rules are mainly concerned with modifying the context, building
terms and types, and occasionally concluding judgemental equality. In what follows, we
will usually not be referring to judgements explicitly, but it is good to know that anything
we state in type theory, ultimately has to be formulated as a judgement.

Inference rules are denoted by writing a number of judgements, the premises, above
a line, and another judgement, the conclusion, below. On the right, we will sometimes
write the rule’s name. We begin with two very basic rules. The first one states that the
empty context is meaningful:

` Ctx
emtpyCtx (2.8)
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And the second one states that when, under assumptions Γ, A is a type (i.e. an element of
some type of types Uk, see section 2.3), it is meaningful to assume that A has an element:

Γ ` A : Uk
Γ, x : A ` Ctx

extendCtx (2.9)

As a convention, any unexplained symbols in an inference rule are universally quantified
over. For example, this rule holds for any context Γ.

In directed HoTT

If we want to generalize HoTT to a directed type theory, we will have to account
for the variance of assumptions in our judgements. In 2DTT [LH11], there are two
possibilities: assumptions are either covariant or contravariant. When a term b[x] : B
depends covariantly (or contravariantly) on a variable x : A, then from a morphism
ϕ : a a′ we may conclude that b[a] b[a′] (or b[a′] b[a] respectively). However,
the identity type x =A y cannot be co- or contravariant in x or y, because this would
allow us to prove identity from a morphism (see section 1.3.1).

Thus, we have to allow for a third kind of variance: we will allow invariant
assumptions, so that when a term b[x] : B depends invariantly on a variable x : A,
a morphism ϕ : a  A a′ tells us (almost) nothing about b[a] and b[a′]. Almost,
because there will still be a weak connection b[a] _ b[a′] which we will call a bridge.
This notion is somewhat problematic and is investigated further in section 3.5 and
chapter 4. There are identity bridges a _ a and we can involute a bridge β : a _ a′

to obtain β† : a′ _ a. A bridge A _ B between types will be a binary relation
between A and B. Additionally, invariant functions do preserve isomorphisms, as
we will have a univalence axiom that makes isomorphism coincide with propositional
equality, which is always preserved.

In fact, we will also allow a fourth kind of variance: when b[x] : B depends
isovariantly on x : A, then from a morphism ϕ : a  a′, we may conclude that
b[a] = b[a′]. And there is more: even a bridge a _ a′ will imply that b[a] = b[a′].

The following table summarizes how functions of each variance act on different
kinds of connections (a  b :≡ b a):

a _ b a b a  b a = b
invariant × f(a) _ f(b) f(a) _ f(b) f(a) _ f(b) f(a) = f(b)
covariant + f(a) _ f(b) f(a) f(b) f(a)  f(b) f(a) = f(b)
contravariant − f(a) _ f(b) f(a)  f(b) f(a) f(b) f(a) = f(b)
isovariant = f(a) = f(b) f(a) = f(b) f(a) = f(b) f(a) = f(b)

Of course, all these actions are functions, e.g. if f is contravariant, we get functions
f : (a b)→ (f(b) f(a)), so we may ask one level higher: what is the variance
of f ? One can show that the identity type is a groupoid in which all bridges
are actually paths, so the question is unimportant for actions that produce paths.
Aside of those, we assume that the actions of co- and contravariant functions are

covariant (as this is how the type of covariant functions A
+→ B behaves with respect

to functions and natural transformations), and that the actions of invariant functions
are invariant (as invariance has to be the weakest of all variances). Functions with
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other, more complicated variance, will be weakened to one of these four.
Our judgements take completely the same form as in symmetric HoTT, except

that every colon gets marked with a variance annotation, like so:

x :+ A Object x has type A and must be used covariantly, (2.10)

x :− A Object x has type A and must be used contravariantly, (2.11)

x :× A Object x has type A and must be used invariantly, (2.12)

x := A Object x has type A and must be used isovariantly. (2.13)

Judgemental equalities, too, get a variance annotation, e.g. a ≡ b :+ A.
It is a commonly known fact in category theory that a contravariant functor

C → D is the same as a covariant functor Cop → D. Similarly, for every type A we
will define a type Aop which has the same objects but reversed morphisms. There
will be a contravariant invertible function from A to Aop, and saying x :− A will be
essentially the same as saying x :+ Aop.

We can do something similar for invariant functions. A less well-known construct
is the core of a category, here denoted Ccore, which is the category that has the same
objects as C, and whose morphisms are the isomorphisms of C [nLa12]. Of course,
these morphisms will also be isomorphisms in Ccore, so Ccore is always a groupoid.
For any type A, we will define a type Acore, which has the same objects and whose
morphisms are the isomorphisms of A (which coincide with equality). Additionally,
the bridges in Acore are the bridges from A (including all morphisms). There will be
an invariant invertible function from A to Acore, and saying x :× A will be essentially
the same as saying x :+ Acore. The type Acore is the best we can do as a type theoretic
counterpart for the objects set of a category.

Another analogue exists for isovariant functions. If C is a category and W is a
set of morphisms in C, then the localization of C away from W is a category C[W−1]
with a functor G : C → C[W−1] that maps all morphisms in W to isomorphisms. It
is characterized by a universal property: if a functor F : C → D maps all morphisms
of W to an isomorphism, then there is a unique functor F ′ : C[W−1] → D so that
F = F ′ ◦ G [GZ67]. We will only be using the localization from C away from all
morphisms, which we will simply call the localization of C. For any type A, we
will define a type Aloc which has the same objects, but where all morphisms (and
indeed all bridges) have been turned into isomorphisms. There will be an isovariant
function from A to Aloc, but it will not in general be invertible, since Aloc has more
isomorphisms, and thus more equalities than A, and any function must preserve
equality. Therefore, saying x := A will be a bit different from saying x :+ Aloc. For
more on these matters, see section 2.12.

Variances can be composed. The idea is that w◦v is the variance of a composition
g ◦ f , where f is v-variant and g is w-variant. This yields the following table:

+ ◦+ ≡ + + ◦ − ≡ − + ◦ × ≡ × + ◦= ≡ =
− ◦+ ≡ − − ◦ − ≡ + − ◦ × ≡ × − ◦= ≡ =
× ◦+ ≡ × × ◦ − ≡ × × ◦ × ≡ × × ◦= ≡ =
= ◦+ ≡ = = ◦ − ≡ = = ◦ × ≡ = = ◦= ≡ =

(2.14)
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Any equation in this table can be verified by going through the previous table twice.
Perhaps the most striking equation here is that = ◦ × ≡ =. This is because an
invariant function doesn’t discard morphisms entirely: it weakens them to bridges,
which are mapped to equality by an isovariant function. Section 3.5 contains some
arguments why this should be the case. Note that composition of variances is com-
mutative.

Remark 2.1.1. The fact that, while introducing the theory, I try to explain the
design choices, may make it unclear what is being assumed, what is being defined
and what is being proven. The exposition above is about what we want to be
true. An assumption made here is an assumption that we want something; the
proofs prove that we want other things. To get things straight:

• The morphism and identity types have not been defined yet. However, when
we define them, we will be able to prove that functions of each variance act
on them in the desired way.

• Table (2.14) is the definition of composition of variances.

• The opposite, core and localization of a type, have not been defined yet.
When we define them, we will be able to prove their behaviour.

When Γ is a context, then v ◦ Γ will denote the context where every assumption
x :w A from Γ is replaced with x :v◦w A. By Γu we shall mean the context Γ with all
variances replaced by u.

The empty context is meaningful:

` Ctx
emtpyCtx (2.15)

An isovariant assumption is the weakest assumption, so if some conclusion holds
under an isovariant assumption, it holds in any variance. (This is related to the

fact that we have covariant functions Acore +→ A
+→ Aloc and Acore +→ Aop +→ Aloc.)

Similarly, if it holds in any variance, it holds under an invariant assumption. This is
expressed by the following rules:

Γ, x := A,∆ ` X

Γ, x :v A,∆ ` X
dropIso,

Γ, x :v A,∆ ` X

Γ, x :× A,∆ ` X
dropVariance, (2.16)

where X quantifies over all possible right hand sides. Note that in this way of ex-
pressing inference rules, ∆ is a sequence of assumptions, but not a context, as it may
depend on the variable x, as well as on the variables from Γ.

When, under assumptions Γ, the object a : A may be used covariantly, then under
assumptions v ◦Γ, it may be used v-variantly. To see this, suppose that x :u X is one
of the assumptions in Γ. Then a : A is u-variant in x. If we now use a in a v-variant
function f , then f(a) is v-variant in a and hence (v ◦ u)-variant in x. In fact, we will
stretch this a bit further: if a : A may be used w-variantly under Γ, then it may be
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used (v ◦ w)-variantly under v ◦ Γ:

Γ ` a :w A

v ◦ Γ ` a :v◦w A
composeVar (2.17)

Γ ` a ≡ b :w A

v ◦ Γ ` a ≡ b :v◦w A

Γ ` Ctx

v ◦ Γ ` Ctx
(2.18)

The fact that we can compose Γ ` Ctx with isovariance and then use the dropping
rules, means that we can arbitrarily modify variances in a meaningful context.

The rule composeVar and the dropping rules allow us to derive:

Γ ` a :× A

Γ ` a :v A

Γ ` a :v A

Γ ` a := A
(2.19)

Note that relaxing variance for the conclusion and for the assumptions work in op-
posite directions: a weaker assumption is more often true.

In most inference rules, we will formulate the conclusion covariantly. If we need
to use it with different variance, we should apply composeVar as the last step (only
followed perhaps by relaxing the variance of the context).

When, under assumptions Γ, A is a type that may be used in any given variance,
it is meaningful to assume that A has an element.

Γ ` A :v Uk
Γ, x := A ` Ctx

extendCtx (2.20)

We give the new assumption the variance that makes it the strongest, so that we may
relax it. Thanks to composeVar, we can derive the stronger inference rule:

Γ ` A :v Uk
Γ=, x := A ` Ctx

(2.21)

by first composing the premise with = and then applying extendCtx.

2.2 Structural inference rules

This section is based on [Uni13, §1.1 and A.2].

In symmetric HoTT

We may state trivial conclusions by echoing assumptions:

Γ, x : A,∆ ` Ctx

Γ, x : A,∆ ` x : A
vble. (2.22)

Due to extendCtx, the following rule is admissible (anything that can be proven using the
rule, can be proven without the rule):

Γ ` A : Uk Γ,∆ ` X

Γ, x : A,∆ ` X
wkg. (2.23)
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That is, we may weaken our judgement by adding unused assumptions. Similarly, the
following is admissible:

Γ ` a : A Γ, x : A,∆[x] ` X[x]

Γ,∆[a] ` X[a]
subst. (2.24)

That is, when a judgement is true for any x : A, it is true for a particular a : A.
Furthermore, we want judgementally equal terms to be entirely indiscernible. This is
expressed by the following rule:

Γ ` a ≡ a′ : A Γ, x : A,∆[x] ` b[x] : B[x]

Γ,∆[a] ` b[a] ≡ b[a′] : B[a]
indiscern. (2.25)

Judgemental equality is an equivalence relation:

Γ ` a : A

Γ ` a ≡ a : A

Γ ` a ≡ b : A

Γ ` b ≡ a : A

Γ ` a ≡ b : A Γ ` b ≡ c : A

Γ ` a ≡ c : A
(2.26)

Finally, equal types have the same terms:

Γ ` A ≡ B : Uk Γ ` a : A

Γ ` a : B

Γ ` A ≡ B : Uk Γ ` a ≡ a′ : A

Γ ` a ≡ a′ : B
(2.27)

In directed HoTT

We may state trivial conclusions by echoing covariant assumptions.

Γ, x :+ A,∆ ` Ctx

Γ, x :+ A,∆ ` x :+ A
vble. (2.28)

It may surprise that we only state this rule for covariant assumptions. However, the
other cases are now derivable: Given Γ, x :v A,∆ ` Ctx, we get Γ=, x :+ A,∆= ` Ctx
as modifying variances does not break validity; whence Γ=, x :+ A,∆= ` x :+ A by
the above rule. Using composeVar (remember that v◦= ≡ =) we get Γ=, x :v A,∆= `
x :v A, which yields the desired conclusion using the dropping rules.

The following rule is admissible:

Γ ` A :v Uk Γ,∆ ` X

Γ, x :w A,∆ ` X
wkg. (2.29)

The substitution rule is generalized as follows:

Γ ` a :v A Γ, x :v A,∆[x] ` X[x]

Γ,∆[a] ` X[a]
subst. (2.30)

Indiscernibility becomes:

Γ ` a ≡ a′ :v A Γ, x :v A,∆[x] ` b[x] :+ B[x]

Γ,∆[a] ` b[a] ≡ b[a′] :+ B[a]
indiscern. (2.31)

Again, it is perhaps surprising that we do not state this for b[x] :v B[x], but only
for covariant b[x]. The v-variant version should be admissible, however: Given a
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derivation that ends with the application of v-variant indiscern, we should be able
to find a derivation of the same judgement using only the covariant indiscern by
postponing the use of composeVar (with v) until after indiscern. From now on, we
will not explicitly justify analogous phenomena any more.

Guideline 2.2.1. When we can choose between stating an inference rule that
produces a term in arbitrary variance, or stating one that only produces terms
that can be used covariantly, we will do the latter without further justification.

Judgemental equality is an equivalence relation:

Γ ` a :+ A

Γ ` a ≡ a :+ A

Γ ` a ≡ b :+ A

Γ ` b ≡ a :+ A

Γ ` a ≡ b :+ A Γ ` b ≡ c :+ A

Γ ` a ≡ c :+ A
(2.32)

Finally, equal types have the same terms:

Γ ` A ≡ B :v Uk Γ ` a :+ A

Γ ` a :+ B

Γ ` A ≡ B :v Uk Γ ` a ≡ a′ :+ A

Γ ` a ≡ a′ :+ B
(2.33)

2.3 Universe types

In the rest of this chapter, we will study some important types, including those that occur
in the Curry-Howard correspondence, a bit more formally, and try to adapt them to the
directed case. There will also be a few types that are specific for the directed case and are
not a generalization of an interesting concept in symmetric HoTT. The main challenge in
moving from HoTT to directed HoTT, will be to find out the proper variance for every
function. In particular, we need to find out how the induction principle’s variance can be
derived from a type’s inductive definition. For more on inductive types, see section 2.7.

In symmetric HoTT

We would like to have a single type U containing all types. However, from U : U, one can
derive contradictions [Coq92]. To resolve this, we have a tower of universes U0,U1,U2, . . .;
one for every natural number, such that every type is in some universe. We don’t consider
the universes to be a function of the natural numbers, however: the numbers in the
subscript are those from the metatheory, not those from HoTT. (Note that there is no
type containing all universes, so that a function n 7→ Un cannot be correctly typed.) The
following inference rules state how these universes behave [Uni13, §A.2]:

Γ ` Ctx

Γ ` Uk : Uk+1

,
Γ ` A : Uk

Γ ` A : Uk+1

,
Γ ` A : Uk

Γ, x : A ` Ctx
extendCtx. (2.34)

The first rule states that every universe exists (as an element of the next one), regardless
of the context. The second one states that if A is an element of some universe, then it is
also an element of the next one. This so called cumulativity of universes is a peculiarity
in MLTT, since in general, the type of a term is uniquely determined. The third rule,
which we already saw in section 2.1, states that if A is in some universe (which is our
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only way of stating that A is a type), then it is meaningful to assume that A contains an
element.

Example 2.3.1. The type of natural numbers N is a basic type that can be built
from nothing. Therefore, it lives in the lowest universe: N : U0.

Example 2.3.2. A monoidM consists of a type M : U, a binary operation ∗ : M →
M → M and a proof p that this operation is associative: p :

∏
x,y,z:M(x ∗ y) ∗ z =

x ∗ (y ∗ z).a However, the underlying type M can live in any universe. In that sense,
we can define a type of monoids for every universe:

Monoidk :≡
∑
M :Uk

∑
∗:M→M→M

( ∏
x,y,z:M

(x ∗ y) ∗ z = x ∗ (y ∗ z)

)
. (2.35)

The type Monoidk uses Uk as a building block, and this block can be found in Uk+1 at
the lowest. Therefore, Monoidk : Uk+1.

aThe symbol
∏

x,y,z:M is a common abbreviation for
∏

x:M

∏
y:M

∏
z:M .

In directed HoTT

The rules about universes generalize as follows:

Γ ` Ctx

Γ ` Uk :+ Uk+1

,
Γ ` A :+ Uk

Γ ` A :+ Uk+1

,
Γ ` A :v Uk

Γ, x := A ` Ctx
extendCtx. (2.36)

The variance in the first rule doesn’t matter: if we apply the rule to Γ= ` Ctx and
then apply composeVar with variance v, we get Γ= ` Uk :v Uk+1, after which we can
use the variance dropping rules to turn Γ= into Γ. By preserving the variance, the
second rule basically states that there is a covariant function from Uk to Uk+1. The
third rule comes from section 2.1.

2.4 Non-dependent function types

This section is based on [Uni13, §1.2 and A.2].
In this section, we will introduce a type of non-dependent (ordinary) functions from

any type A to any type B. This type is not part of the theory as such, because it is a
special case of a type of dependent functions, introduced in the next section. However,
we treat non-dependent functions as a warm-up.

In symmetric HoTT

Given types A and B in a common universe, we get a type of functions A → B in the
same universe. This is the formation rule for the function types: it tells us how to form
the type.

Γ ` A : Uk Γ ` B : Uk
Γ ` A→ B : Uk

form→. (2.37)
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If we can construct a term b[x] for an element of B under the hypothesis that x : A, then
we can define a function that maps any value a : A to b[a] : B. We denote this function
as (x : A) 7→ b[x], or, less formally, x 7→ b[x].1 This is the introduction rule: it tells us
how to introduce elements of the type.

Γ, x : A ` b[x] : B

Γ ` (x : A) 7→ b[x] : A→ B
intro→. (2.38)

Whenever we have a function and an element of its domain, we may apply the function to
the element. This is the elimination rule: it tells us how we can ‘eliminate’ a function
to obtain a value of the codomain.

Γ ` f : A→ B Γ ` a : A

Γ ` f(a) : B
elim→. (2.39)

If we first create a function f : A→ B using intro→ and then apply it to an argument using
elim→, then we obtain an expression of type B. This expression is by definition the body
of the function definition, where we substitute the bound variable with the argument.
This is the computation rule (or β-reduction rule): it tells us how to compute the
result of the elimination rule.

Γ, x : A ` b[x] : B Γ ` a : A

Γ ` ((x : A) 7→ b[x]) (a) ≡ b[a] : B
comp→. (2.40)

A function contains no more information than its function values. This is the uniqueness
principle (or η-expansion rule).

Γ ` f : A→ B

Γ ` f ≡ ((x : A) 7→ f(x)) : A→ B
uniq→. (2.41)

Finally, we want two function definitions with equal body to be equal. The indiscern rule
does not assert this, because it does not take bound variables into account. Therefore, we
need an additional rule

Γ, x : A ` b[x] ≡ b′[x] : B

Γ ` (x : A) 7→ b[x] ≡ (x : A) 7→ b′[x] : A→ B
indiscern7→. (2.42)

Such a rule has to be given for any symbol that binds a variable, such as for
∏
,
∑

, W
and most recursion and induction principles.

Definition 2.4.1. Using these rules, we define for any type A, the identity function

idA :≡ a 7→ a : A→ A,

and for any types A, B and C the function composition

◦ : g 7→ f 7→ (x 7→ g(f(x))) : (B → C)→ (A→ B)→ (A→ C).

1A more common notation in computer science is λ(x : A).b[x] or λx.b[x]. We will use the 7→ notation
which is more common in mathematics, mostly because 7→ looks better with a variance annotation.
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In directed HoTT

Given types A and B in a common universe, and a variance v, we get a type of v-
variant functions A

v→ B in the same universe. This type is covariant in B, as we can

compose with covariant functions B
+→ C (which will coincide with morphisms) to

obtain new v-variant functions A
v→ C. As composition f◦2 with a covariant function

f is covariant (a natural transformation g  g′ yields a natural transformation

f ◦ g  f ◦ g′), the covariant function type A
+→ B is contravariant in A. However,

composition f ◦2 with a v-variant function f , reverts morphisms v-variantly. Thus,
A

v→ B is, in general, (−0v1)-variant in A. Since − ≡ −0+1, we can weaken this to

contravariance for A
=→ B. However, this does not work for A

×→ B and A
−→ B, so

we have to see these types as invariant in A.

Γ ` A :u Uk Γ ` B :+ Uk
u :≡ − if v ∈ {+,=}, and u :≡ × if v ∈ {−,×}

Γ ` A v→ B :+ Uk
form→. (2.43)

If we can construct a term b[x] for an element of B under the hypothesis that x :v A
(so we have used x only v-variantly), then we can define a v-variant function that
maps any value a : A to b[a] : B. We denote this function as (x : A)

v7→ b[x], or, less
formally, x

v7→ b[x].
Γ ` A := Uk Γ ` B := Uk
Γ, x :v A ` b[x] :+ B

Γ ` (x : A)
v7→ b[x] : A

v→ B
intro→. (2.44)

Note that we added two premises that weren’t there in the symmetric case: we
required that A and B be types. In the symmetric case, these premises are clearly
redundant, as we can always prove them when the third premise is provable. In fact
here, they are redundant as well, but we include them to show that function definition
is isovariant in the domain and the codomain. This can be understood in two ways.

Firstly, note that when we use extendCtx to push a type behind the colon, there
are no restrictions on the variance. That is, we may even use types that can only be
used isovariantly. This suggests the following guideline:

Guideline 2.4.2 (Sheer existence). Asserting the sheer existence of a type or
type family, falls under isovariant use.

There is another argument that may be more convincing but which should have
an analogue in any case where Guideline 2.4.2 can be applied. We will show that
two function definitions that are identical in every respect except the domain, are
equal when there is a morphism between the domains. If that is true, we can say
that function definition is isovariant in the domain. So suppose that we have a

covariant function (i.e. a morphism) f : A
+→ A′. We construct two functions

g :≡ (x : A)
v7→ b[x] : A

v→ B and g′ :≡ (x : A′)
v7→ b′[x] : A′

v→ B with the ‘same’
body, and we have to demonstrate that g equals g′. However, there is a problem
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with this notion of sameness, as b[x] takes x : A and b′[x] takes x : A′. To be able
to compare them, we have to use f to ‘transport’ b′[x] to become a term that takes
an argument from A. (While transporting elements between types is a well-defined
and precise notion, transporting open terms (terms containing a variable) is not.
However, the argument we are giving is not and needn’t be formal: we define our
inference rules as we please, I’m just trying to explain why this one is sensible). So
let us assume that, for all x : A, b[x] = b′[f(x)]. This is in fact what we meant
earlier when we said that g and g′ had the ‘same’ body. We now have to prove that

g equals g′. Again, they have different types. So we transport g′ to A
+→ B by

composing with f , and have to prove that g = g′ ◦ f . But g(a) = b[x] = b′[f(x)] and
(g′ ◦ f)(x) = b′[f(x)], which completes the argument.

Whenever we have a v-variant function and an element of its domain that can be
used v-variantly, we may apply the function to the element:

Γ ` A := Uk Γ ` B := Uk
Γ ` f :+ A

v→ B Γ ` a :v A

Γ ` f(a) :+ B
elim→. (2.45)

Again, we include redundant premises as a reminder of isovariance in A and B.
The computation rule and the uniqueness principle bring no surprises:

Γ ` A := Uk Γ ` B := Uk
Γ, x :v A ` b[x] :+ B Γ ` a :v A

Γ `
(

(x : A)
v7→ b[x]

)
(a) ≡ b[a] :+ B

comp→. (2.46)

Γ ` A := Uk Γ ` B := Uk
Γ ` f :+ A

v→ B

Γ ` f ≡
(

(x : A)
v7→ f(x)

)
:+ A

v→ B
uniq→. (2.47)

Neither does the indicernibility rule:

Γ, x :v A ` b[x] ≡ b′[x] :+ B

Γ ` (x : A)
v7→ b[x] ≡ (x : A)

v7→ b′[x] :+ A
v→ B

indiscern 7→. (2.48)

Definition 2.4.3. Using these rules, we define for any type A := Uk the identity
function

idA :≡ a
+7→ a : A

+→ A, (2.49)

and for any types A,B,C := Uk the function composition

◦ : g
+7→ f

w7→
(
x
w◦v7→ g(f(x))

)
: (B

w→ C)
+→ (A

v→ B)
w→ (A

w◦v→ C). (2.50)

Note the peculiar variances: as function application is covariant in the applied func-
tion, g(f(x)) is covariant in g and w-variant in f , because f occurs in the argument
of the w-variant function g.
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2.5 Dependent function types

This section is based on [Uni13, §1.4 and A.2].

In symmetric HoTT

Dependent functions are a generalization of ordinary functions. When B[x] is a type
depending on a variable x : A, we have a type

∏
x:AB[x] of functions f which map any

term a : A to a term f(a) : B[a]. So the type of the output depends on the value of
the input. We use a product sign because the type of dependent functions may also be
regarded as the cartesian product of all the types B[x].

Example 2.5.1. When n : N is a natural number and A : Ui is a type, we have a type
VecnA of A-tuples of length n. Then we could construct a function f :

∏
n:N VecnN

which maps n : N to the vector f(n) = (0, 1, 2, . . . , n − 1) : VecnN, e.g. f(3) =
(0, 1, 2) : Vec3 N.

Example 2.5.2. In type theory, the usual way to represent a function in more than
one argument, is in currieda form. For example, if f takes a : A and b : B and
yields f(a, b) : C, then we see f as a term of the type A → (B → C), rather than
(A × B) → C. Then f(a, b) really means f(a)(b). We take the arrow to be right
associative, so we write simply f : A → B → C. Similarly, we take the product
sign to apply to everything on its right, so the dependent generalization of this is
f :
∏

a:A

∏
b:B[a] C[a, b].

As an example of a dependent function in multiple arguments, we might define
a function that takes a type A : Ui, then a natural number n : N and a vector
v : Vecn+1 A and yields the vector’s zeroth component:

g :
∏
A:Ui

∏
n:N

Vecn+1 A→ A, (2.51)

g(B) :
∏
n:N

Vecn+1B → B,

g(B, 3) : Vec4B → B,

g(B, 3, (b0, b1, b2, b3)) ≡ b0 : B.

aCurrying, after Haskell Curry, is the process of writing a function A × B → C as a function
A→ (B → C). The reverse process is called uncurrying.

Whenever we have a type A and for every x : A a type B[x], both in the same universe,
then there is a type of dependent functions

∏
x:AB[x], also in that universe:

Γ ` A : Uk Γ, x : A ` B[x] : Uk
Γ `

∏
x:AB[x] : Uk

form∏. (2.52)

Whenever we have, for all x : A, an element b[x] : B[x], we can create a dependent
function:

Γ, x : A ` b[x] : B[x]

Γ ` (x : A) 7→ b[x] :
∏

x:AB[x]
intro∏. (2.53)
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Whenever we have a dependent function and a term from its domain, we may apply the
function to the term:

Γ ` f :
∏

x:AB[x] Γ ` a : A

Γ ` f(a) : B[a]
elim∏. (2.54)

If we first create a dependent function using intro∏ and then apply it to an argument a
using elim∏, then we obtain a value of type B[a]. This is by definition equal to the body
of the function definition, where we substitute the bound variable with the argument.

Γ, x : A ` b[x] : B[x] Γ ` a : A

Γ ` ((x : A) 7→ b[x]) (a) ≡ b[a] : B[a]
comp∏. (2.55)

A dependent function contains no more information than its function values:

Γ ` f :
∏

x:AB[x]

Γ ` f ≡ ((x : A) 7→ f(x)) :
∏

x:AB[x]
uniq∏. (2.56)

Finally, we need to generalize the indiscernibility rule:

Γ, x : A ` b[x] ≡ b′[x] : B[x]

Γ ` (x : A) 7→ b[x] ≡ (x : A) 7→ .b′[x] :
∏

x:AB[x]
indiscern7→. (2.57)

When B does not depend on the variable x, we abbreviate
∏

x:AB as A→ B.

In directed HoTT

When comparing the formation rule for → in the directed case and the formation
rule for Π in the symmetric case, one finds that we need to answer one question:
what variance can the type family B[x] have in x? For invariant dependent functions
it doesn’t matter: an equality within the domain always yields a transport. As
explained in section 1.3.3, it is sensible for any variance v to allow the formation of∏v

z:AB[z, z] where the type family B[x, y] is contravariant in x and covariant in y.
In fact, we will allow families B[x] that are invariant in x. In this case, a morphism
x y will create a bridge B[x] _ B[y] which will still allow us to compare elements
of B[x] and B[y]. Our formation rule thus becomes:

Γ ` A :− Uk Γ, x :× A ` B[x] :+ Uk
u :≡ − if v ∈ {+,=}, and u :≡ × if v ∈ {−,×}

Γ `
∏v

x:AB[x] :+ Uk
form∏. (2.58)

In the other rules again we include the redundant premise that A and B[x] exist and
can be used isovariantly. The variance of B[x] := Uk in x : A does not matter, as we
can compose that premise with isovariance and use the variance dropping rules to
arbitrarily modify the variance annotations in its context.

Γ ` A := Uk Γ, x :× A ` B[x] := Uk
Γ, x :v A ` b[x] :+ B[x]

Γ ` (x : A)
v7→ b[x] :+

∏v
x:AB[x]

intro∏. (2.59)
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Γ ` A := Uk Γ, x :× A ` B[x] := Uk
Γ ` f :+

∏v
x:AB[x] Γ ` a :v A

Γ ` f(a) :+ B[a]
elim∏. (2.60)

Γ ` A := Uk Γ, x :× A ` B[x] := Uk
Γ, x :v A ` b[x] :+ B[x] Γ ` a :v A

Γ `
(

(x : A)
v7→ b[x]

)
(a) ≡ b[a] :+ B[a]

comp∏. (2.61)

Γ ` A := Uk Γ, x :× A ` B[x] := Uk
Γ ` f :+

∏v
x:AB[x]

Γ ` f ≡
(

(x : A)
v7→ f(x)

)
:+
∏v

x:AB[x]
uniq∏. (2.62)

Γ, x :v A ` b[x] ≡ b′[x] :+ B[x]

Γ ` (x : A)
v7→ b[x] ≡ (x : A)

v7→ b′[x] :+
∏v

x:AB[x]
indiscern7→. (2.63)

When B does not depend on the variable x, we abbreviate
∏v

x:AB as A
v→ B.

2.6 Intermezzo: equivalences and function extension-

ality

In symmetric HoTT

In the following sections, we will often need a sense of invertible functions. Giving a
proper definition for invertibility is not trivial in HoTT, see section 3.3. For now, we will
restrict ourselves to a logical definition:

Definition 2.6.1. A function f : A→ B is an equivalence if and only if there exists
a function g : B → A so that g ◦ f = idA and f ◦ g = idB. Formally:

isEquiv(f)�
∑
g:B→A

(g ◦ f = idA)× (f ◦ g = idB), (2.64)

where X � Y (X if and only if Y ) abbreviates (X → Y )× (Y → X).

Note that this is not a complete definition: it does not define the internal structure of
isEquiv(f). Indeed, the fact that there exists a function in every direction only asserts
that isEquiv(f) is inhabited if and only if the right hand side is inhabited. So they are
logically equivalent, but not equivalent as types. For a real definition of equivalence, see
section 3.3.

If there is a function f : A → B that is an equivalence, we say that A and B are
equivalent: A ' B. Formally [Uni13, §2.4]:

A ' B :≡
∑

f :A→B

isEquiv(f). (2.65)

In order to prove that two types are equivalent, we will need to prove that some
functions are equal to the identity function. However, there happens to be a problem:
even when we know that two functions f, g : A→ B are pointwise equal, we cannot prove
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(just yet [Uni13, §2.9]) that they are equal. To solve this problem, we assume the function
extensionality axiom. Putting it too simply, it has type

funExt :
∏

f,g:A→B

(∏
a:A

f(a) =B g(a)

)
→ (f = g). (2.66)

We treat function extensionality in more detail in section 3.8.8.

In directed HoTT

In the directed case, the logical definition looks like this:

Definition 2.6.2. A function f : A
+→ B is an equivalence if and only if there

exists a function g : B
+→ A so that g ◦ f = idA and f ◦ g = idB. Formally:

isEquiv(f)
+

�
+∑

g:B
+→A

(g ◦ f = idA)× (f ◦ g = idB), (2.67)

where X
+

� Y abbreviates (X
+→ Y ) × (Y

+→ X). The type isEquiv(f) is
covariant in f and invariant in A and B.

For a proper definition, see section 3.3.

The type of equivalences is defined as above, but is now denoted A
+' B, because

we will sometimes informally mention equivalences of different variance.
Function extensionality in the directed case takes the following form:

funExt :
=∏

f,g:A→B

(
=∏
a:A

f(a) =B g(a)

)
→ (f = g). (2.68)

Again, see section 3.8.8 for details.

2.7 Inductive types and the coproduct

This section draws ideas from [Uni13, ch.5, §1.7 and §A.2].

In symmetric HoTT

Typically, type theory comes with a wide range of available types and inference rules
describing their behaviour. These inference rules are not entirely arbitrary, however:
they reflect a structure that most of these basic types have in common. The inductive
definition scheme captures this structure. An inductive definition has no formal meaning,
at least not in the type theory presented here, but can be seen as an abbreviation of the
inference rules describing the type. Alternatively, most (if not all) inductively defined
types (or inductive types) can be constructed up to equivalence (a kind of isomorphism
between types, see section 3.3) by using a smaller range of basic types, including most
notably the W-type (see section 2.17).
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In order to define a new inductive type C, we have to state how one can build terms
of C. We do this by providing zero or more constructors, each one taking zero or more
arguments and yielding values in C. The type C is then seen as being “freely generated”
by these constructors [Uni13, §5.1]. For example:

Inductive type 2.7.1. If A and B are types, we define their coproduct (or disjoint
union) A+B as the inductive type with the following constructors:

• inl : A→ A+B,

• inr : B → A+B.

Note that, to be precise, we should subscript the constructors inlA,B and inrA,B. When
the subscript is clear from the context, we will avoid this, however. The formation rule
states that, whenever A and B are types in the same universe, we get a type A + B in
that universe:

Γ ` A : Uk Γ ` B : Uk
Γ ` A+B : Uk

form+ (2.69)

Note that we can see + as a function:

A 7→ B 7→ A+B : Uk → Uk → Uk. (2.70)

The inductive definition gives us two ways to construct an element of A+B: given a : A,
we have inl(a) : A+B, and given b : B, we have inr(b) : A+B. This yields two introduction
rules:

Γ ` A : Uk Γ ` B : Uk Γ ` a : A

Γ ` inl a : A+B
introl+, (2.71)

Γ ` A : Uk Γ ` B : Uk Γ ` b : B

Γ ` inr b : A+B
intror+. (2.72)

Note that although the inductive definition presents inl and inr as functions, the inference
rules show that they are actually primitive operators. However, we can easily define the
corresponding functions a 7→ inl a and b 7→ inr b, which go by the same name.

Now how do we build a function A + B → C? Just like intro∏ allows us to build
a function A → C if we have a function value for every element of a, the recursion
principle recA+B allows us to build a function A + B → C if we have a function value
for every element of the form inl a and every element of the form inr b:

Γ ` C : Uk
Γ, a : A ` r[a] : C
Γ, b : B ` s[b] : C
Γ ` e0 : A+B

Γ ` recA+B(C, a.r[a], b.s[b], e0) : C
elimNonDep+ (2.73)

The term ‘recursion principle’ will become clear when we treat lists, see section 2.8. Note
that the notation recA+B is slightly misleading: it depends on A and B, but not on A+B.
We should see rec2+2 as a single character. The recursion principle is an operator, but
we can capture its functionality in a function:

(C : Uk) 7→ (f : A→ C) 7→ (g : B → C) 7→ (e : A+B) 7→ recA+B(C, a.f(a), b.g(b), e)
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:
∏
C:Uk

(A→ C)→ (B → C)→ (A+B → C) (2.74)

which we give the same name. Since the recursion principle operator binds variables, we
need special indiscernibility rules, which we omit.

When we apply the recursion principle to a value of the form inl a or inr b, the result
is defined as one would expect. We only state the left computation rule:

Γ ` C : Uk
Γ, a : A ` r[a] : C
Γ, b : B ` s[b] : C
Γ ` a0 : A

Γ ` recA+B(C, a.r[a], b.s[b], inl a0) ≡ r[a0] : C
complNonDep+ (2.75)

In fact, we do not need the above elimination and computation rules, they are special
cases of their dependent counterparts. To build a dependent function

∏
e:A+B C[e], we

need to give, for every a : A, a function value r[a] : C[inl a] for inl a, and for every b : B a
function value s[b] : C[inr b] for inr b:

Γ, e : A+B ` C[e] : Uk
Γ, a : A ` r[a] : C[inl a]
Γ, b : B ` s[b] : C[inr b]
Γ ` e0 : A+B

Γ ` indA+B(e.C[e], a.r[a], b.s[b], e0) : C[e0]
elim+ (2.76)

The operator indA+B is called the induction principle for the coproduct. Again, we
refer to the section on the natural numbers for an explanation of this terminology. Again,
we omit the indiscernibility rule. A similar function definition captures the induction
principle operator in a function with the same name:

indA+B :
∏

C:A+B→Uk

(∏
a:A

C(inl a)

)
→

(∏
b:B

C(inl b)

)
→

( ∏
e:A+B

C(e)

)
. (2.77)

Note that the recursion principle can be defined from the induction principle:

recA+B(C) :≡ indA+B(e
×7→ C). (2.78)

Here is the left computation rule:

Γ, e : A+B ` C[e] : Uk
Γ, a : A ` r[a] : C[inl a]
Γ, b : B ` s[b] : C[inr b]
Γ ` a0 : A

Γ ` indA+B(e.C[e], a.r[a], b.s[b], inl a0) ≡ r[a0] : C[inl a0]
compl+. (2.79)

A uniqueness principle can be added, but is of lesser importance as, for inductive
types, it can be proven internally to hold propositionally. We follow [Uni13] and impose
no uniqueness principle.

From this experience, we extract guidelines for constructing inference rules from an
inductive definition:
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Guideline 2.7.2 (Inference rules for an inductive type T ).

• The premises of the formation rule, state what objects we need (in this case, we
needed types A and B). Its conclusion states that the inductively defined type,
lives in the lowest universe that contains all types mentioned in the premises.
This is enforced by using the same universe Uk throughout the inference rule.

• Every constructor χi : A1 → . . . → An → T yields an introduction rule that
takes elements of every Ai as premises and yields an element of T . If necessary,
we also add premises to make sure that our type T exists. E.g. above, we
explicitly required that A and B were types, because the third premise mentions
only either A or B. (Indeed, in this case there was some redundancy in the
premises). From this inference rule we can construct a function that has the
type A1 → . . .→ An → T mentioned in the inductive definition.

• The elimination rule has one premise Γ, e : T ` C[t] : Uk and one premise
Γ ` e0 : T . On top of that, for every constructor χi : A1 → . . . → An → T ,
there is a premise Γ, a1 : A1, . . . , an : An ` ri[a1, . . . , an] : C[χi(a1, . . . , an)]. The
conclusion is a term of type C[e0] that wraps up all of this information, called
the induction principle. We can turn the induction principle into a function
which has an argument for every premise.

• For every constructor χi, there is a computation rule which has the same
premises as the elimination rule, except the one about e0. Instead, it also
takes the premises of χi (except perhaps those that would be redundant). As
a conclusion, it states that the induction principle evaluated in χi(a1, . . . , an)
equals ri[a1, . . . , an].

In directed HoTT

We now seek to generalize the coproduct, and indeed the concept of an inductive
definition, to the directed case. It is now best to think of A and B as (higher)
categories.

Inductive type 2.7.3. If A and B are types, we define their coproduct A +
B, which is covariant in A and B, as the inductive type with the following
constructors:

• inl : A
+→ A+B,

• inr : B
+→ A+B.

The variance of the constructors is a choice (although choosing a different one may
have unexpected consequences for the variance of the inductive type, see the opposite
type in section 2.12). We might have taken inl contravariant, which would have given
us the type Aop +B.

What about the variance of the inductive type itself, though? Remember that we
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intend to arrange things so that morphisms between types coincide with covariant

functions. Thus, we have to consider what functions α : A → A′ and β : B
+→ B′

mean to the coproducts A + B, A′ + B and A + B′. It is easy to see that we can
expect functions A + B → A′ + B and A + B → A + B′. The reason is that the
elements of A+B are constructed from elements of the arguments of the constructor,
which are covariant in A and B (since they are A and B in this case). Thus, we can
easily push morphisms through the coproduct former +. This leads to the following
restriction:

Guideline 2.7.4. If an inductive type is v-variant in an object x, then the types
of all arguments of all constructors must be v-variant in x. If one of the construc-
tors as a function is not covariant in some argument, there are further restrictions;
see section 2.12.

The formation rule states that, whenever A and B are types that may be used
covariantly, we get a type A+B:

Γ ` A :+ Uk Γ ` B :+ Uk
Γ ` A+B :+ Uk

form+ (2.80)

Note that we can see + as a function:

A
+7→ B

+7→ A+B : Uk
+→ Uk

+→ Uk. (2.81)

The introduction rules become:

Γ ` A := Uk Γ ` B := Uk Γ ` a :+ A

Γ ` inl a :+ A+B
introl+, (2.82)

Γ ` A := Uk Γ ` B := Uk Γ ` b :+ B

Γ ` inr b :+ A+B
intror+. (2.83)

The covariance of the conclusion is in line with Guideline 2.2.1 on page 20. Covariance
in a and b simply reflects the variance of the constructors. The isovariance in the types
follows from Guideline 2.4.2, but as another illustration of this guideline’s validity,
we give a full argument. We will justify the isovariance in A for both introduction
rules; the isovariance in B follows by symmetry of the problem.

Let f : A
+→ A′ be a covariant function (i.e. a morphism). Then f lifts to a

function g which takes inl a to inl f(a) and inr b to itself. We have:

inlA+B : A
+→ A+B, inlA′+B : A′

+→ A′ +B. (2.84)

In order to compare them, we need to transport them to a common type:

g ◦ inlA+B : A
+→ A′ +B, inlA′+B ◦ f : A

+→ A′ +B. (2.85)

Now observe that g(inlA+Ba) = inlA′+Bf(a) as we said only moments ago. This shows
that isovariance is the right choice.
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The elimination rule becomes:

Γ ` A := Uk Γ ` B := Uk
Γ, e :× A+B ` C[e] := Uk
Γ, a :v A ` r[a] :+ C[inl a]
Γ, b :v B ` s[b] :+ C[inr b]
Γ ` e0 :v A+B

Γ ` indvA+B(e.C[e], a.r[a], b.s[b], e0) :+ C[e0]
elim+ (2.86)

Note first of all that we allow an induction principle for every variance, which con-
structs v-variant dependent functions from A+B to the type family C[e].

The premises about A and B weren’t there in the symmetric case and are in fact
redundant, but are included here to stress that the induction principle is isovariant
in both types. The type family C[e], too, is there just for asserting its existence, so
it, too, is being used isovariantly.

Let f be the function that we are trying to construct. Then f ◦ inl = a
?7→ r[a].

Since we want f to be a v-variant function and inl is covariant, we should have a
v-variant function on the right. This justifies that r[a] is v-variant in a (and that
s[b] is v-variant in b). The function f is obtained by pasting together r[a] and s[b]
and pasting together is covariant (indeed it preserves natural transformations), which
explains the variances for r[a] and s[b]. Finally, f is v-variant, which is reflected by
the variance of e0.

Note that we can still write the induction principle as a function:

indvA+B :
=∏

C:A+B
×→Uk

(
v∏
a:A

C(inl a)

)
+→

(
v∏
b:B

C(inl b)

)
+→

(
v∏

e:A+B

C(e)

)
. (2.87)

Here is the left computation rule:

Γ ` A := Uk Γ ` B := Uk
Γ, e :× A+B ` C[e] := Uk
Γ, a :v A ` r[a] :+ C[inl a]
Γ, b :v B ` s[b] :+ C[inr b]
Γ ` a0 :v A

Γ ` indA+B(e.C[e], a.r[a], b.s[b], inl a0) ≡ r[a0] :+ C[inl a0]
compl+. (2.88)

All premises but the last are taken from the elimination rule. The constructor inl is
covariant and inl a0 takes the role of e0, so a0 is being used (v ◦+) ≡ v-variantly.

Again, we extract guidelines:

Guideline 2.7.5 (Inference rules for an inductive type T ). The only modification
of the inference rules compared to the symmetric case (see Guideline 2.7.2 page 31),
is the addition of variance annotations. The conclusion of all inference rules can be
used covariantly.

• The variance of the formation rule can be read from the definition and is re-



34 CHAPTER 2. DEPENDENT TYPE THEORY, SYMMETRIC AND DIRECTED

stricted by Guideline 2.7.4.

• The constructors and the introduction rules are isovariant in the building blocks
of the inductive type. The variance in the arguments of the constructor, can
be read from the definition.

• The v-variant induction principle is isovariant in the building blocks of the
inductive type and also in the destination type family. The destination type
family may be invariant in its argument. The induction principle is covariant
in the functions that it pastes together. If a constructor is u-variant in a given
argument, then the pasted function is (v ◦ u)-variant in that argument. The
resulting function is v-variant.

• The computation rules for the v-variant induction principle, preserve the vari-
ances of the premises from the elimination rule, and compose the variances of
the premises from the introduction rules with v.

2.8 Lists

The type ListA consists of finite lists of elements of A. It does not appear in the Curry-
Howard correspondence and neither is it one of basic the types that we need to mimic
any inductive type (see section 2.17). The main reason for including it here is that it has
a recursive constructor, just like the naturals, but unlike the naturals this type is well
suited for investigating the implications in the directed case.

In symmetric HoTT

Inductive type 2.8.1. Given a type A, we define the type ListA of lists of A with
constructors:

• ‡ : ListA,

• :: : A→ ListA→ ListA.

The object ‡ is called the empty list and :: (called cons and used as an infix
operator) adds an element to the head of a list.

What is new here, is that the constructor :: takes an argument of the type that we are
defining. This is not a circular definition. In general, we allow the following:

Guideline 2.8.2. A constructor of an inductive type T may take arguments of type
X1 → . . . → Xn → T , where the types Xi should not contain any references to T .
(One says that T can occur only strictly positively in the arguments’ types.) E.g.
the following constructor is allowed:

• χ : A→ (B → T )→ T → (C → T )→ T ,

but the following is not:
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• ψ : (T → A)→ T .

For an explanation of this guideline, see [Uni13, §5.6].
In order to construct a function f : ListA→ C, we need a function value for the empty

list, and a function value for a :: α assuming that f(α) is already defined. For example, if
f is the function that takes a list such as a :: b :: c :: ‡ and returns a :: a :: b :: b :: c :: c :: ‡,
then we will say:

• f(‡) :≡ ‡,

• if f(α) ≡ γ, then f(a :: α) :≡ a :: a :: γ.

Thus, the (non-dependent) elimination rule becomes:

Γ ` C : Uk
Γ ` r : C
Γ, a : A,α : ListA, γ : C ` s[a, α, γ] : C
Γ ` e0 : ListA

Γ ` recList(r, a.α.γ.s[a, α, γ], e0) : C
elimList (2.89)

or as a function:

recListA :
∏
C:Uk

C → (A→ ListA→ C → C)→ (ListA→ C) . (2.90)

The function described above would be defined as:

recListA(ListA, ‡, a 7→ α 7→ γ 7→ a :: a :: γ). (2.91)

The computation rules are summarized as follows:

recListA(C, r, s)(‡) ≡ r, (2.92)

recListA(C, r, s)(a :: α) ≡ s (a, α, recListA(C, r, s)(α)) . (2.93)

This also explains the term ‘recursion principle’: it allows us to define functions recursively.
The induction principle is:

indListA :
∏

C:ListA→Uk

C(‡)→

(∏
a:A

∏
α:ListA

C(α)→ C(a :: α)

)
→

( ∏
e:ListA

C(e)

)
, (2.94)

with identical computation rules.
The following guideline expresses how the recursion and induction principles treat

recursive constructors:

Guideline 2.8.3. Suppose we have an inductive type T and want to build a function
g : T → C. By Guideline 2.7.2, the recursion principle takes a function fi for every
constructor χi. In case the constructor χi has a recursive argument of type X1 →
. . . → Xn → T , then the function fi takes not only an argument α : X1 → . . . →
Xn → T , but also an argument γ : X1 → . . .→ Xn → B, used for passing the ‘already
defined’ values g(α(x1, . . . , xn)) to the recursion step fi.

The guideline for the induction principle is analogous, but cumbersome to write
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in full generality. The example for List is most likely more instructive.

In directed HoTT

Inductive type 2.8.4. Given a type A, we define the type ListA, which is
covariant in A, with constructors:

• ‡ : ListA,

• :: : A
+→ ListA

+→ ListA.

Since ListA is defined to be covariant in A, the argument types of the constructors
(none for ‡ and A and ListA for ::) must be covariant in A as per Guideline 2.7.4.
We are free to choose the constructors’ variance, and choosing them covariant yields
the most reasonable behaviour. From Guideline 2.7.5, we conclude that both ‡ and
:: are isovariant in A. The v-variant induction principle, which is also isovariant in
A, is:

indvListA :
=∏

C:ListA
×→Uk

C(‡) +→

(
+∏
a:A

+∏
α:ListA

C(α)
+→ C(a :: α)

)
+→

(
v∏

e:ListA

C(e)

)
.

(2.95)
All variances here, are prescribed by Guideline 2.7.5, except the one that says that

the recursion step C(α)
+→ C(a ::α) is covariant. This can be seen from the following

commutative diagram:

α : ListA � a:: //
_

f

��

a :: α : ListA_

f

��

�

f(α) : C(α) � recursion

step
// f(a :: α) : C(a :: α)

(2.96)

where f is the function being constructed by the induction principle. Since this
function is v-variant, we get v ◦ + = w ◦ v where w is the variance of the recursion
step. We deduce the following guideline:

Guideline 2.8.5. If a constructor is u-variant in a recursive argument, then the
corresponding function passed to the induction principle is also u-variant in the
corresponding ‘already defined’ value.

2.9 The naturals

See also [Uni13, §1.9].
Just like the type of lists, the type of naturals N is neither part of the Curry-Howard

correspondence, nor necessary for mimicking general inductive types. We include it here
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because it is a particularly useful type.

In symmetric HoTT

Inductive type 2.9.1. We define the type of natural numbers N with the follow-
ing constructors:

• zero : N,

• succn : N→ N.

Note that the constructors of N match those of List 1, where 1 is the type that contains
only the element ?. The only difference is that :: takes an extra argument of type 1, but
that doesn’t convey any information so we needn’t bother. One can in fact prove that the
types are equivalent (there is an invertible correspondence, see section 3.3): N ' List 1.
We will often abbreviate elements of N using Arabic numbers, e.g. instead of

succ (succ (succ (succ (succ (succ (0)))))) , (2.97)

we would write 6.
The induction principle is the same as for List 1, with arguments of type 1 removed:

indN :
∏

C:N→Uk

C(zero)→

(∏
n:N

C(n)→ C(succn)

)
→

(∏
n:N

C(n)

)
. (2.98)

It computes:

indN(C, c0, cstep)(zero) ≡ c0 : C(zero),

indN(C, c0, cstep)(succn) ≡ cstep(n, indN(C, c0, cstep)(n)) : C(succn). (2.99)

Suppose we want to prove a proposition C(n) for all natural numbers n : N. Since
propositions are types, C is just a type family C : N → Uk. A universal quantifier
translates to a Π-type, so we want to prove the statement

∏
n:NC(n). This can be done

using the induction principle: we just need to prove C(zero) and, for all n : N, derive
C(succ(n)) from C(n). This explains the name ‘induction principle’: it allows us to prove
theorems by induction.

In directed HoTT

Inductive type 2.9.2. We define the type of natural numbers N as the
inductive type with the following constructors:

• zero : N,

• succn : N +→ N.

The only thing that may need an explanation here, is the choice to make succ covari-
ant. Firstly, this is in line with the correspondence between N and ListA. Secondly,
there are no non-trivial morphisms, so indeed they are preserved. Of course this
argument works in defence of any variance, and indeed we will show that there is a
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succ-function of any variance.
The induction principle is:

indvN :
=∏

C:N×→Uk

C(0)
+→

(
v∏
n:N

C(n)
+→ C(succn)

)
+→

(
v∏
n:N

C(n)

)
, (2.100)

as prescribed by Guideline 2.7.5 and Guideline 2.8.5. The computation rules bring
nothing new:

indvN(C, c0, cstep)(0) ≡ c0 : C(0),

indvN(C, c0, cstep)(succn) ≡ cstep(n, indvN(C, c0, cstep)(n)) : C(succn). (2.101)

Now the reader may question the value of getting variance right for functions of
natural numbers, as we don’t expect any non-trivial morphisms in N. The reader has
a point: we can construct an isovariant identity function idN : N =→ N. Then from a
function f :

∏v
n:NC(n) of arbitrary variance, we can build a function f◦idN :

∏=
n C(n),

since v◦= ≡ =. As isovariance is the strongest variance, any isovariant function is also
co-, contra- and invariant. Thus, we will conclude that variance is entirely irrelevant
for functions from the natural numbers. We will use 4 as a variance annotation as a
reminder of this irrelevance.

We construct the isovariant identity function by isovariant induction. To idN(0),
we assign the value 0. Then for all n := N, we get a value m :+ N for idN(n) and
need to give a value for idN(succn). The simplest thing is to set idN(succn) :≡ succn.
However, n must be used isovariantly and succ is only covariant. The solution is to
use recursion: we set idN(succn) :≡ succm, as m can be used covariantly. Formally:

idN :≡ rec=
N

(
N, 0, n =7→ m

+7→ succm
)

: N =→ N. (2.102)

2.10 The family of finite sets

See also [Uni13, §1.3, 1.5 and 1.7].

In symmetric HoTT

Inductive type 2.10.1. We define the empty type 0 as the inductive type with
no constructors.

In order to construct a function 0→ C, we have to provide a function for every construc-
tor, i.e. we needn’t provide anything:

rec0 :
∏
C:Ui

(0→ C). (2.103)

There are zero computation rules: one for every constructor. The type 0 will represent the
proposition “false” and then this recursion principle is the principle “ex falso quodlibet”:
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anything from the absurd. The induction principle is quite similar:

ind0 :
∏

C:0→Ui

(∏
x:0

C(x)

)
. (2.104)

Again, there are no computation rules.

Inductive type 2.10.2. We define the unit type 1 as the inductive type with the
following constructor:

• ? : 1.

In order to construct a function f : 1→ C, we have to give f(?):

rec1 :
∏
C:Ui

C → (1→ C). (2.105)

The computation rule is rec1(C, c)(?) ≡ c : C. The induction principle is similar:

ind1 :
∏

C:1→Ui

C(?)→

(∏
x:1

C(x)

)
, (2.106)

with computation rule ind1(C, c)(?) ≡ c : C(?).

Definition 2.10.3. We define the function Fin : N→ U0, called the family of finite
sets, recursively: Fin(0) :≡ 0 and Fin(succn) :≡ Fin(n) + 1. Formally:

Fin :≡ recN(U0,0, n 7→ X 7→ (X + 1)). (2.107)

The element inr(?) : Fin(n) will be denoted (n− 1)n and inl(mn−1) : Fin(n) will be
denoted mn. Thus, the terms of Fin(n) are 0n, . . . , (n− 1)n. This is just a matter of
notation and does not require type-theoretical justification.

Example 2.10.4. One application of the family of finite sets, is for indexing fixed-
length vectors. We could define a general coordinate projection

π :
∏
X:Ui

∏
n:N

VecnX → Fin(n)→ X, (2.108)

so that for example π(A, 3, (a0, a1, a2), 23) ≡ a2 : A.

In directed HoTT

Inductive type 2.10.5. We define the empty type 0 as the inductive type
with no constructors.



40 CHAPTER 2. DEPENDENT TYPE THEORY, SYMMETRIC AND DIRECTED

The recursion principle is:

recv0 :
=∏
C:Ui

(0
v→ C). (2.109)

The induction principle is:

indv0 :
=∏

C:0
×→Ui

(
v∏
x:0

C(x)

)
. (2.110)

There are no computation rules. We can define an isovariant identity function:

id0 :≡ rec=
0 (0) ≡ ind=

0 (x
×7→ 0) : 0

=→ 0. (2.111)

Inductive type 2.10.6. We define the unit type 1 as the inductive type with
the following constructor:

• ? : 1.

The recursion principle is:

recv1 :
=∏
C:Ui

C
+→ (1

v→ C), (2.112)

with computation rule recv1(C, c)(?) ≡ c : C. The induction principle is:

indv1 :
=∏

C:1
×→Ui

C(?)
+→

(
v∏
x:1

C(x)

)
, (2.113)

with computation rule indv1(C, c)(?) ≡ c : C(?). We can define an isovariant identity
function:

id1 :≡ rec=
1 (1, ?) : 1

=→ 1. (2.114)

Definition 2.10.7. We define the function Fin : N 4→ U0, called the family of
finite sets, recursively: Fin(0) :≡ 0 and Fin(succn) :≡ Fin(n) + 1. Formally:

Fin :≡ recN(U0,0, n
47→ X

+7→ (X + 1)). (2.115)

The elements are still denoted as in symmetric HoTT (definition 2.10.3).

2.11 The product

This section is based on [Uni13, §1.5].

In symmetric HoTT
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Inductive type 2.11.1. If A and B are types, we define their product A×B with
the following constructor:

• (2,2) : A→ B → A×B.

The recursion principle is

recA×B :
∏
C:Ui

(A→ B → C)→ (A×B → C) (2.116)

with computation rule
recA×B(C, f)((a, b)) ≡ f(a)(b) : C. (2.117)

The induction principle is, similarly,

indA×B :
∏

C:A×B→Ui

(∏
a:A

∏
b:B

C((a, b))

)
→

( ∏
x:A×B

C(x)

)
(2.118)

with computation rule

indA×B(C, f)((a, b)) ≡ f(a)(b) : C((a, b)). (2.119)

Remark 2.11.2 (Currying). If we have a function A × B → C, we can curry it to
a function A→ B → C:

curry :≡ f 7→ (a 7→ b 7→ f((a, b))) : (A×B → C)→ (A→ B → C). (2.120)

The reverse is called uncurrying:

uncurry :≡ g 7→ (recA×B(C, g)) : (A→ B → C)→ (A×B → C). (2.121)

They are each other’s inverse:

uncurry (curry f) ((a0, b0)) ≡ recA×B(C, a 7→ b 7→ f((a, b)))((a0, b0))

≡ (a 7→ b 7→ f((a, b))) (a0)(b0) ≡ f((a0, b0)), (2.122)

curry (uncurry g) (a0)(b0) ≡ (a 7→ b 7→ recA×B(C, g)((a, b))) (a0)(b0)

≡ recA×B(C, g)((a0, b0)) ≡ g(a0)(b0). (2.123)

We conclude that (A × B → C) ' (A → B → C). We can also curry and uncurry
dependent functions, yielding:( ∏

e:A×B

C(e)

)
'

(∏
a:A

∏
b:B

C((a, b))

)
. (2.124)

Remark 2.11.3 (Projections). We define coordinate projections

prl :≡ recA×B(A, a 7→ b 7→ a) : A×B → A,

prr :≡ recA×B(B, a 7→ b 7→ b) : A×B → B. (2.125)
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Then we have
prl((a, b)) ≡ a : A, prr((a, b)) ≡ b : B. (2.126)

Assuming a uniqueness principle (e ≡ (prl e, prr e)), the coordinate projections are as
strong as the induction principle. Indeed, we haveab∏

e:A×B

indA×B(C, f)(e) = f(prl e)(prr e). (2.127)

If we want to prove this, the induction principle tells us that we need only prove:∏
a:A

∏
b:B

indA×B(C, f)((a, b)) = f(prl (a, b))(prr (a, b)) (2.128)

but both left and right hand side are judgementally equal to f(a)(b), so we conclude
this from reflexivity of =:

a 7→ b 7→ refl(f(a)(b)) :
∏
a:A

∏
b:B

f(a)(b) = f(a)(b). (2.129)

aRemember that the product sign applies to everything on its right.
bThe uniqueness principle is needed to even state this equation, as indA×B(C, f)(e) : C(e) but

f(prl e)(prr e) : C(prl e, prr e).

In directed HoTT

Inductive type 2.11.4. If A and B are types, we define their product A×B,
which is covariant in both A and B, with the following constructor:

• (2,2) : A
+→ B

+→ A×B.

The recursion principle is

recvA×B :
=∏
C:Ui

(A
v→ B

v→ C)
+→ (A×B v→ C). (2.130)

with computation rule

recvA×B(C, f)((a, b)) ≡ f(a)(b) : C. (2.131)

The induction principle is,

indvA×B :
=∏

C:A×B→Ui

(
v∏
a:A

v∏
b:B

C((a, b))

)
+→

(
v∏

x:A×B

C(x)

)
(2.132)

with computation rule

indvA×B(C, f)((a, b)) ≡ f(a)(b) : C((a, b)). (2.133)
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Remark 2.11.5 (Currying). If we have a function A× B v→ C, we can curry it to
a function A

v→ B
v→ C:

curryv :≡ f
+7→
(
a

v7→ b
v7→ f((a, b))

)
: (A×B v→ C)

+→ (A
v→ B

v→ C). (2.134)

We can also uncurry:

uncurryv :≡ g
v7→
(
recvA×B(C, g)

)
: (A

v→ B
v→ C)

+→ (A×B v→ C). (2.135)

So we still have (A × B → C)
+' (A → B → C). As recA×B(C) is isovariant in A,

B and C, and 7→ is isovariant in the domain and the codomain, curryv and uncurryv

(which really should be indexed with A, B and C) are isovariant in those three types.
We can also curry and uncurry dependent functions, yielding:(

v∏
e:A×B

C(e)

)
+'

(
v∏
a:A

v∏
b:B

C((a, b))

)
. (2.136)

Remark 2.11.6 (Projections). We define coordinate projections

prl :≡ rec+
A×B(A, a

+7→ b
+7→ a) : A×B +→ A,

prr :≡ rec+
A×B(B, a

+7→ b
+7→ b) : A×B +→ B. (2.137)

We still have
prl((a, b)) ≡ a : A, prr((a, b)) ≡ b : B. (2.138)

Just like the recursion principle that defines them, the prl and prr are isovariant in A
and B.

Assuming e ≡ (prl e, prr e), the coordinate projections are still as strong as the
induction principle. Indeed, we have

=∏
e:A×B

indvA×B(C, f)(e) = f(prl e)(prr e). (2.139)

(Don’t mind the isovariance in e, it comes from the fact that refl is isovariant, which
will be explained in section 2.15.) If we want to prove this, the induction principle
tells us that we need only prove:

=∏
a:A

=∏
b:B

indvA×B(C, f)((a, b)) = f(prl (a, b))(prr (a, b)) (2.140)

but both left and right hand side are judgementally equal to f(a)(b), so we conclude
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this from reflexivity of =:

a
=7→ b

=7→ refl(f(a)(b)) :
=∏
a:A

=∏
b:B

f(a)(b) = f(a)(b). (2.141)

2.12 Opposite, core and localization

The types defined in this section only apply to the directed case.

2.12.1 The opposite of a type

In category theory, every category has an opposite category, in which all morphisms
are reversed. We define a type that plays a similar role:

Inductive type 2.12.1. Given a type A, we define its opposite Aop, which is
invariant in A, with the following constructor:

• flip : A
−→ Aop.

It may be surprising that we define Aop invariant in A. For types with only covariant
constructors, Guideline 2.7.4 stipulates that a type may be v-variant in an object x
as long as the types of all arguments are v-variant in x. Here, the only constructor
flip takes one argument of type A. Since the identity is covariant, we would expect

Aop to be covariant in A. Indeed, given a function f : A
+→ C, we can define

f ′ : Aop +→ Cop by f ′ (flip a) :≡ flip f(a) : Cop. However, the mapping f
−7→ f ′ is

contravariant. Indeed, assuming directed function extensionality (see section 3.8.8),
a morphism f  g is a pointwise morphism

∏=
a:A f(a)  C g(a). But this yields a

pointwise morphism
∏=

a:A flip g(a) Cop flip f(a), i.e. a morphism g′  f ′.
If we want maximal power, we would have to define 2op as a function that pre-

serves morphisms contravariantly. However, as this variance is not natively available
in the theory, we have to settle for invariance.

In general, if a type A[x] depends on an object x : X and a constructor takes an
argument of type T [x] v-variantly, where T [x] is t-variant in x, then from a morphism
x X y we get a bridge/morphism/equality (depending on t) between T [x] and T [y],
which we can use v-variantly to obtain a bridge/morphism/equality between A[x] and
A[y]. So the variance of A[x] is not stronger than (+0v1) ◦ t, where (+0v1)-variant
functions preserve bridges/morphisms/equalities v-variantly. As the variance (+0v1)
is not available natively, we have to weaken it. If v ∈ {+,=}, then we can weaken it
to +, otherwise we weaken it to ×. We extract a new guideline from this, generalizing
2.7.4 on page 32:
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Guideline 2.12.2. If a type A[x] depends on an object x : X and a constructor
takes an argument of type T [x] v-variantly, where T [x] is t-variant in x, then the
variance of A[x] must be weaker than:

• t, if v ∈ {+,=},

• × ◦ t, if v ∈ {−,×}.

We do not consider the variance of inductive types with constructors that take re-

cursive arguments in a non-covariant way, such as :: : A
+→ FliplistA

−→ FliplistA.

To create a function Aop v→ C, we need to give a function A
v◦−→ C. Thus, as

prescribed by Guideline 2.7.5, the recursion principle is:

recvAop :
=∏
C:Ui

(
A

v◦−→ C
)

+→
(
Aop v→ C

)
, (2.142)

with computation rule: recvAop(C, f)(flipx) ≡ f(x) : C. The induction principle is:

indvAop :
=∏

C:Aop ×→Ui

(
v◦−∏
a:A

C(flip a)

)
+→

(
v∏

a′:Aop

C(a′)

)
, (2.143)

with computation rule: indvAop(C, f)(flipx) ≡ f(x) : C(flipx).

Remark 2.12.3 (Opposite currying). There is an analogue of currying for the oppo-
site type, which we will call opposite currying. (This is typical for inductive types
with only a single constructor.) Opposite currying is not the opposite of currying,
but rather currying for the opposite type.

If we have a function Aop v→ C, we can curry it to a function A
v◦−→ C:

opCurryv :≡ f
+7→
(
a
v◦−7→ f(flip a)

)
:
(
Aop v→ C

)
+→
(
A

v◦−→ C
)
. (2.144)

We can also uncurry:

opUncurryv :≡ g
+7→ (recvAop(C, g)) :

(
A

v◦−→ C
)

+→
(
Aop v→ C

)
. (2.145)

The currying and uncurrying functions are isovariant in the relevant types. They are
each other’s inverse:

opUncurryv (opCurryv f) (flip a0) ≡ recAop(C, a
v◦−7→ f(flip a))(flip a0)

≡
(
a
v◦−7→ f(flip a)

)
(a0) ≡ f(flip a0), (2.146)

opCurryv (opUncurryv g) (a0) ≡
(
a
v◦−7→ recAop(C, g)(flip a)

)
(a0)

≡ recAop(C, g)(flip a0) ≡ g(a0). (2.147)
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We conclude that
(
Aop v→ C

)
+'
(
A

v◦−→ C
)

. We can also curry and uncurry depen-

dent functions, yielding: (
v∏

e:Aop

C(e)

)
+'

(
v◦−∏
a:A

C(flip a)

)
. (2.148)

Remark 2.12.4 (Unflipping). There is also an analogue of the projections from
the product. (Again, this is typical for inductive types with only one constructor.)
Whereas projections can be seen as the inverses of pairing, here we will get an inverse
of flip. We will aptly call it unflip:

unflip :≡ rec−Aop(A, a
+7→ a) : Aop −→ A. (2.149)

Then we have unflip (flip a) ≡ a : A.
The unflipping function is isovariant in the type A. Assuming a uniqueness prin-

ciple (e ≡ flip (unflip e)), it is as strong as the induction principle. Indeed, we have

=∏
e:Aop

indvAop(C, f)(e) = f(unflip e). (2.150)

If we want to prove this, the induction principle tells us that we need only prove:

=∏
a:A

indvAop(C, f)(flip a) = f(unflip (flip a)) (2.151)

but both left and right hand side are judgementally equal to f(a), so we conclude
this from reflexivity of =:

a
=7→ refl(f(a)) :

=∏
a:A

f(a) = f(a). (2.152)

One can prove, additionally, that flip (unflip a) = a. We conclude that A and Aop

are contravariantly equivalent (a notion which we will not define formally): A
−'

Aop. Then A is covariantly equivalent to Aopop: A
+' Aopop, and flip : Aop −→ Aopop

corresponds to unflip : Aop −→ A under this equivalence.
From the contravariant equivalence, we also see (by composing) that a function

A
v→ C is the same as a function A

−◦v→ Cop. This equivalence, too, has a variance,
which follows from the variance of the composition law (see definition 2.4.3):(

A
v→ C

) −' A
−◦v→ Cop. (2.153)
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2.12.2 The core of a type

In category theory

Every category has an underlying objects set (or class), which consists of the category’s
objects, but not its morphisms. We want to do a similar thing in type theory. However,
as we want isomorphism to coincide with equality, and everything should respect equality,
we cannot throw away isomorphisms. Thus, the best thing we can do is to take the core
of a category.

Definition 2.12.5. The core of a category C is the category Ccore whose objects are
the objects of C and whose morphisms are the isomorphisms of C [nLa12]. We have
a functor E : Ccore → C that maps objects and morphisms to themselves.

The core obeys a universal property:

Proposition 2.12.6. If G is a groupoid and F : G → C is a functor, then there exists
a unique F ′ : G → Ccore so that F = E ◦ F ′.

Proof. Existence: Let ϕ be any morphism in G. Since G is a groupoid, ϕ is an isomorphism,
and then so is Fϕ. But then Fϕ is a morphism in Ccore, so we can define F ′ := F . Then
clearly F = E ◦ F ′.

Uniqueness: This follows from the fact that E is injective on the objects class as well
as on every Hom-set.

Remark 2.12.7. When we consider 2core : Cat → Grpd as a 1-functor between 2-
categories (preserving morphisms (functors in Cat) but not morphisms between mor-
phisms (natural transformations in Cat)), then we can also state the universal property
by saying that 2core is right adjoint to the forgetful functor U : Grpd→ Cat [nLa12].

In directed HoTT

We define an analogous type:

Inductive type 2.12.8. Given a type A, we define its core Acore, which is
invariant in A, with the following constructor:

• strip : A
×→ Acore.

Again, the function 2core does preserve morphisms, but it preserves them invariantly.
The strongest basic variance that is consistent with this behaviour, is invariance. To

create a function Acore v→ C, we need to give a function A
v◦×→ C:

recvAcore :
=∏
C:Ui

(
A

v◦×→ C
)

+→
(
Acore v→ C

)
. (2.154)

The computation rule is: recvAcore(C, f)(stripx) ≡ f(x) : C.
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The induction principle is:

indvAcore :
=∏

C:Acore ×→Ui

(
v◦×∏
a:A

C(strip a)

)
+→

(
v∏

a′:Acore

C(a′)

)
, (2.155)

with computation rule: indvAcore(C, f)(stripx) ≡ f(x) : C(stripx).

Remark 2.12.9 (Core currying). Again, there is an analogue of currying. If we have

a function Acore v→ C, we can core curry it to a function A
v◦×→ C:

coreCurryv :≡ f
+7→
(
a
v◦×7→ f(strip a)

)
:
(
Acore v→ C

)
+→
(
A

v◦×→ C
)
. (2.156)

We can also uncurry:

coreUncurryv :≡ g
+7→ (recvAcore(C, g)) :

(
A

v◦×→ C
)

+→
(
Acore v→ C

)
. (2.157)

The currying and uncurrying functions are isovariant in the relevant types. They are
each other’s inverse:

coreUncurryv (coreCurryv f) (strip a0) ≡ recAcore(C, a
v◦×7→ f(strip a))(strip a0)

≡
(
a
v◦×7→ f(strip a)

)
(a0) ≡ f(strip a0), (2.158)

coreCurryv (coreUncurryv g) (a0) ≡
(
a
v◦×7→ recAcore(C, g)(strip a)

)
(a0)

≡ recAcore(C, g)(strip a0) ≡ g(a0). (2.159)

We conclude that
(
Acore v→ C

)
+'
(
A

v◦×→ C
)

. We can also curry and uncurry depen-

dent functions, yielding: (
v∏

e:Acore

C(e)

)
+'

(
v◦×∏
a:A

C(strip a)

)
. (2.160)

Remark 2.12.10 (Unstripping). There is also an analogue of the projections from
the product and unflipping for the opposite:

unstrip :≡ rec±Acore(A, a
×→ a) : Acore ±→ A. (2.161)

Then we have unstrip (strip a) ≡ a : A. The recursion principle allows us to define
unstrip co-, contra- or invariantly, but not isovariantly. Unfortunately, these three
variances have no ‘maximum’, so we have to make do with the ± notation.

The unstripping function is isovariant in A. Assuming a uniqueness principle
(e :× Acore ` e ≡ strip (unstrip e) :+ Acore), it is as strong as the induction principle,
but it is less straightforward to see it. For the invariant and isovariant induction
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principle, we can get the variances straight right away:

=∏
e:Acore

ind=
Acore(C, f)(e) = f(unstrip e),

=∏
e:Acore

ind×Acore(C, f)(e) = f(unstrip e). (2.162)

In the first case, the left hand side has variance = in e and the right hand side has
= ◦ × ◦ ± (that is = ◦ × for f and ± for unstrip), which match. In the second case,
we get × on the left, and × ◦ × ◦ ± on the right, which also match. But for the
covariant principle, we would get + on the left and + ◦ × ◦ ± on the right, which is
weaker. So we would be weakening the covariant induction principle to an invariant
one. However, from (2.160), we can conclude:(

×∏
a:A

C(strip a)

)
+'

(
+∏

e:Acore

C(e)

)
+'

(
−∏

e:Acore

C(e)

)
+'

(
×∏

e:Acore

C(e)

)
, (2.163)

so that we only need the invariant and isovariant induction principles.
The proof of (2.162) is analogous to the one for unflip.

Equation (2.163) is not surprising: co-, contra- and invariant functions act the same
way on bridges and isomorphisms; they only act differently on non-invertible mor-
phisms, which we have thrown away in Acore. The core may however contain non-
trivial bridges, so we cannot add Acore =→ C to this sequence and in particular, we
cannot construct an isovariant identity function from Acore to Acore. Indeed, to use the
recursion principle to define such a function, we would need an (= ◦ ×) ≡ =-variant
function A

=→ Acore.

2.12.3 Bridged groupoids

We will call a type such as Acore, with non-trivial bridges but all trivial morphisms, a
bridged groupoid. The best way to express that a type has this property, is by saying
that it remains covariantly equivalent when you remove all non-trivial morphisms
but not the bridges. The function that does this, is strip, and we already know that
this function has a covariant inverse unstrip, so the only extra thing we need is that
unstrip be an equivalence:

Definition 2.12.11. A type A is a bridged groupoid if the function unstrip :

Acore +→ Acore is an equivalence:

isBridgedGrpd(A) :≡ isEquiv(unstrip). (2.164)

See section section 3.3 for a definition of isEquiv. As the predicate isEquiv(f) is
invariant in the domain and codomain of f , the predicate isBridgedGrpd(A) is
invariant in A.
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We illustrate that Acore is always a bridged groupoid. Define:

f :≡ rec+
Acore(Acorecore, a

×7→ strip (strip a)) : Acore +→ Acorecore. (2.165)

It computes: f(strip e) ≡ strip strip e. We show that it is the inverse of unstrip :Acorecore +→
Acore. Take a′ :+ Acore. By induction, we may assume that a′ ≡ strip a for some a :× A.
Then

unstrip f(a′) ≡ unstrip f(strip a) ≡ unstrip (strip (strip a)) ≡ strip a ≡ a′. (2.166)

Conversely, take a′′ :+ Acorecore. By double induction, we may assume that a′′ ≡
strip (strip a) for some a :× A. Then

f(unstrip a′′) ≡ f(unstrip (strip (strip a))) ≡ f(strip a) ≡ strip (strip a) ≡ a′′. (2.167)

Now, if G is a bridged groupoid, then G
+' Gcore, so we can translate (2.163) to(

+∏
x:G

C(x)

)
+'

(
−∏
x:G

C(x)

)
+'

(
×∏
x:G

C(x)

)
(2.168)

by composing with that equivalence. I.e. for functions from a bridged groupoid, it is
irrelevant which one of these three variances they have. We will use 3 as a variance
annotation to remind of this irrelevance.

There is a type theoretic analogue of the universal property for the core: if G is

a bridged groupoid and f : G
3→ A, then we construct a function f ′ : G

3→ Acore so
that f(x) =A unstrip f ′(x) for all x : G:

f ′ :≡ x
37→ strip f(x) : G

3→ Acore (2.169)

This is clearly the only solution, as unstrip is invertible.

2.12.4 The localization of a type

In category theory

At this point, for any type A we have a type Aop so that a contravariant function from A
is the same a covariant one from Aop, and a type Acore so that an invariant function from
A is the same as a covariant one from Acore. We would like a similar thing for isovariance.
For that, we will use the concept of localization from category theory.

Definition 2.12.12. Let C be a category and W a set of morphisms in C. A
localization of C away from W consists of a category C[W−1] and a functor
PW : C → C[W−1] with the following universal property:

Whenever F : C → D is a functor that maps any morphism in W to an isomor-
phism, then there exists a unique functor F ′ : C[W−1] → D so that F = F ′ ◦ PW .
[GZ67]
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What we want to do is turn every morphism into an equality, i.e. an isomorphism. Thus,
we will be using the localization away from all morphisms, which we will simply call
the localization. For the localization, we can also state the universal property by saying
that the localization 1-functor 2loc : Cat→ Grpd is left adjoint to the forgetful 1-functor
U : Grpd→ Cat [nLa12].

In directed HoTT

Inductive type 2.12.13. Given a type A, we define its localization Aloc,
which is covariant in A, with the following constructor:

• gather : A
=→ Aloc.

This time, Aloc is covariant in A. In fact, it has stronger variance: it preserves
morphisms, but it preserves them isovariantly.

Note that for any variance v, v ◦ = ≡ =. So, to create a function Aloc v→ C, we
need to give a function A

=→ C:

recvAloc :
=∏
C:Ui

(
A

=→ C
)

+→
(
Aloc v→ C

)
. (2.170)

The computation rule is: recv
Aloc(C, f)(gather x) ≡ f(x) : C.

The induction principle is:

indvAloc :
=∏

C:Aloc ×→Ui

(
×∏
a:A

C(gather a)

)
+→

(
v∏

a′:Aloc

C(a′)

)
, (2.171)

with computation rule: indvAloc(C, f)(gather x) ≡ f(x) : C(gather x).

Remark 2.12.14 (Localization currying). If we have a function Aloc v→ C, we can
localization curry it to a function A

=→ C:

locCurryv :≡ f
+7→
(
a

=7→ f(gather a)
)

:
(
Aloc v→ C

)
+→
(
A

=→ C
)
. (2.172)

We can also uncurry:

locUncurryv :≡ g
+7→ (recvAcore(C, g)) :

(
A

=→ C
)

+→
(
Aloc v→ C

)
. (2.173)

The currying and uncurrying functions are isovariant in the relevant types. They are
each other’s inverse:

locUncurryv (locCurryv f) (gather a0) ≡ recAloc(C, a
=7→ f(gather a))(gather a0)

≡
(
a

=7→ f(gather a)
)

(a0) ≡ f(gather a0),

(2.174)
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locCurryv (locUncurryv g) (a0) ≡
(
a

=7→ recAloc(C, g)(gather a)
)

(a0)

≡ recAloc(C, g)(gather a0) ≡ g(a0). (2.175)

We conclude that
(
Aloc v→ C

)
+'
(
A

=→ C
)

. We can also curry and uncurry depen-

dent functions, yielding:(
v∏

e:Aloc

C(e)

)
+'

(
=∏
a:A

C(gather a)

)
. (2.176)

Unlike flip and strip, gather has no inverse. This is because Aloc has more equalities
than A, and any function, even an invariant one, must preserve equality. When
defining flip and strip, we fed the identity function to the recursion principle. However,
recv

Aloc only takes isovariant functions.
From (2.176), we get:(

+∏
e:Aloc

C(e)

)
+'

(
−∏

e:Aloc

C(e)

)
+'

(
×∏

e:Aloc

C(e)

)
+'

(
=∏

e:Aloc

C(e)

)
(2.177)

This is not surprising: we have turned all structure into isomorphisms, and all func-
tions preserve isomorphisms, so variance is immaterial for functions from Aloc. We
can also construct an isovariant identity function id=

Aloc :

id=
Aloc :≡ rec=

Aloc(C, gather). (2.178)

2.12.5 Bridgeless groupoids

A bridgeless groupoid is a type that has only trivial bridges and morphisms: they are
actually equalities. We can express this by saying that the identity function turns
bridges and morphisms into equalities, i.e. that it is isovariant.

Definition 2.12.15. A type A is a bridgeless groupoid if the identity function
idA is isovariant:

isBridgelessGrpd(A) :≡
+∑

f :A
=→A

(f+ = idA) , (2.179)

where f+ is the function f seen as a covariant function: f+ :≡ a
+7→ f(a). As

the type A
+→ A is invariant in A, the entire predicate isBridgelessGrpd(A) is

invariant in A.

By composing with the identity function, we find that all functions to and from a
bridgeless groupoid are isovariant and hence have any variance. As mentioned before,
we will use the variance annotation 4 to remind that a function’s variance is irrelevant.

Note that the situation is different for bridged and bridgeless groupoids. If G
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is a bridged groupoid, we can write G
3→ C but not C

3→ G as functions C
±→ G

take morphisms to morphisms (therefore to isomorphisms) whereas C
×→ G takes

morphisms to bridges. If H is a bridgeless groupoid, we can write both H
4→ C and

C
4→ H.
There is another way to state the universal property of the localization: if H is a

bridgeless groupoid and f : A
4→ H, then we construct a function f ′ : Aloc 4→ H so

that f = f ′ ◦ gather:
f ′ :≡ recvAloc(H, f). (2.180)

The induction principle allows us to prove that this f ′ is the only solution.

2.13 Dependent pair types

This section is based on [Uni13, §1.6].

In symmetric HoTT

The product can be generalized to a dependent pair type
∑

x:AB(x). The elements of
this type are pairs of the form (a, b) where a : A and b : B(a). So the type of the second
component depends on the value of the first component. It is denoted with a summation
sign because it may be regarded as the sum/coproduct/disjoint union of all types B(a).
For example, the type of all X-vectors of any length, could be defined as

∑
n:N VecnX.

Inductive type 2.13.1. If A is a type and B[x] a type dependinga on a variable
x : A, we define

∑
a:AB[a] as the inductive type with the following constructor:

• (2,2) :
∏

x:AB[x]→
∑

a:AB[a].

Remember that the product sign applies to everything on its right.

aWe might as well have required a function B : A → Ui. Thanks to the inference rules of
dependent functions, the result would have been equivalent. However, since we could not do this
when defining dependent functions on penalty of a circular definition, we do not do it here either
for conformity. It does not matter really.

The type of the second argument of our constructor, depends on the value of the first one.
We celebrate this small novelty with a guideline:

Guideline 2.13.2. The type of a constructor’s argument, may depend on the values
of all preceding arguments. The recursion and induction principles become dependent
accordingly.

Let us abbreviate
∑

x:AB[x] as S. The recursion principle should tell us that, to create a
function S → C, we need a function

∏
x:AB[x]→ C. Thus, the recursion principle is:

recS :
∏
C:Ui

(∏
a:A

B[a]→ C

)
→ (S → C) , (2.181)

with computation rule: recS(C, f)((a, b)) ≡ f(a)(b) : C.
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To create a function
∏

e:S C(e), we need a function
∏

a:A

∏
b:B[a] C((a, b)). thus, the

induction principle is:

indS :
∏

C:S→Ui

∏
a:A

∏
b:B[a]

C((a, b))

→ (∏
e:S

C(e)

)
, (2.182)

with computation rule: indS(C, f)((a, b)) ≡ f(a)(b) : C((a, b)).

Remark 2.13.3 (Currying). If we have a function
∏

e:S C(e), we can curry it to a
function

∏
a:A

∏
b:B[a] C((a, b)):

curry :≡ f 7→ (a 7→ b 7→ f((a, b))) :

(∏
e:S

C(e)

)
→

∏
a:A

∏
b:B[a]

C((a, b))

 . (2.183)

We can also uncurry:

uncurry :≡ g 7→ (indS(C, g)) :

∏
a:A

∏
b:B[a]

C((a, b))

→ (∏
e:S

C(e)

)
. (2.184)

So we get (∏
e:S

C(e)

)
'

∏
a:A

∏
b:B[a]

C((a, b))

 . (2.185)

Remark 2.13.4 (Projections). We define coordinate projections

prl :≡ recS(A, a 7→ b 7→ a) : S → A,

prr :≡ indS(e 7→ B[prl e], a 7→ b 7→ b) :
∏
e:S

B[e]. (2.186)

It is not entirely trivial that the definition of prr is legal. Note that indA×B(e 7→
B[prl e]) requires us to provide a function of type

∏
a:A

∏
b:B[a] B[prl(a, b)]. But

prl(a, b) ≡ (a′ 7→ b′ 7→ a′) (a)(b) ≡ a : A. (2.187)

Since b has type B[a], the given function has the correct type.
We have

prl((a, b)) ≡ a : A, prr((a, b)) ≡ b : B[a]. (2.188)

Assuming e ≡ (prl e, prr e), the coordinate projections are as strong as the induction
principle. Indeed, we have∏

e:S

indS(C, f)(e) = f(prl e)(prr e). (2.189)
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If we want to prove this, the induction principle tells us that we need only prove:∏
a:A

∏
b:B[a]

indS(C, f)((a, b)) = f(prl (a, b))(prr (a, b)) (2.190)

but both left and right hand side are judgementally equal to f(a)(b), so we conclude
this from reflexivity of =:

a 7→ b 7→ refl(f(a)(b)) :
∏
a:A

∏
b:B[a]

f(a)(b) = f(a)(b). (2.191)

In directed HoTT

Inductive type 2.13.5. If A is a type and B[x] a type, depending on a variable
x :× A invariantly, we define the type of u-variant dependent pairs

∑u
a:AB[a]

as the inductive type with the following constructor:

• (2 u, 2) :
∏u

x:AB[x]
+→
∑u

a:AB[a].

The type
∑u

a:AB[a] is covariant in the type family B[a]. If u ∈ {+,=}, it is
covariant in A, otherwise it is invariant in A, as per Guideline 2.12.2 on page
45.

Let us abbreviate
∑u

a:AB[a] as Su. Note that a pair (a u, b) is u-variant in a and
covariant in b. The recursion principle for creating v-variant functions of pairs (which
are thus (v ◦ u)-variant in the first component), is:

recvSu :
=∏
C:Ui

(
v◦u∏
a:A

B[a]
v→ C

)
+→
(
Su

v→ C
)
, (2.192)

with computation rule: recvSu(C, f) ((a u, b)) ≡ f(a)(b) : C.
The induction principle is:

indvSu :
=∏

C:Su ×→Ui

v◦u∏
a:A

v∏
b:B[a]

C ((a u, b))

 +→

(
v∏

e:Su

C(e)

)
, (2.193)

with computation rule: indvS(C, f) ((a u, b)) ≡ f(a)(b) : C ((a u, b)).

Remark 2.13.6 (Currying). If we have a function
∏v

e:Su C(e), we can curry it to a
function

∏v◦u
a:A

∏v
b:B[a] C ((a u, b)):

curry :≡ f
+7→
(
a
v◦u7→ b

v7→ f ((a u, b))
)

:

(
v∏

e:Su

C(e)

)
+→

v◦u∏
a:A

v∏
b:B[a]

C ((a u, b))

 .

(2.194)
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We can also uncurry:

uncurry :≡ g
+7→ (indvS(C, g)) :

v◦u∏
a:A

v∏
b:B[a]

C ((a u, b))

→ (
v∏

e:Su

C(e)

)
. (2.195)

So we get (
v∏

e:Su

C(e)

)
+'

v◦u∏
a:A

v∏
b:B[a]

C ((a u, b))

 . (2.196)

The currying and uncurrying functions are isovariant in the types A and C and the
type family B[a].

By variance currying the constructor, it is easy to see that

−∑
x:A

B[x]
+'

+∑
x:Aop

B[unflipx],
×∑
x:A

B[x]
+'

+∑
x:Acore

B[unstripx]. (2.197)

We cannot do a similar thing for S= because gather has no inverse. Therefore, we
will only further investigate S+ and S=. We will often write (a, b) instead of (a +, b).

Remark 2.13.7 (Projections from S+). We define coordinate projections

prl :≡ rec+
S+(A, a

+7→ b
+7→ a) : S+ +→ A,

prr :≡ ind+
S+(e

×7→ B[prl e], a
+7→ b

+7→ b) :
+∏
e:S

B[e]. (2.198)

We have
prl ((a +, b)) ≡ a : A, prr ((a +, b)) ≡ b : B[a]. (2.199)

The coordinate projections are isovariant in the type A and the type family B[a].
Assuming e ≡ (prl e +, prr e), they are as strong as the induction principle. Indeed, we
have

=∏
e:S+

indvS+(C, f)(e) = f(prl e)(prr e). (2.200)

If we want to prove this, the induction principle tells us that we need only prove:

=∏
a:A

=∏
b:B[a]

indvS+(C, f) ((a +, b)) = f(prl (a +, b))(prr (a +, b)) (2.201)

but both left and right hand side are judgementally equal to f(a)(b), so we conclude
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this from reflexivity of =:

a
=7→ b

=7→ refl(f(a)(b)) :
=∏
a:A

=∏
b:B[a]

f(a)(b) = f(a)(b). (2.202)

Remark 2.13.8 (Projections from S=). We cannot do the same for S= as we did for
S+ because the recursion principle needs a function that is isovariant in a, and the

function a
+7→ b

+7→ a is not. So instead, we project to the localization of A:

prl :≡ rec+
S=(Aloc, a

=7→ b
+7→ gather a) : S= 4→ Aloc. (2.203)

It computes: prl ((a =, b)) ≡ gather a. The projection prl is isovariant in the type A
and the type family B[a].

The right projection cannot be defined, because now we cannot write B[prl e]
since prl e is not in A but in Aloc. The reason is that S= may have equated elements
from different types B[a], so we can no longer tell to what type B[a] they should be
projected. In fact, we will show in section 3.8.7 that if B[a] is covariant, then S= is
the injective limit of B[a] indexed by a : A.

Clearly, prl alone is not as strong as the induction principle.

Remark 2.13.9. The reader may wonder why we allow pairs to have various vari-
ances in the first component, but only covariance in the second. However, if we need
a type of pairs (a, b) that are covariant in a and, e.g., isovariant in b, we can take∑+

a:AB(a)loc. This is not possible for the first component, as B(a) cannot be written
in terms of gather a.

2.14 Inductive type families: some examples

In symmetric HoTT

A type family is a function X → Ui whose function values are types. An inductive
type family [Uni13, §5.7] is a generalization of an inductive type: we define an entire
family of types P : A→ Ui, parametrized over A, at once.

Example 2.14.1. We mentioned before that P (a) can be seen as a proposition about
the term a. As an example of an inductive type family, we will define a family
isEven : N→ U0 so that we can construct an element of isEven(n) precisely when n is
even.

Inductive type family 2.14.2. We define isEven : N → U0 with the following
constructors:

• even0 : isEven(zero),

• even+2 :
∏

n:N isEven(n)→ isEven(succ(succn)).
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The first constructor states that 0 is even, and the other one states that when n
is even, then so is n + 2. The recursion and induction principles are the principles
that we might expect if we had not defined isEven(n) but rather an inductive type T
which is isomorphic to

∑
n:N isEven(n). Such a type would have constructors

• t0 : T ,

• t+2 : T → T ,

since creating a term of isEven(n) for a particular n is a special case of creating a term
of T , and for even+2, we can take the two arguments n : N and p : isEven(n) of even+2

together as a pair (n, p) : T .
Note that T has the same definition as the naturals, so it also has the same

recursion principle:

recT :
∏
C:Ui

C → (T → C → C)→ (T → C). (2.204)

To obtain the recursion principle for isEven, we simply replace T with
∑

n:N isEven(n)
(and do a bit of currying) to obtain

recisEven :
∏
C:Ui

C →

(∏
n:N

isEven(n)→ C → C

)
→

(∏
n:N

isEven(n)→ C

)
. (2.205)

Then a function f :≡ recisEven(C, c0, c+2) is computed as follows:

f(0, even0) ≡ c0 : C, (2.206)

f(n+ 2, even+2(n, p)) ≡ c+2(n, p, f(n, p)) : C. (2.207)

Here p is a proof that n is even.
The induction principle of T is that of the naturals:

indT :
∏

C:T→Ui

C(t0)→

(∏
x:T

C(x)→ C(t+2 x)

)
→

(∏
x:T

C(x)

)
. (2.208)

Again, we replace T with
∑

n:N isEven(n). This means C will take an argument n : N
and an argument p : isEven(n). The constructors of isEven(n) yield only the latter, so
we have to supplement them with the proper natural number:

indisEven :
∏

C:
∏

n:N isEven(n)→Ui

C(0, even0)

→

∏
n:N

∏
p:isEven(n)

C(n, p)→ C(n+ 2, even+2(n, p))

→
∏

n:N

∏
p:isEven(n)

C(n, p)

 .

(2.209)
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Let’s see how we should read this induction principle. In order to construct, for all
n : N at once, a function f(n) :

∏
p:isEven(n) C(n, p), we need to provide

• a value for f(0)(even0) : C(0, even0),

• whenever p proves that n is even, a value for

f(n+ 2)(even+2(n, p)) : C(n+ 2, even+2(n, p)), (2.210)

but we may assume that f(n)(p) : C(n, p) is already defined.

The induction principle computes just like the recursion principle.

This inspires the following guideline:

Guideline 2.14.3. Instead of defining a single type T : Uk inductively, we may define
a type family E : Θ1 → . . .→ Θn → Uk inductively. In that case:

• Every constructor is a (dependent) function that yields values of type E(θ1, . . . , θn),
where each θi may depend on the values of the arguments given to the construc-
tor.

• The induction principle, which produces functions of the form

f :
∏
θ1:Θ1

. . .
∏
θn:Θn

∏
e:E(θ1,...,θn)

C(θ1, . . . , θn, e), (2.211)

takes as arguments a type family C and one function fi for every constructor
χi. The function fi has all arguments from χi and, in addition, for every recur-
sive argument

∏
e:E(θ1,...,θn) (where all θj are expressions of type Θj) of χi, an

argument
∏

c:C(θ1,...,θn,e)
used to pass the ‘already defined value’ f(e) to fi.

• The computation rules are a straightforward generalization of those for inductive
types.

Often, we can also arrive at the correct recursion and induction principles by trans-
lating the definition of E into a definition of T '

∑
θ1:Θ1

. . .
∑

θn:Θn
E(θ1, . . . , θn) and

then uncurrying the recursion and induction principles for T .

Example 2.14.4. We will now define types of fixed-length vectors:

Inductive type family 2.14.5. For every type A : Ui, we define the type family
Vec2A : N→ Ui with the following constructors:

• ‡ : Veczero A,

• :: : A→
∏

n:N VecnA→ VecsuccnA.

The corresponding type T '
∑

n:N VecnA is simply the type of lists over A:
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• ‡ : ListA,

• :: : A→ ListA→ ListA.

Its induction principle was:

indListA :
∏

C:ListA→Uk

C(‡)→

(∏
a:A

∏
α:ListA

C(α)→ C(a :: α)

)
→

( ∏
e:ListA

C(e)

)
,

(2.212)
which translates to:

indVec A :
∏

C:
∏

n:N Vecn A→Uk

C(zero, ‡)→

(∏
a:A

∏
n:N

∏
α:Vecn A

C(n, α)→ C(succn, a :: α)

)

→

(∏
n:N

∏
e:Vecn A

C(n, e)

)
. (2.213)

This is in line with the guideline. It computes:

indVec A(C, r, s)(zero, ‡) ≡ r, (2.214)

indVec A(C, r, s)(succn, a :: α) ≡ s (a, n, α, indVec A(C, r, s)(n, α)) . (2.215)

Note that in VecnA, the objects A and n play a fundamentally different role here: for every
type A, VecnA is an inductive type family indexed by n : N. For every type A, we have
constructors that create vectors of some length, making use of vectors of different lengths.
For every type A, we have a recursion principle that generates functions VecnA→ C for
all n at once. We could have defined VecnA as an inductive type family indexed by both
A and n, but we couldn’t have defined all VecnA’s as separate inductive types unless we
took a very different approach, such as taking a single constructor

• tuple : (Finn→ A)→ VecnA.

In directed HoTT

Example 2.14.6. As a first step, we generalize the vector type family to the directed
case.

Inductive type family 2.14.7. For every type A : Ui, we define the type family

Vec2A : N 4→ Ui, which is covariant in A, with the following constructors:

• ‡ : Veczero A,

• :: : A
+→
∏4

n:N VecnA
+→ VecsuccnA.

The corresponding type T '
∑4

n:N VecnA is simply the type of lists over A:

• ‡ : ListA,

• :: : A
+→ ListA

+→ ListA.
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Its induction principle was:

indvListA :
=∏

C:ListA
×→Uk

C(‡) +→

(
+∏
a:A

+∏
α:ListA

C(α)
+→ C(a :: α)

)
+→

(
v∏

e:ListA

C(e)

)
,

(2.216)
which translates to:

indvVec A :
=∏

C:
∏4

n:N Vecn A
×→Uk

C(zero, ‡) +→

(
+∏
a:A

4∏
n:N

+∏
α:Vecn A

C(n, α)
+→ C(succn, a :: α)

)

+→

(
4∏
n:N

v∏
e:Vecn A

C(n, e)

)
. (2.217)

Unfortunately, we don’t get a lot of information from this. Indeed, the only question
we need to answer is what is the variance in the index n : N, but N is a bridgeless
groupoid, so we cannot see. To find out, we will define for every type A : Uk a

type family Fac :
∏?

a,b,c:A (a A c)
?→ Uk so that Fac(a, b, c, ϕ) is the proposition that

ϕ : a  c factorizes at b, i.e. there are morphisms χ : a  A b and ψ : b  A c so
that ϕ = ψ ◦ χ. The Curry-Howard correspondence allows us to simply write this
proposition as

Fac(a, b, c, ϕ) :≡
+∑

χ:a b

+∑
ψ:b c

(ϕ =a c ψ ◦ χ). (2.218)

From this, we can infer the variance of Fac. Indeed,
∑+

x:X Y (x) is covariant in X and
Y ; x y is contravariant in x and covariant in y; and x =X y will be covariant in X
and invariant in x and y (that was the reason we needed the concept of invariance in
the first place). So we see that a is used contravariantly, b is used invariantly (as it
appears both co- and contravariantly), c is used covariantly and ϕ is used invariantly:

Fac :
−∏
a:A

×∏
b:A

+∏
c:C

(a c)
×→ Uk. (2.219)

Actually, the variances in a, b and c are not surprising: if we have morphisms α :
a′  a and γ : c c′ we do get the implication

Fac(a, b, c, ϕ)
+→ Fac(a′, b, c′, γ ◦ ϕ ◦ α). (2.220)

A morphism b b′ or b′  b, on the other hand, doesn’t give us anything.
But suppose that we know that ϕ factorizes as ψ ◦ χ. Then we also know

Fac(a, b, c, ϕ) = Fac(a, b, c, ψ ◦ id b ◦ χ), (2.221)

which we can obtain from Fac(b, b, b, id b) by exploiting variance. So the only thing
we need to know, is that the identity morphism factorizes. This inspires an inductive
type definition.
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Example 2.14.8.

Inductive type family 2.14.9. For any type A : Ui, we define the type family

Fac :
∏−

a:A

∏×
b:A

∏+
c:A(a  c)

×→ Ui, which is covariant in A, with the following
constructors:

• fac :
∏=

a:A Fac(a, a, a, id a),

• Fac(a, b, c, ϕ) is contravariant in a,

• Fac(a, b, c, ϕ) is covariant in c.

The isovariance of fac is a choice we are allowed to make, but it is also nicely in
line with Guideline 2.4.2 as we just want Fac(a, a, a, id a) to be true and the argument
a is just there to assert that the proposition exists.

And yes, that’s right, we view contravariance in a and covariance in c as construc-
tors. Neglecting higher order structure, we could write them as follows:

2∗ :
=∏

a′,a,b,c:A

=∏
ϕ:a c

+∏
α:a′ a

Fac(a, b, c, ϕ)
+→ Fac(a′, b, c, ϕ ◦ α),

2∗ :
=∏

a,b,c,c′:A

=∏
ϕ:a c

+∏
γ:c c′

Fac(a, b, c, ϕ)
+→ Fac(a, b, c′, γ ◦ ϕ). (2.222)

These are the transport functions for Fac along the given morphisms: they turn
morphisms in a covariant index, into functions. We shall write 2∗(a′, a, b, c, ϕ, α, q)
as α∗(q). As per Guideline 2.4.2, these functions should be isovariant in a′, a, b, c, c′

and ϕ as these objects are there just to assert the existence of other types. In fact,
isovariance in all of these arguments will follow from the directed transport lemma
3.3.8 and Lemma 3.2.3.

To create a v-variant function

f :
?∏

a,b,c:A

?∏
ϕ:a c

v∏
q:Fac(a,b,c,ϕ)

C(a, b, c, ϕ, q), (2.223)

we need:

ffac :
=∏
a:A

C(a, a, a, id a, fac a),

fleft :
=∏

a′,a,b,c:A

=∏
ϕ:a c

v∏
α:a′ a

v∏
q:Fac(a,b,c,ϕ)

C(a, b, c, ϕ, q)
+→ C(a′, b, c, ϕ ◦ α, α∗(q)),

fright :
=∏

a,b,c,c′:A

=∏
ϕ:a c

v∏
γ:c c′

v∏
q:Fac(a,b,c,ϕ)

C(a, b, c, ϕ, q)
+→ C(a, b, c′, γ ◦ ϕ, γ∗(q)).
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Now when v ≡ +, fleft and fright are simply the transport functions 2∗ and 2∗ for C
(compare with the ones we had for Fac). So we really need ffac and a type family C
that has the proper variance.

In general, fleft and fright state that C reverts resp. preserves morphisms v-
variantly, i.e. it is (−0v1)-variant in a and (+0v1)-variant in C. These variances are
not always natively available, so we need to replace them with something stronger
(as it is a restriction we are imposing on C). If v ∈ {×,+}, this just boils down to
contra- and covariance. Otherwise, we have to go for isovariance. So the induction
principle becomes:

indvFac :
=∏

C:
∏−◦w

a:A

∏×
b:A

∏w
c:C

∏×
ϕ:a c

(
=∏
a:A

C(a, a, a, id a, fac a)

)

+→

 ?∏
a,b,c:A

?∏
ϕ:a c

v∏
q:Fac(a,b,c,ϕ)

C(a, b, c, ϕ, q)

 (2.224)

where w ≡ + if v ∈ {×,+} and w ≡ = otherwise.
A function f defined as indvFac(C, ffac) is computed:

f(a, a, a, id a, fac a) ≡ ffac(a),

f(a′, b, c, ϕ ◦ α, α∗(q)) ≡ α∗(f(a, b, c, ϕ, q)),

f(a, b, c′, γ ◦ ϕ, γ∗(q)) ≡ γ∗(f(a, b, c, ϕ, q)). (2.225)

The first line is a real computation rule, the rest is a bit eerie. What the second line
actually says is that f(a′, b, c,2,2) and f(a, b, c,2,2) are, after transporting them
to a common type, equal when there is a morphism α : a′  A a. In other words: it
says that f is isovariant in a. Similarly, the third line says that f is isovariant in c.
For the invariant index b, we can think of a ‘constructor’ that maps p : b A b

′ to a
relation between Fac(a, b, c, ϕ) and Fac(a, b′, c, ϕ) and then reason by the same lines,
but on less steady ground. An isovariant index would have mapped morphisms to
equivalences and is analogous as well. This prompts us to conclude that we should
replace the question marks in (2.224) with =.

We conclude the section with an extra guideline generalizing Guideline 2.14.3 to the
directed case:

Guideline 2.14.10. When we define an inductive type family, we may choose the
variance in its indices.

• The covariant and invariant induction principles require destination type fam-
ilies that have the same variance in their indices.

• The contravariant and isovariant induction principles, require a destination type
family that is isovariant in all of its indices.a
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• The functions produced by the induction principle are isovariant in all indices.
This is in line with Guideline 2.4.2, as the indices are there just to assert the
existence of the destination type.

aThis is possibly too strict for invariant indices – that would depend on the structure of bridge
types, which are problematic: see section 3.5.

2.15 The identity type

In symmetric HoTT

This section is mostly based on [Uni13, §1.12].
The Curry-Howard correspondence between propositions and types, needs a type a =A

b corresponding to the proposition that a : A equals b : A. The elements of this type,
are the proofs that a = b. There are many ways to prove that two things are equal. We
have the reflexivity, symmetry and transitivity laws that turn equality into an equivalence
relation; we know that when a = b, then f(a) = f(b) and when f = g, then f(a) = g(a)
etc. It turns out that we only have to state reflexivity as a constructor; the induction
principle will prove the rest.

Inductive type 2.15.1. When A : Ui is a type, we define the family of identity
types 2 =A 2 : A→ A→ Ui with the following constructor:

• refl :
∏

a:A a =A a.

Elements of a =A b are called paths from a to b. When there is a path from a to b,
we say that a and b are propositionally equal (as opposed to judgementally equal:
a ≡ b).

As in the previous section, the recursion and induction principles will look a lot like the
principles for a type T (A) isomorphic to

∑
a,b:A a =A b (which is an abbreviation for∑

a:A

∑
b:A a =A b). This type would have the following constructor:

• t : A→ T (A).

Note that this means that a term of T (A) is simply a term of A in a box. The recursion
and induction principles are entirely boring:

recT (A) :
∏
C:Uk

(A→ C)→ (T (A)→ C), (2.226)

indT (A) :
∏

C:T (A)→Uk

(∏
a:A

C(t a)

)
→

 ∏
x:T (A)

C(x)

 . (2.227)

The computation rules are

recT (A)(C, f)(t a) ≡ f(a) : C,

indT (A)(C, f)(t a) ≡ f(a) : C(t a). (2.228)
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In order to obtain the recursion principle for the identity types, we replace T (A) with∑
a,b:A a =A b and do some uncurrying:

rec=A
:
∏
C:Uk

(A→ C)→

(∏
a,b:A

(a =A b)→ C

)
. (2.229)

To obtain the induction principle, we do the same. Then C becomes a dependent type in
three arguments and we replace C(t a) with C(a, a, refl a):

ind=A
:

∏
C:

∏
a,b:A(a=Ab)→Uk

(∏
a:A

C(a, a, refl a)

)
→

(∏
a,b:A

∏
p:a=Ab

C(a, b, p)

)
. (2.230)

We can read this principle as follows: in order to prove that C(a, b, p) holds for all a, b : A
and p : a =A b, we may assume that a and b are the same term and p is simply reflexivity.
This idea is called path induction, as is the object ind=A

. The computation rules are

rec=A
(C, f)(a, a, refl a) ≡ f(a) : C,

ind=A
(C, f)(a, a, refl a) ≡ f(a) : C(a, a, refl a). (2.231)

Just like A×B, Aop, Acore and Aloc, the type family =A has only one constructor. Thus,
we can try to find an analogue of currying and projecting. The analogue of currying yields(∏

a:A

C(a, a, refl a)

)
'

(∏
a,b:A

∏
p:a=Ab

C(a, b, p)

)
, (2.232)

where the induction principle takes you to the right, and evaluation in a, a, refl a takes you
back to the left. The projections were always created by feeding the identity function(s)
to the induction principle. We can try that here:

π :≡ ind=A
(A, idA). (2.233)

It computes: π(a, a, refl a) ≡ a. But what is π(a, b, p) when p is not reflexivity? We can
prove that π(a, b, p) = a, and we can prove that π(a, b, p) = b. This is not a contradiction,
as p proves that a = b. In topological terms π(a, b, p) as a mysterious point on the path
p that connects a and b.

Based path induction Above, we defined the identity types as an inductive type
family in two arguments. However, we might as well have taken one end of the paths
fixed:

Inductive type family 2.15.2. When A : Ui is a type and a0 : A, we the identity
type family based at a0, denoted !a0 =A 2 : A→ Ui, as the inductive type family
with the following constructor:

• brefla0 : !a0 =A a0.
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Note that brefla0 takes no arguments at all.
This definition yields the based path induction principle

ind!a0=A
:

∏
C:

∏
b:A(!a0=Ab)→Uk

C(a0, brefl a0)→

(∏
b:A

∏
p:!a0=Ab

C(b, p)

)
. (2.234)

This says that, when we have a type C(b, p) for every b : A with p : !a0 =A b, then in
order to prove that C(b, p) always holds, it suffices to prove that C(a0, brefl a0) holds. It
computes:

ind!a0=A
(C, c)(a0, brefl a0) ≡ c : C(a0, brefl a0). (2.235)

In fact, it does not matter: path induction and based path induction are equally
strong, so that we can use whichever suits best. This is expressed by the following
lemma:

Lemma 2.15.3. For all a, b : A, the types (a =A b) and (!a =A b) are equivalent:∏
a,b:A

(a =A b) ' (!a =A b). (2.236)

We will give the proof in the directed case a bit further down.

Applying path induction As an example of what these identity types are capable of,
we prove that applying functions preserves propositional equality [Uni13, §2.2]:

Lemma 2.15.4. Suppose f : A → B and a, a′ : A are propositionally equal. Then
f(a) and f(a′) are propositionally equal.

In mathematics founded on set theory, when we state a theorem, we mean to say “This
proposition is provable” and below follows a sketch of how the theorem is proven using
the inference rules of propositional logic. In type theory, we mean to say “The type
corresponding to this proposition, has a term”, and below we construct that term. Since
there is no judgement asserting that a type has a term without explicitly giving it, the
proof is an integral part of the assertion. In this proof, we will be defining a function of
the type ∏

a,a′:A

∏
p:a=Aa′

(f(a) =B f(a′)). (2.237)

Note that (f(a) =B f(a′)) does not depend on p, so we didn’t need a dependent function
type there, but this way it is easier to recognize the opportunity for using path induction.

Proof. By path induction, it is sufficient to construct a function of type
∏

a:A(f(a) =B

f(a)). We take a 7→ refl f(a).
More formally, for every x, y : A and p : x =A y, we define C(x, y, p) :≡ (f(x) =B

f(y)) : Ui. This defines the type family C. We have g :≡ a 7→ refl f(a) :
∏

a:AC(a, a, refl a).
This yields

ind=(C, g) :
∏
a,a′:A

∏
p:a=Aa′

C(a, a′, p) (2.238)

which is what we wanted to find.
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In directed HoTT

Inductive type 2.15.5. When A : Ui is a type (covariantly), we define the

family of identity types 2 =A 2 : A
×→ A

×→ Ui, which is covariant in A, with
the following constructor:

• refl :
∏=

a:A a =A a.

The invariance of a =A b in a and b is a choice, but it was the very reason for
introducing invariant functions, so it seems a good choice. The covariance of the
identity type family in A, follows from the fact that A only occurs covariantly in the
constructor’s argument types. The fact that we choose reflexivity to be isovariant is
in line with Guideline 2.4.2, as we just want a =A a to be true and the argument a is
only there to assert the existence of said type. The analogous case of the morphism
type will provide a more convincing argument.

The induction principle is:

indv=A
:

=∏
C:

∏×
a,b:A(a=Ab)

×→Uk

(
=∏
a:A

C(a, a, refl a)

)
+→

(
=∏

a,b:A

v∏
p:a=Ab

C(a, b, p)

)
. (2.239)

Here, isovariance of the ‘induction basis’
∏=

a:AC(a, a, refl a) follows from the fact that
refl is isovariant and v ◦ = ≡ =. The produced function is isovariant in a and b by
Guideline 2.14.10 and v-variant in p because we are using the v-variant induction
principle.

The induction principle computes:

indv=A
(C, f)(a, a, refl a) ≡ f(a) : C(a, a, refl a). (2.240)

Lemma 2.15.6. Every identity type is a bridgeless groupoid:

=∏
A:Uk

=∏
a,b:A

isBridgelessGrpd(A). (2.241)

Proof. By definition of a bridgeless groupoid, we need to prove

=∏
A:Uk

=∏
a,b:A

+∑
f :a=b

=→a=b

(f+ = ida=b). (2.242)

We first construct the isovariant identity function

g :≡ ind=
=A

(a
×7→ b

×7→ p
×7→ a =A b, refl) :

=∏
a,b:A

(a = b)
=→ (a = b). (2.243)

Then g(a, b) : (a = b)
=→ (a = b), and it computes: g(a, a, refl a) ≡ refl a : a =A a.
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It remains to show that
∏=

a,b:A(g(a, b)+ = ida=b). By the function extensionality
axiom (section 3.8.8), we need only prove

=∏
a,b:A

=∏
p:a=b

(g(a, b)+(p) = p). (2.244)

Then by path induction, we just need
∏=

a:A(g(a, a)+(refl a) = refl a). But if we com-
pute the left hand side:

g(a, a)+(refl a) ≡
(
p

+7→ g(a, a, p)
)

(refl a) ≡ g(a, a, refl a) ≡ refl a, (2.245)

we find that we just need reflexivity: a
=→ refl(refl a).

Based path induction Again, we can define a based identity type family:

Inductive type family 2.15.7. When A : Ui is a type and a0 : A, we the
identity type family based at a0, which is covariant in A and invariant in

a0, denoted !a0 =A 2 : A
×→ Ui, as the inductive type family with the following

constructor:

• brefla0 : !a0 =A a0.

As constructors are always isovariant in the objects used to build the type (e.g.

inl : A
+→ A+ B is isovariant in A), brefla0 is isovariant in a0. What is remarkable is

that !a0 =A 2 is not isovariant in a0 and A. Guideline 2.7.4 on page 32 restricts the
variance in a0 and A based on how they appear in the constructors’ argument types,
but the constructor doesn’t take any arguments, so we would expect !a0 =A 2 to be
isovariant in a0 and A. The reason that it is invariant in a0 has to do with the fact
that a0 appears in the index (the right hand side) of the output type of brefla0 . The
covariance in A has to do with the fact that the index a0 has type A. We come back
to this in the next section on morphism types.

We get the based path induction principle:

indv!a0=A
:

=∏
C:

∏×
b:A(!a0=Ab)

×→Uk

C(a0, brefl a0)
+→

(
=∏
b:A

v∏
p:!a0=Ab

C(b, p)

)
. (2.246)

Again, this induction principle is as good as the non-based one:

Lemma 2.15.8. For all a, b : A, the types (a =A b) and (!a =A b) are equivalent:

=∏
a,b:A

(a =A b)
4' (!a =A b). (2.247)

Proof. We can write
4' because a =A b is a bridgeless groupoid.
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We first create a function

f :
=∏

a,b:A

(a =A b)
4→ (!a =A b) (2.248)

to the right. By path induction, we just need

=∏
a:A

!a =A a, (2.249)

and here we can take a
=7→ brefla, as brefla is isovariant in a. Then f computes:

f(a, a, refl a) ≡ brefla : !a =A a.
Now we construct

g :
=∏

a,b:A

(!a =A b)
4→ (a =A b). (2.250)

By based path induction, we need, for every a := A, an element of a =A a, and there
we can take refl a which is isovariant in a. Then g(a) computes: g(a)(a, brefla) ≡
refl a : a =A a.

We have to show that they are inverses. First, we show

=∏
a,b:A

=∏
p:a=Ab

(g(a, b) ◦ f(a, b))(p) =a=Ab p. (2.251)

By path induction, we just need

=∏
a:A

(g(a, a) ◦ f(a, a))(refl a) = refl a. (2.252)

But the left hand side computes:

(g ◦ f)(a, a, refl a) ≡ g(a, a, f(a, a, refl a)) ≡ g(a, a, brefla) ≡ refl a, (2.253)

so we just need refl(refl a), which is indeed isovariant in a.
From the other side, we need to show

=∏
a,b:A

=∏
p:!a=Ab

(f(a, b) ◦ g(a, b))(p) =!a=Ab p. (2.254)

By based path induction, we need, for every a := A, an element of

(f(a, a) ◦ g(a, a))(brefla) = brefla. (2.255)

But the left hand side computes:

(f(a, a) ◦ g(a, a))(brefla) ≡ f(a, a, g(a)(a, brefla)) ≡ f(a, a, refl a) ≡ brefla, (2.256)

so we just need refl(brefla), which is indeed isovariant in a.
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2.16 The morphism type

The morphism type family only exists in the directed case. Its definition differs only
from the one of the identity type family in its indices’ variance:

Definition 2.16.1. When A :+ Ui is a type, we define the family of morphism

types 2 =A 2 : A
−→ A

+→ Ui, which is covariant in A, as the inductive type
family with the following constructors:

• id :
∏=

a:A a A a,

• the type family a =A b is contravariant in a,

• the type family a =A b is covariant in b.

The covariance of the identity type family in A, follows from the fact that A only
occurs covariantly in the constructor’s argument types. The fact that we choose the
identity morphism id a to be isovariant in a is in line with Guideline 2.4.2, as we just
want a  A a to be true and the argument a is only there to assert the existence of
said type. However, there is a more convincing argument. Suppose that we have a
morphism ϕ : a A b. We get id a : a A a and id b : b A b. If we want to compare
these morphisms, we have to transport them along ϕ to a middle ground a A b:

ϕ∗(id a) = ϕ ◦ id a, ϕ∗(id b) = id b ◦ ϕ. (2.257)

Now we do expect these morphisms to be equal. Then id should be an isovariant
function.

The morphism induction principle differs only from the path induction principle
in the restrictions it imposes on the variance of the destination type family:

indv A
:

=∏
C:

∏−◦w
a:A

∏w
b:B(a Ab)

×→Uk

(
=∏
a:A

C(a, a, id a)

)
+→

(
=∏

a,b:A

v∏
ϕ:a Ab

C(a, b, ϕ)

)
, (2.258)

where w ≡ + if v ∈ {×,+}, and w ≡ = if v ∈ {−,=}. It computes:

indv A
(C, f)(a, a, id a) ≡ f(a) : C(a, a, id a). (2.259)

Based morphism induction We can define morphism types based at the source
and based at the target:
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Inductive type family 2.16.2. Given a type A : Ui and an element a0 : A,
we define the morphism type family based at source a0, denoted !a0  A

2 : A
+→ Ui, which is covariant in A and contravariant in a0, with the following

constructors:

• sbida0 :!a0  A a0,

• !a0  b is covariant in b.

Inductive type family 2.16.3. Given a type A : Ui and an element b0 : A, we
define the morphism type family based at target b0, denoted 2  A !b0 :

A
−→ Ui, which is covariant in A and in b0, with the following constructors:

• tbidb0 : b0  A !b0,

• a !b0 is contravariant in a.

As with the based identity type, it is surprising that the based morphism types are
not isovariant in A and their base, even though their constructors don’t take any
arguments. Let’s start with looking at the base.

When we want to construct a function f ′ : A+B
+→ A′ +B from f : A

+→ A′, we
just map inl a to inl f(a) and inr b to itself. The analogous thing for the source-based
morphism type would be the following: given a morphism ϕ : a0  a′0, we map the
sole constructor sbida0 to sbida′0 (note that the index a0 is analogous to the hidden
indices A and B on inlA,B). Indeed, these would give us an equivalence between
!a0  2 and !a′0  2 as we could also map sbida′0 back to sbida0 .

There is a problem here, however, and that is that this alleged equivalence doesn’t

respect the indices: we need, for every b : A, an equivalence (!a0  b)
+' (!a′0  b).

So the image of sbida′0 : !a′0  a′0 should be in !a0  a′0, so that sbida0 : !a0  a0 is
not acceptable as an image.

Of course we do have a transport function ϕ∗ : (!a0  a0)
+→ (!a0  a′0) so that

we can map sbida′0 : !a′0  a′0 to ϕ∗(sbida0) : (!a0  a′0), but not the other way

around, as we do not have (!a′0  a′0)
+→ (!a′0  a0). So we see that because a0 is

used covariantly in the index of the output type of the constructor, the type family
based at a0 is contravariant in a0. For the target-based morphism type, we would
get a dual conclusion. We capture this in a guideline:

Guideline 2.16.4. When a type family T depends v-variantly on an object x
(which is not an index of the type family), then x can only be used (− ◦ v)-
variantly in the indices of the output types of the constructors.
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Then the question remains why these type families are covariant, rather than
isovariant, in A. Here, we need to consider the transport ‘constructor’ again:

2∗ :
=∏

b,b′:A

+∏
β:b Ab′

(!a0  A b)
+→ (!a0  A b

′). (2.260)

This constructor takes an argument of type b  A b′, which depends covariantly on
A. Then the based type’s variance in A must not be stronger than +. Indeed,

if it were isovariant in A, then a function f : A
+→ C would yield an equivalence

(!a0  A b)
+' (!f(a0) C f(b)) but we would have problems going from right to left:

it is precisely the image of a transport along χ : f(b)  f(b′) that is problematic.
Even in the identity type, we have a kind of hidden transport constructor

2∗ :
=∏

b,b′:A

+∏
p:b=Ab′

(!a0 =A b)
+' (!a0 =A b

′), (2.261)

which enforced covariance in A as b =A b′ is only covariant in A. We can con-
clude:

Guideline 2.16.5. When a type family T depends on an object x which appears
covariantly in one of the indices’ types, it must be either covariant or invariant
in x.

The induction principles are:

indv!a0 A
:

=∏
C:

∏w
b:A(!a0 Ab)

×→Uk

C(a0, sbida0)
+→

(
=∏
b:A

v∏
ϕ:!a0 Ab

C(b, ϕ)

)
, (2.262)

indv A!b0
:

=∏
C:

∏−◦w
a:A (a A!b0)

×→Uk

C(b0, tbidb0)
+→

(
=∏
a:A

v∏
ϕ:a A!b0

C(a, ϕ)

)
, (2.263)

where w ≡ + if v ∈ {+,×} and w ≡ = if v ∈ {=,−}. They compute:

indv!a0 A
(C, c)(a0, sbida0) ≡ c : C(a0, sbida0), (2.264)

indv A!b0
(C, c)(b0, tbidb0) ≡ c : C(b0, tbidb0). (2.265)

We prove an analogue of lemma 2.15.8:

Lemma 2.16.6. For all a, b : A, the types (a A b), (!a A b) and (a A!b) are
equivalent:

=∏
a,b:A

(a A b)
+' (!a A b),

=∏
a,b:A

(a A b)
+' (a A b!). (2.266)
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Proof. We only prove the first equivalence. We first create a function

f :
=∏

a,b:A

(a A b)
+→ (!a A b) (2.267)

to the right. The type !a  A b is contravariant in a and covariant in b, so by
morphism induction, we just need

=∏
a:A

!a A a, (2.268)

and here we can take a
=7→ sbida, as sbida is isovariant in a. Then f computes:

f(a, a, id, a) ≡ sbida : !a A a.
Now we construct

g :
=∏

a,b:A

(!a A b)
+→ (a A b). (2.269)

The type (a A b) is covariant in b, so by source-based morphism induction, we need,
for every a := A, an element of a A a, and there we can take id a which is isovariant
in a. Then g(a) computes: g(a)(a, sbida) ≡ id a : a A a.

We have to show that they are inverses. First, we show

=∏
a,b:A

4∏
ϕ:a Ab

(g(a, b) ◦ f(a, b))(ϕ) =a=Ab ϕ. (2.270)

The destination type is covariant in a  A b and therefore contravariant in a and
covariant b. By morphism induction, we just need

=∏
a:A

(g(a, a) ◦ f(a, a))(id a) = id a. (2.271)

The left hand side computes:

(g ◦ f)(a, a, id a) ≡ g(a, a, f(a, a, id a)) ≡ g(a, a, sbida) ≡ id a, (2.272)

so we just need refl(id a), which is indeed isovariant in a.
From the other side, we need to show

=∏
a,b:A

4∏
ϕ:!a Ab

(f(a, b) ◦ g(a, b))(ϕ) =!a Ab ϕ. (2.273)

Again, the destination type is indirectly covariant in b, so by source-based morphism
induction, we need, for every a := A, an element of

(f(a, a) ◦ g(a, a))(sbida) = sbida. (2.274)
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But the left hand side computes:

(f(a, a) ◦ g(a, a))(sbida) ≡ f(a, a, g(a)(a, sbida)) ≡ f(a, a, id a) ≡ sbida, (2.275)

so we just need refl(sbida), which is indeed isovariant in a.

2.17 W-types

In symmetric HoTT

This section is based on [Uni13, §5.3].
As mentioned in section 2.7, our general way of defining inductive types, does not

combine well with the discussion about judgements in section 2.1. More precisely, there
are no inference rules that allow us to define a new inductive type. However, one can
show that, using a few basic inductive types that are included out-of-the-box, one can
construct types equivalent to most inductive types.

We already demonstrated to some extent that the disjoint union
∑

a:A P (a) of an
inductive type family λa.P (a) is isomorphic to an inductive type. Identity types allow us
to go back to the type family. For example, one can define a function length : ListA→ N
and show that

VecnA '
∑
e:ListA

length e =N n. (2.276)

When an inductive type T has several constructors, all of them without recursive argu-
ments, then we can write T as a coproduct of inductive types with only one constructor.
Similarly, when S has one constructor with multiple non-recursive arguments, we can
show that S is isomorphic to the type of dependent tuples of these arguments’ types.

The only remaining problem is that we have no way to construct inductive types which
have a recursive constructor. This is resolved when we have W-types or well-founded tree
types.

Inductive type 2.17.1. When A is a type and B[x] is a type depending on a variable
x : A, we define the type Wx:AB[x] of well-founded trees as the inductive type
with the following constructor:

• sup :
∏

a:A (B[a]→Wx:AB[x])→Wx:AB[x].

The constructor sup is called the supremum function.

So to construct a term of Wx:AB[x], we have to provide a term a : A and then B[a]-many
recursive arguments.

When we have an inductive type T and we want to show it is isomorphic to a W-
type, we will identify a term t with sup(a, f), where a encodes what constructor t was
created with, as well as all non-recursive arguments given to that constructor. The type
B[a] encodes the number of recursive arguments required by this constructor, and f gives
them.

For example, if we want to prove that N is isomorphic to some Wx:AB[x], we can take
A = Fin(2), where 02 stands for the constructor 0, and 12 stands for succ. The constructor
0 takes no recursive arguments, so B[02] = 0. The other one takes one, so B[12] = 1.
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We now have all basic types needed (and more) to construct almost any inductive
type. However, while defining inductive types explicitly in terms of these basic types
makes things more precise, it also makes them less readable, so we will continue to work
with definitions of inductive types. As such, we will not be using W-types and we do not
consider them in the directed case.

2.18 Higher inductive types

In symmetric HoTT

This section is based on [Uni13, ch.6].
Higher inductive types are a generalization of inductive types. When we define a

higher inductive type A, we can give constructors that construct terms of type A, but we
may also construct paths between terms of A, or paths between such paths, or. . . Mostly
as an illustration, we present a few higher inductive types in this section.

In topology, we have the topological space [0, 1], which has the property that a path
in any space A is the same a function p : [0, 1] → A. More specifically, we regard p as a
path from p(0) to p(1). We have a correspondence between spaces and types and in fact,
higher inductive types allow us to define an analog:

Definition 2.18.1. The interval type I is defined as the higher inductive type
with constructors [Uni13, §6.3]:

• 0I : I,

• 1I : I,

• segI : 0I =I 1I .

In order to define a function f : I → C, we need to provide values f(0I) and f(1I) and
prove that they are equal. The recursion principle looks like this:

recI :
∏
C:Ui

∏
c0,c1:C

c0 =C c1 → (I → C) , (2.277)

with computation rules

recI(C, c0, c1, p)(0I) ≡ c0 : C, (2.278)

recI(C, c0, c1, p)(1I) ≡ c1 : C, (2.279)

recI(C, c0, c1, p)
=(segI) ≡ p : c0 = c1. (2.280)

The induction principle is similar, but the provided path will not connect c0 : C(0I) to
c1 : C(1I), but rather the transport q∗(c0) : C(1I) to c1 : C(1I), where q :≡ C=(segI)
proves that C(0I) = C(1I). One can prove that

(I → C) '

( ∑
c0,c1:C

c0 = c1

)
. (2.281)
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The left-to-right function is given by evaluating f : I → C in 0I , 1I and segI . An inverse
is constructed from the recursion principle.

Higher inductive types allow us to do “synthetic” algebraic topology: instead of con-
structing a topological space as a certain set of points with a certain structure, we simply
state a few principles that describe the space. For example, we describe the circle S1 as
a space with a point base and a non-trivial path loop from base to base.

Definition 2.18.2. The circle S1 is defined as the higher inductive type with con-
structors [Uni13, §6.4]:

• base : S1,

• loop : base = base.

The sphere S2 can be described as a space with a point base and a non-trivial homotopy
surf from refl base to refl base:

Definition 2.18.3. The sphere S2 is defined as the higher inductive type with
constructors [Uni13, §6.4]:

• base : S2,

• surf : refl base = refl base.

A third example of how higher inductive types are useful, is the following:

Definition 2.18.4. We define the propositional truncation ‖A‖ of a type A as
the higher inductive type with constructors:

• |2| : A→ ‖A‖,

• trunc :
∏

a,b:‖A‖ a = b.

So if we have a term a : A, we get a term |a| : ‖A‖, but we make no distinction between
terms of ‖A‖. If P is a proposition, then ‖P‖ is read as “Merely P”. The constructor |2|
proves that P implies ‖P‖, but ‖P‖ has at most one proof (up to propositional equality).
So when we work with truncated propositions, we are no longer doing constructive, proof
relevant mathematics, but rather mathematics in a more classical logic.

In directed HoTT

Although in practice, higher inductive types with morphism constructors will be a
substantial ingredient to obtain types with an interesting category structure, we leave
them to future work.



Chapter 3

Homotopy type theory, symmetric
and directed

At this point, the theories in which we will be doing symmetric and directed HoTT, are
defined. We will be extending them by an occasional inductive definition, but the content
of chapter 2 will be the core of the theories. In this chapter, we find out what we can
do with them. Mostly, we will be porting basic facts about HoTT to the directed case,
closely following [Uni13, ch.2].

In general, there will be two opportunities for doing this. The first one is that in
directed HoTT, we have a directed analogue a  A b of the identity type a =A b, which
equips any type with a higher category structure, instead of the ∞-groupoid structure
of types in symmetric HoTT. So we will get directed versions of theorems about this
∞-groupoid structure. For example, in symmetric HoTT, we know that every function
preserves equalities. In directed HoTT, we will be able to prove that every covariant
function preserves equalities covariantly.

Secondly, there is one type in symmetric HoTT that already has a higher category
structure: the universe, with functions as its morphisms. So for some theorems about
the universe in symmetric HoTT, we will get analogous theorems in directed HoTT that
hold in any type. For example, in symmetric HoTT, we can prove that when two types
are equal, A =Uk B, then they are equivalent, A ' B, meaning that there is an invertible
function between them. Similarly, in directed HoTT, we can prove that when two objects
are equal, a =A b, then they are isomorphic, a ∼=A b, meaning that there is an invertible
morphism between them.

Most results from symmetric HoTT simply hold in directed HoTT. We will state
them with variance in the symmetric HoTT section. The directed HoTT section will be
for non-straightforward generalizations and completely new results.

In section 3.7, we give a formal treatment of groupoids in directed HoTT. Until then,
we will not be using the variance annotations 3 and 4.

3.1 Types are higher categories

This section is based on [Uni13, §2.1].

77
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In symmetric HoTT

We have mentioned before that types are ∞-groupoids. In fact, they are weak ∞-
groupoids, where the word ‘weak’ means that they obey the groupoid laws only up to
isomorphism, or, in type theoretic language, up to propositional equality. We can also
view them as homotopical spaces. The correspondence is as follows:

HoTT Higher category theory Homotopy theory
type A ∞-groupoid A homotopical space A
element x : A object x ∈ obj(A) point x ∈ A
type a =A b ∞-groupoid Hom(a, b) path space from a to b
p : a =A b isomorphism p : a→ b path p from a to b
h : p =a=b q isomorphism h : p→ q homotopy h from p to q.

The intuitive content of this correspondence is expressed the following lemma, which also
holds in directed HoTT. We state and prove it in directed HoTT, the version for symmetric
HoTT is obtained by removing all variance annotations.

Lemma 3.1.1. For any type A := Uk, the following hold:

1. Propositional equality is reflexive / there is an identity isomorphism in every
object / there is a constant path at any point:

refl :
=∏
a:A

a =A a. (3.1)

2. Propositional equality is symmetric / isomorphisms/paths are invertible:

2−1 :
=∏

a,b:A

(a =A b)
+→ (b =A a). (3.2)

3. Propositional equality is transitive / isomorphisms/paths can be composed:

◦ :
=∏

a,b,c:A

(b =A c)
+→ (a =A b)

+→ (a =A c). (3.3)

These are laws on the lowest level: the assert that objects are equal. On the next
level, we get laws that assert that isomorphisms/paths are equal:

4. Reflexivity is the unit for composition, up to isomorphism/homotopy:

=∏
a,b

+∏
p:a=b

refl b ◦ p = p,
=∏
a,b

+∏
p:a=b

p ◦ refl a = p. (3.4)
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5. An isomorphism composed with its inverse is isomorphic to refl / a path com-
posed with its inverse is homotopic to refl:

=∏
a,b

+∏
p:a=b

p−1 ◦ p = refl a,
=∏
a,b

+∏
p:a=b

p ◦ p−1 = refl b. (3.5)

6. Inverting twice does nothing, up to isomorphism/homotopy:

=∏
a,b

+∏
p:a=b

(p−1)−1 = p. (3.6)

7. Composition is associative, up to isomorphism/homotopy:

=∏
a,b,c,d

+∏
p:a=b

+∏
q:b=c

+∏
r:c=d

r ◦ (q ◦ p) = (r ◦ q) ◦ p. (3.7)

On the next level, we get laws that assert homotopies between homotopies, or isomor-
phisms between isomorphism between isomorphisms, e.g.

8. For any chain of equalities

a
p

b
q

c
r

d
s

e, (3.8)

the composition of the proofs of the following instances of associativity

((s ◦ r) ◦ q) ◦ p = (s ◦ r) ◦ (q ◦ p) = s ◦ (r ◦ (q ◦ p))
= s ◦ ((r ◦ q) ◦ p) = (s ◦ (r ◦ q)) ◦ p = ((s ◦ r) ◦ q) ◦ p (3.9)

is reflexivity.

9. . . .

There are infinitely many weak ∞-groupoid laws (the ones at higher levels are called
coherence laws), but fortunately in HoTT, we can prove them as we need them
using path induction.

Proof. 1. This is just the constructor of the identity type.

2. By path induction, we need only prove
∏=

a:A a =A a, which is proven by refl. More

formally, 2−1 :≡ ind+
=(a

×7→ b
×7→ p

×7→ b =A a, refl). It computes: (refl a)−1 ≡ refl a.

3. After swapping arguments, we can apply path induction on the path from b to c so

that we only need to find
∏=

a,d:A(a =A d)
+→ (a =A d) and here, we can take the

identity function ida=d. Then composition computes: (refl b) ◦ p ≡ p.

4. To show that refl is the left inverse, we simply compute: refl b ◦ p ≡ p. Then we can
just take a

=7→ b
=7→ p

=7→ refl p. On the right, by path induction, we need only prove
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∏=
a:A(refl a)◦ (refl a) = refl a. But the left hand side computes to the right hand side,

so this is proven by refl(refl a).

5. Apply path induction and observe that the left hand side computes to the right
hand side.

6. Idem.

7. Apply path induction on r and observe that both sides compute to q ◦ p.

8. Path induction, path induction, path induction.

Remark 3.1.2. Observe that our definition of the composition function was asym-
metric: we applied path induction on the left morphism, resulting in an asymmetric
computation rule. The consequence is that the left and right unit laws are proved
differently. We could also have defined composition by applying path induction twice.
Then it would compute (refl a) ◦ (refl a) ≡ refl a. One can show that this is the same
function, up to propositional equality.

In directed HoTT

By lemma 3.1.1, the identity types still equip every type with a weak ∞-groupoid
structure, even in the directed case. In addition to that, the morphism types equip
every type with a weak higher category structure. We have the following correspon-
dence with between directed HoTT, higher category theory and directed homotopy
theory:

Directed HoTT Higher category theory Directed homotopy theory
type A higher category A homotopical space A
element x : A object x ∈ obj(A) point x ∈ A
type a A b higher category Hom(a, b) directed path space from a to b
ϕ : a A b morphism ϕ : a→ b directed path ϕ from a to b
type a =A b subcategory of isomorphisms path space from a to b
p : a =A b isomorphism p : a→ b path p from a to b.

This is partly expressed by the following lemmas:

Lemma 3.1.3. For any type A := Uk, the following hold:

1. There is an identity morphism in every object:

id :
=∏
a:A

a A a. (3.10)

2. Morphisms can be composed:

◦ :
=∏

a,b,c:A

(b A c)
+→ (a A b)

+→ (a A c). (3.11)
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These are laws on the lowest level: they assert the existence of morphisms between
objects. On the next level, we get laws that assert that morphisms are equal:

3. The identity morphism is the unit for composition:

=∏
a,b

+∏
ϕ:a b

id b ◦ ϕ =a b ϕ,
=∏
a,b

+∏
ϕ:a b

ϕ ◦ id a =a b ϕ. (3.12)

4. Composition is associative:

=∏
a,b,c,d

+∏
ϕ:a b

+∏
χ:b c

+∏
ψ:c d

ψ ◦ (χ ◦ ϕ) =a d (ψ ◦ χ) ◦ ϕ. (3.13)

On the next level, we get laws that assert that equalities between morphisms are
equal:

5. For any chain of morphisms

a
ϕ // b

χ // c
ψ // d

ω // e, (3.14)

the composition of the proofs of the following instances of associativity

((ω ◦ ψ) ◦ χ) ◦ ϕ = (ω ◦ ψ) ◦ (χ ◦ ϕ) = ω ◦ (ψ ◦ (χ ◦ ϕ))

= ω ◦ ((ψ ◦ χ) ◦ ϕ) = (ω ◦ (ψ ◦ χ)) ◦ ϕ = ((ω ◦ ψ) ◦ χ) ◦ ϕ (3.15)

is reflexivity.

6. . . .

There are infinitely many weak higher category laws, but fortunately in directed
HoTT, we can prove them as we need them using morphism induction.

Proof. 1. This is just the constructor of the morphism type.

2. Since
∏=

a:A(a A b)
+→ (a A c) is contravariant in b and covariant in c, we can

apply covariant morphism induction on the morphism b  A c. Then we need

to prove
∏=

a,d:A(a  A d)
+→ (a  A d). Here we can take the identity function

ida d. Then composition computes: (id b) ◦ ϕ ≡ ϕ.

3. By the above computation rule, we only need reflexivity to prove the left unit
law. For the right unit law, we can apply covariant morphism induction, because
ϕ ◦ id a =a b ϕ is contravariant in a and covariant in b. (Note that a and b also
appear hiddenly in the composition operator, but only isovariantly). Then we
have to prove that (id a) ◦ (id a) = id a, which is proven by reflexivity.

4. The type ψ ◦ (χ ◦ ϕ) =a d (ψ ◦ χ) ◦ ϕ is isovariant in c, which only appears
as index of the composition operator, and covariant in d via the index of the
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identity type. So we can apply covariant morphism induction on ψ, after which
both sides compute to χ ◦ ϕ.

5. This is proven by repeated morphism induction.
Moreover, the∞-groupoid structure induced by the identity type and the higher cat-
egory structure induced by the morphism type, are related by the following lemma:

Lemma 3.1.4. In any type A := Uk, a path implies a morphism:

toMorph :
=∏

a,b:A

(a =A b)
+→ (a A b). (3.16)

It computes: toMorph(refl a) ≡ id a.

Proof. By covariant path induction, we need only prove
∏=

a:A a A a, which is proven
by the identity morphism. More formally,

toMorph :≡ ind+
=(a

×7→ b
×7→ ϕ

×7→ a A b, id).

We can also prove, using path induction, that toMorph(a◦b) = toMorph(a)◦toMorph(b),
and that toMorph is well-behaved with respect to the higher coherence laws of higher
categories.

In order to understand the above correspondence completely, we actually needed
more than the previous lemma: it is not enough that a path implies a morphism; we
need paths to be the same things as isomorphisms. We will complete the correspon-
dence in section 3.9

3.2 Functions are functors

In symmetric HoTT

If the type a =A b is to encode the proposition that a and b are in some sense equal, then
we had better prove that for any function f : A→ C, we have (a =A b)→ (f(a) =C f(b)).
Translated to categorical language, this means that f preserves isomorphisms, and since
isomorphisms are the only morphisms in a groupoid, this means that f is a functor.
Translated to homotopy theoretical language, it means that f preserves paths, i.e. it
is path continuous1. Again, we formulate the directed version of the result. For the
undirected version, remove variance annotations.

Lemma 3.2.1. For every two types A,C := Uk and every function f := A
v→ C, there

is a function

f= :
=∏

a,b:A

(a =A b)
+→ (f(a) =C f(b)). (3.17)

1This seems to be a non-standard term in topology. We call a function between topological spaces
path continuous if it maps paths to paths path-continuously. As such, every continuous function is
path continuous.
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We will mostly omit the first two arguments. It computes: f=(refl a) ≡ refl f(a).

Proof. By path induction, we need only prove
∏=

a:A f(a) =C f(a), which is proven by
refl f(a). More formally, we define

f= :≡ ind+
=(a

×7→ b
×7→ p

×7→ (f(a) =C f(b)), a
=7→ refl f(a)) (3.18)

As the induction principle is isovariant in the destination type family, and refl f(a) is
isovariant in f(a), the entire expression happens to be isovariant in f . The computation
rule follows immediately.

Lemma 3.2.2. For every two types A,C := Uk and every function f := A
v→ C, the

function f= satisfies (among others) the following properties:

1.
∏=

x:A f
=(reflx) =f(x)=f(x) refl f(x),

2.
∏=

x,y,z:A

∏+
p:x=y

∏+
q:y=z f

=(q ◦ p) =f(x)=f(z) f
=(q) ◦ f=(p),

3.
∏=

x,y:A

∏+
p:x=y f

=(p−1) =f(y)=f(x) f
=(p)−1.

For every type A := Uk, we have:

4.
∏=

x,y:A

∏+
p:x=y id=

A(p) =x=y p.

For every three types A,B,C := Uk and all functions f := A
u→ B and g := B

v→ C,
we have:

5.
∏=

x,y:A

∏+
p:x=y(g ◦ f)=(p) = (g= ◦ f=)(p).

Proof. 1. As f=(reflx) ≡ refl f(x), this is just reflexivity.

2. By path induction on q, we need only prove
∏=

x,y:A

∏+
p:x=y f

=(refl y ◦ p) =f(x)=f(y)

f=(refl y) ◦ f=(p). On the left, we get f=(refl y ◦ p) ≡ f=(p). On the right, we have
f=(refl y) ◦ f=(p) ≡ (refl f(y)) ◦ f=(p) ≡ f=(p), so we need only reflexivity.

3. By path induction, we need only prove
∏=

x:A f
=((reflx)−1) = f=(reflx)−1, but both

sides compute to refl f(x).

4. By path induction, we need only prove
∏=

x:A id=
A(reflx) = reflx, but the left hand

side computes to refl idA(x) ≡ reflx, so this is reflexivity.

5. By path induction, we need only prove
∏=

x:A(g ◦f)=(reflx) = (g= ◦f=)(reflx). Both
sides compute to refl (g ◦ f)(x).

As refl is isovariant in both argument and type, and covariant path induction is isovari-
ant in everything but the path, we see that all assumptions can be taken isovariant.

In directed HoTT
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Lemmas 3.2.1 and 3.2.2 also hold in the directed case. Also, functions of different
variance have various actions on morphisms.

Lemma 3.2.3. Let A,C := Uk be types.

1. For every covariant f := A
+→ C, there is a function

f :
=∏

x,y:A

(x A y)
+→ (f(x) C f(y)). (3.19)

It computes: f (idx) ≡ id f(x).

2. For every contravariant f := A
−→ C, there is a function

f :
=∏

x,y:A

(x A y)
+→ (f(y) C f(p)). (3.20)

It computes: f (idx) ≡ id f(x).

3. For every isovariant f := A
=→ C, there is a function

f :
=∏

x,y:A

(x A y)
+→ (f(x) =C f(y)). (3.21)

It computes: f (idx) ≡ refl f(x).

By lack of a bridge type (see section 3.5), we cannot state an analogue for invariant
functions.

Proof. 1. As f is covariant, the type family f(x) A f(y) is contravariant in x and
covariant in y. Then by morphism induction, we need only prove

∏=
x:A f(x) C

f(x), which is proven by the identity morphism.

2. As f is contravariant, the type family f(y)  A f(x) is covariant in y and
contravariant in x. So we can apply morphism induction again.

3. Although the identity type is invariant, the function f is isovariant so that
f(x) =A f(y) is isovariant in x and y. Then we can apply morphism induction
and have to prove

∏=
x:A f(x) =C f(x), which is proven by reflexivity.

There is an arsenal of theorems that we might want to state about the functorial
actions on paths and morphisms. We prove two properties as an example:

Lemma 3.2.4. Let A,C := Uk be types, and f := A
−→ C a contravariant function.

Then
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1. the functorial action of f respects composition:

=∏
x,y,z:A

+∏
ϕ:x y

+∏
χ:y z

f (χ ◦ ϕ) =f(z) f(x) f
 (ϕ) ◦ f (χ). (3.22)

2. the weakening of paths to morphisms is well-behaved with respect to f :

=∏
x,y:A

+∏
p:x=y

toMorph
(
f=(p)−1

)
=f(y) f(x) f

 (toMorph p). (3.23)

Proof. 1. We want to apply morphism induction on χ. The composition operators
are isovariant in x, y and z, so that is all right. The identity type is covariant
in its index, which in this case is f(z)  f(x). Since f is contravariant, this
index is covariant in z and does not depend on y. So we can apply morphism
induction and have to prove

=∏
x,y:A

+∏
ϕ:x y

f (id y ◦ ϕ) =f(y) f(x) f
 (ϕ) ◦ f (id y). (3.24)

This computes to

=∏
x,y:A

+∏
ϕ:x y

f (ϕ) =f(y) f(x) f
 (ϕ) ◦ id f(y). (3.25)

By the same reasoning, we can apply morphism induction again and have to
prove

=∏
x:A

f (idx) =f(x) f(x) f
 (idx) ◦ id f(x), (3.26)

where both sides compute to id f(x), so that it is proven by refl(id f(x)).

2. Again, the identity type is covariant in its index and f(y) f(x) is covariant
in y and contravariant in x, so we can apply morphism induction and have to
prove

=∏
x:A

toMorph
(
f=(reflx)−1

)
=f(x) f(x) f

 (toMorph(reflx)). (3.27)

On the left, we get

toMorph
(
f=(reflx)−1

)
≡ toMorph (refl f(x))−1

≡ toMorph (refl f(x)) ≡ id f(x) : x A x. (3.28)
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On the right, we get

f (toMorph(reflx)) ≡ f (idx) ≡ id f(x) : x A x, (3.29)

so we just need reflexivity.

3.3 Equivalences, isomorphisms and transport

This section is based on [Uni13, §2.3 and 2.4].

In symmetric HoTT

In section 2.6, we gave a ‘logical definition’ for the type isEquiv(f) which states that

f : A
+→ B is invertible:

isEquiv(f)(f)
+

�
+∑

g:B
+→A

(g ◦ f = idA)× (f ◦ g = idB). (3.30)

We will call the right hand side qInv(f), the type of quasi-inverses of f .
The reason that this is only a logical equivalence and not an equivalence of types,

is that a quasi-inverse contains too much information: for a single invertible function

f : A
+→ B, there may be multiple quasi-inverses [Uni13, §2.4], whereas we would expect

a function to have at most a single inverse. We will first give the actual definition of an
equivalence, then show that the logical equivalence given above, really holds, and conclude
with an informal argument why a quasi-inverse contains too much information.

Definition 3.3.1. Let A,B :× Uk be types and f :× A
+→ B a function. We define

the types of left and right inverses of f as follows:

leftInv(f) :≡
+∑

`:B
+→A

(` ◦ f) = idA rightInv(f) :≡
+∑

r:B
+→A

(f ◦ r) = idB. (3.31)

We call f an equivalence if it has a left and a right inverse:

isEquiv(f) :≡ leftInv(f)× rightInv(f). (3.32)

The type of equivalences from A to B is defined:

A
+' B :≡

+∑
f :A

+→B

isEquiv(f). (3.33)

Although we may sometimes reason with equivalences that have a variance different from
+, we do not define them formally and will not use them in proofs. We use Σ+-types
because they are the natural generalization of Σ-types in symmetric HoTT.



3.3. EQUIVALENCES, ISOMORPHISMS AND TRANSPORT 87

Lemma 3.3.2. Given types A,B :× Uk, then a function f :× A
+→ B is an equivalence

if and only if it has a quasi-inverse:

isEquiv(f)
+

� qInv(f). (3.34)

Proof. We construct a function in each direction.

(
+←) Take x :+ qInv(f). The induction principles for the Σ-type and the product, allow

us to assume that x is of the form (g, (p, q)), with g :+ B
+→ A, p :+ g ◦ f = idA and

q :+ f ◦ g = idB. Then we map this value to ((g, p), (g, q)) : isEquiv(f).

(
+→) Take x :+ isEquiv(f). By induction, we may assume that x is of the form ((`, p), (r, q)).

We show that ` = r:

` = ` ◦ idA = ` ◦ (f ◦ r) = (` ◦ f) ◦ r = idB ◦ r = r. (3.35)

What is meant by this chain of equalities, is that we can easily construct a proof of
each individual equality, and then compose all this proofs to obtain t : ` = r.

By path induction, we can construct a function
∏=

A,B:Uk(A = B)
+→ (A

+→ B),
along the lines of the proof of the transport lemma below, but without referring to
equivalences. Then, since ` = r, we also know that ((f ◦ r) = idB) = ((f ◦ `) = idB),
and so we get a function

t∗ : ((f ◦ r) = idB)
+→ ((f ◦ `) = idB). (3.36)

So the triple (`, (p, t∗(q))) proves qInv(f).

The above proof indicates why qInv(f) contains too much information. One can prove
that

qInv(f)
+'

+∑
λ:leftInv(f)

+∑
ρ:rightInv(f)

prlλ =B→A prl ρ, (3.37)

i.e. a quasi-inverse of f consists of a function ` with a proof that ` is left inverse to f ; a
function r with a proof that r is right inverse to f ; and a proof s : ` = r – al available
covariantly. To go to the right, we map (g, (p, q)) to ((g, p), (g, q), refl g). To go to the left,
we apply path induction on s.

Now in the proof of lemma 3.3.2, we saw that we could already construct a path
t : ` = r without using s, so actually we have two paths from ` to r, and that is a
problem. Indeed, if we have two objects and a path between them, we can apply path
induction and just assume that the objects are really the same, reducing the path to
reflexivity. In topological terms: if we have two endpoints and a path between them, we
can contract the whole thing to a single point, reducing the path to a constant one. But
here, we have two objects with two paths between them. The induction principle allows
us to assume that the objects are the same and to reduce one path to reflexivity, but the
other one remains. Topologically, when we have two points on a loop, we can move them
to the same point, but we cannot necessarily contract the loop. So an element of qInv(f)
proves that f is invertible and in addition gives you an arbitrary and unneeded loop from
the inverse to itself.

The type isEquiv(f), on the contrary, is a mere proposition:
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Definition 3.3.3. A type P is a mere proposition if any two terms of P are equal
[Uni13, §3.3]:

isProp(P ) :≡
+∏

x,y:P

x = y. (3.38)

The definition is chosen covariant but as the identity types are bridgeless groupoids, this
does not matter.

Theorem 3.3.4. For any function f , isEquiv(f) is a mere proposition.

Proof. For a proof in the symmetric case, see [Uni13, §4.3]. As the proof is extremely
involved, we leave this as a conjecture in the directed case.

Finally, we prove the utterly important transport lemma:

Lemma 3.3.5 (Transport). Equal types are equivalent:

transport :
=∏

A,B:Uk

(A =Uk B)
+→ (A

+' B). (3.39)

Proof. By path induction, we need only prove
∏=

A:Uk A
+' A. This is proven by the identity

equivalence (idA, idA, refl idA, refl idA) : A
+' A, which has the correct variance as idA is

isovariant in A.

Notation 3.3.6. If e : A
+' B, we denote the corresponding function A

+→ B also as

e, and the inverse function B
+→ A as e−1.

When T : A
v→ Uk is a type family and p : a =A b is a path in A, then we denote

transport(T=(p)) as p∗ : T (a)
+' T (b). If T is isovariant and ϕ : a A b is a morphism,

we also denote transport(T (ϕ)) as ϕ∗ : T (a)
+' T (b).

Remark 3.3.7. One can show that transport preserves groupoid structure. In sec-

tion 3.8.9, the univalence axiom will turn transport into an equivalence: (A =Uk B)
+'

(A
+' B). Then we can say that an path between types is the same as an equivalence

between types.

In directed HoTT

As mentioned in the introduction of this chapter, there are two heuristics for gen-
eralizing results from symmetric to directed HoTT. One is to see morphisms as a
directed generalization of equality; the other is to see morphisms as a generalization
of functions to non-universe types. So far, we have mostly used the former heuris-
tic. In this section, we will be able to use both. We start with the former. The
only references to the identity type in the symmetric part of this section, were in
the definition of equality and in the transport lemma. If we want to replace the
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equalities with morphisms in the definition of an equivalence, we are thinking about
adjoint functions, which we do not treat here. The transport lemma has a directed
generalization:

Lemma 3.3.8 (Directed transport). A morphism between types, implies a co-
variant function:

dirTransport :
=∏

A,B:Uk

(A Uk B)
+→ (A

+→ B). (3.40)

Proof. By morphism induction, we need only prove
∏=

A:Uk A
+→ A. This is proven by

the identity function idA, which is indeed isovariant in A.

Notation 3.3.9. When T : A
+→ Uk is a covariant type family and ϕ : a  A b

is a morphism in A, we write ϕ∗ :≡ dirTransport(T (ϕ)) : T (a)
+→ T (b). If

S : A
−→ Uk is contravariant, we write ϕ∗ :≡ dirTransport(T (ϕ)) : S(b)

+→ S(a).

Remark 3.3.10. One can show that dirTransport preserves category structure.
In section 3.8.9, the directed univalence axiom will turn dirTransport into an

equivalence: (A Uk B)
+' (A

+→ B). Then we can say that a morphism between
types is the same as a function between types.

When we regard morphisms as a generalization of functions, there is more to say.
We define a type of isomorphisms:

Definition 3.3.11. Let A :+ Uk be a type, take a, b :× A and ϕ :× a  A b. We
define the types of left and right inverses of ϕ as follows:

leftInv(ϕ) :≡
+∑

λ:b→a

(λ ◦ ϕ) = id a rightInv(ϕ) :≡
+∑

ρ:b→a

(ϕ ◦ ρ) = id b. (3.41)

We call ϕ an isomoprhism if it has a left and a right inverse:

isIsom(ϕ) :≡ leftInv(ϕ)× rightInv(ϕ). (3.42)

The type of isomorphisms from a to b is defined:

a ∼=A b :≡
+∑

ϕ:a b

isIsom(ϕ). (3.43)

We get another generalization of the transport lemma:
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Lemma 3.3.12 (Categorical transport). For any type A := Uk, equal objects of
A are isomorphic:

catTransport :
=∏

a,b:A

(a =A b)
+→ (a ∼=A b). (3.44)

Proof. By path induction, we need only prove
∏=

a:A a
∼=A a, which is proven by the

identity isomorphism (id a, id a, refl(id a), refl(id a)), which is indeed isovariant in A
and a.

Remark 3.3.13. One can show that catTransport preserves groupoid structure.
In section 3.9, the categorical univalence axiom will turn catTransport into an

equivalence: (a =A b)
+' (a ∼=A b). Then we can say that a path is the same as

an isomorphism.

Finally, we have the following result:

Theorem 3.3.14. A morphism between equivalences or isomorphisms, is always
an isomorphism:

=∏
A,B:Uk

=∏
d,e:A

+
'B

(d e)
+→ (d ∼= e),

=∏
a,b:A

=∏
ζ,η:a∼=b

(ζ  η)
+→ (ζ ∼= η). (3.45)

Sketch of proof. We only sketch a proof for equivalences, but the other one is com-
pletely analogous.

By (dependent) pair induction, we may assume that d ≡ (f, `, p, r, q) and e ≡
(f ′, `′, p′, r′, q′). A morphism ϕ : d  e implies morphisms ϕf : f  f ′, ϕ` : `  `′

and ϕr : r  r′. Since identity types are groupoids, we also know that p equals p′

and q equals q′ after ‘transporting’. In the following sections, we will see that this
means that the following diagrams commute:

` ◦ f

[ϕ`]◦[ϕf ]

��

p

idA

p′

`′ ◦ f ′

f ◦ r

[ϕf ]◦[ϕr]

��

q

idA

q′

f ′ ◦ r′

(3.46)

In addition, we know (from an earlier proof) t : ` = r and t′ : `′ = r′. We show
that ϕf , ϕ` and ϕr are isomorphisms by constructing commutative diagrams where
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we can walk from the target to the source. For ϕf , we can take

f ◦ r ◦ f ′
[q]◦f ′

f◦[ϕr]◦f ′
��

f
f◦[p′]

ϕf

��

f ◦ `′ ◦ f ′ f◦[t′]◦f ′

[ϕf ]◦`′◦f ′
��

f ◦ r′ ◦ f ′

[ϕf ]◦r′◦f ′
��

f ′

[q′]◦f ′

f ′
f ′◦[p′]

f ′ ◦ `′ ◦ f ′
f ′◦[t′]◦f ′

f ′ ◦ r′ ◦ f ′

(3.47)

The square diagrams commute because morphisms/paths in the left argument of
◦ commute with morphisms/paths in the right argument (see Remark 3.6.8). The
commutativity of the triangular one is proven by ϕq. Our morphism ϕf is on the
utter left, and we can walk from f ′ to f along the outskirts. For ϕ`, we can take

`
`◦[q]

ϕ`

��

` ◦ f ◦ r
[p]◦r

[ϕ`]◦f◦r
��

`′
`′◦[q]

`′ ◦ f ◦ r
`′◦[ϕf ]◦r

��

r

[p′]◦r

`′ ◦ f ′ ◦ r

(3.48)

The diagram for ϕr is analogous to this one. Thus, we have a componentwise iso-
morphism, which yields an isomorphism d ∼= e.

This indicates that the equivalence and isomorphism types should be bridged groupoids.
Since at this point, the theory contains no rules for creating covariant functions sim-
ply by proving isovariance (it is highly non-trivial what such a rule should look like),
we cannot prove that it is. In fact, since we are planning to identify equivalence,
isomorphism and identity types by introducing univalence axioms, we should hope
that the equality and isomorphism types are even bridgeless groupoids, as we can
prove this for the identity type.

3.4 Type families are fibrations

3.4.1 In symmetric HoTT

In section 3.2, we showed that non-dependent functions f : A → C preserve paths. But
what about dependent functions? Suppose we have a function f :

∏
x:AC(x), elements

a, b : A and a path p : a =A b. What can we say about f(a) : C(a) and f(b) : C(b)?
Surely not that they are propositionally equal, as they do not live in the same type. Of
course C : A→ Uk is a non-dependent function, so we do know C=(p) : C(a) = C(b), but
if we’re going to put f(a) in C(b) just like that, we need C(a) ≡ C(b).

At the very least, we can prove that (a, f(a)) = (b, f(b)) in
∑

x:AC(x), since g :≡ x 7→
(x, f(x)) is a non-dependent function. Let’s look at this from a topological perspective.
If a and b are not judgementally equal, then they are different points in the space A.
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Furthermore, for every point x ∈ A, we have a space C(x). The space
∑

x:AC(x) can be
regarded as the disjoint union of all these spaces C(x). But then it turns out that when
there is a path p : a = b, there happens to be a path g=(p) : (a, f(a)) = (b, f(b)) across
different spaces C(x). So the union

∑
x:AC(x), although disjoint, is not disconnected.

We find that type families do not carry fibrewise topologies, but a single topology for the
entire family.

In topology, a fibration π : S → A is a continuous function that has the path lifting
property: given a point s ∈ S and a path p from π(s) ∈ A to a point b ∈ A, we can lift it
to a path q from s ∈ S to some point t ∈ S, so that π maps q to p. In particular, t is in
the fibre of b. We can show this in HoTT:

Lemma 3.4.1 (Path lifting property). Given a type family C : A → Uk, elements
a, b : A and s : C(a) and a path p : a =A b, there is a point t : C(b) and path
q : (a, s) = (b, t) so that prl=(q) = p.

Proof. For t, we can take p∗(s). By path induction, we can assume that a ≡ b and
p ≡ refl a. Then (b, p∗(s)) ≡ (a, s), so we may take q :≡ refl (a, s).

So we should understand type families as fibrations of their disjoint union, which we will
call the total space. This is visualized in fig. 3.1. There, A is a topological space that can

a b dc
A

C(a)

C(b)

C(c)

C(d) ∑
x
:A C

(x
)f

f(b)

f(a)

f(d)

f(c)

Figure 3.1: The type family C : A→ Uk interpreted as a fibration of
∑

x:AC(x).

be embedded in R, every fibre C(x) can also be embedded in R (this has to do with the
geometrical restrictions of a sheet of paper) and the total space

∑
x:AC(x) is represented

as a subset of R2. The types C(x) are the fibres of the function prl :
∑

x:AC(x) → A,
for example C(b) is prl−1(b). Whereas

∑
x:AC(x) is the union of all the fibres,

∏
x:AC(x)

is the type of sections of prl. Indeed, a function f :
∏

x:AC(x) gives rise to a function
g :≡ x 7→ (x, f(x)) : A→

∑
x:AC(x) so that prl ◦ g = idA.

Not every function S → A is a fibration, however. Type families have the special
property that they preserve equality, so that a =A b implies C(a) = C(b) and via the
transport function C(a) ' C(b). In fig. 3.1, this is the case: the points a and b are
connected, and C(a) and C(b) are clearly homotopically equivalent. Likewise, c and d
are connected and C(c) ' C(d). The fibres C(a) and C(c) are not equivalent, as C(c) is
connected and C(a) is not, and they needn’t be, as a and c are not connected.

We critically used the transport function in proving that type families respect the path
lifting property. Topologically, we can imagine functions π : S → A for which the inverse
images π−1(x) do not depend continuously on x (i.e. are not equivalent for connected
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x), and which do not satisfy the path lifting property. Consider the example in fig. 3.2.
Here, we have a space D consisting of 3 connected components and a function h from D

a b ec
A

d

D

h

w0

Figure 3.2: The function h : D → A fibrates D.

to a space A with two connected components. The points a, b, c, d : A are connected, but
their inverse images are not all homotopically equivalent. The inverse images of a and c
are equivalent, but the one for b is empty, and the one for d is not connected.

A naive way to associate to this function a type family C : A→ Uk is by writing down
the definition of inverse image: the inverse image of x is the set of all w : D for which
h(w) = x, so we could define

C :≡ x 7→
∑
w:D

h(w) =A x : A→ Uk. (3.49)

But here, it is crucial to remember that the topological interpretation of a proof p : h(w) =
x is a path from h(w) to x. Now, there is a path from h(w0) to a, b, c and d, so we will
have copies of w0 in C(a), C(b), C(c) and C(d). This certifies that the type C preserves
equality, but it also severely distorts the original set-up. In fact, C(a), C(b), C(c) and
C(d) will have two elements up to propositional equality, and C(e) will have a single one,
so the resulting fibration looks more like the one in the previous example, then like the
original situation.

We try to capture some of these ideas in type theoretical results. First of all, we saw
that the types C(x) defined by (3.49), do not generally correspond to the inverse images
h−1(x). But if h is actually a fibration, i.e. the projection from the total space of a type
family, this is the case:

Lemma 3.4.2. Let A be a type and C : A→ Uk a type family. Then

∏
a:A

 ∑
y:
∑

x:A C(x)

(prl y = a)

 ' C(a). (3.50)

Proof. (←) We can map c : C(a) to ((a, c), refl a). This is type correct, because a : A,
c : C(a) and refl a : prl(a, c) = a.

(→) After currying, we need to prove∏
a,b:A

∏
c:C(b)

(prl(b, c) = a)→ C(a). (3.51)
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Now prl(b, c) computes to b, so we can apply path induction and need to prove∏
a:A

∏
c:C(a) C(a) which is trivial. It computes as follows: ((a, c), refl a) is mapped

to c. This is clearly the inverse of the other arrow.

We observed that elements of different fibres in a type family, can still be connected by
a path. If we have p : a =A b, then f(a) and f(b) are connected in the total space (the
union of all fibres) not just by any path, but by a path that projects back to p. Thus, we
can say that f(a) and f(b) are equal along p. We try to define a type of paths along p.

If we have a dependent function f :
∏

a:AC(a) and we want to prove something about
f(a) and f(b), given that p : a =A b, then path induction allows us to assume that a ≡ b,
p ≡ refl a and f(a) ≡ f(b). Thus, if we want to prove something about points c : C(a)
and c′ : C(b) from the knowledge that c and c′ are connected along p, then we should be
able to assume precisely the same things. This suggests the following inductive definition
for the identity type along p:

Inductive type family 3.4.3. Let A : Uk be a type and C : A→ Uk a type family
over A. We define the identity-along-identity type family with constructor:

• refl2

refl2
:
∏

a:A

∏
c:C(a)

c=Cc
refl a:a=Aa

.

That is, refl c
refl a

: c=Cc
refl a:a=Aa

. We should regard both refl2

refl2
and 2=22

2:2=22
as formal symbols.

In general, we can read c=Cc
′

p:a=Ab
as ‘c : C(a) and c′ : C(b) are equal along p in the type

family C’. The elements of this type are paths from c to c′ in the total space, that
are projected to p. We will not always mention the endpoints of p explicitly.

The induction principle says that, in order to prove something from q : c=Cc
′

p:a=Ab
, we may

assume that a ≡ b, p ≡ refl a, c ≡ c′ and q ≡ refl c
refl a

.

ind=C/=A
:
∏
D:...

∏
a:A

∏
c:C(a)

D(a, a, refl a, c, c, refl c/refl a)


→

∏
a,b:A

∏
p:a=b

∏
c:C(a)

∏
c′:C(b)

∏
q:c=Cc′/p

D(a, b, p, c, c′, q)

 , (3.52)

If we don’t care about q, this is precisely what we need for function values of proposition-
ally equal arguments. We will use this type as a tool to find out if other characterizations
of equality along a path in more concrete situations, are correct. If they are, they should
be equivalent to this type.

Heterogeneous equality types that express equality of elements from different types,
are used more often in the literature [AMS07], and are available in the proof assistant
Coq. Most often, however, there is one type for all paths q from c to c′, regardless of the
path p they project to.

The following lemma shows that dependent functions do preserve paths:

Lemma 3.4.4. For every type A, every type family C : A → Uk and every function
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f :
∏

x:AC(x), we have

f= :
∏
a,b:A

∏
p:a=b

f(a) =C f(b)

p : a =A b
. (3.53)

Proof. After applying path induction to p, we only need reflexivity of f(a) along reflexivity
of a.

The HoTTbook [Uni13] does not use an inductive heterogeneous identity type, as paths
along a path are easily and fully generally characterized in symmetric HoTT:

Lemma 3.4.5. A path from c : C(a) to c′ : C(b) along p : a = b is the same as a path
from p∗(c) to c’:∏

a,b:A

∏
p:a=b

∏
c:C(a)

∏
c′:C(b)

∏
q:c=Cc′/p

c =C c
′

p : a =A b
'
(
p∗(c) =C(b) c

′) . (3.54)

Proof. (→) By path-along-a-path induction, we need only prove∏
a:A

∏
c:C(a)

(refl a)∗(c) =C(a) c, (3.55)

which is proven by reflexivity. So we are mapping a, a, refl a, c, c, refl c
refl a

to refl c.

(←) By path induction, we need only prove∏
a:A

∏
c,c′:C(a)

c =C(a) c
′ → c =C c

′

refl a : a =A a
. (3.56)

After applying path induction again, we can use reflexivity along reflexivity. So
we are mapping a, a, refl a, c, c, refl c to refl c/refl a. This is clearly the inverse of the
other arrow.

3.4.2 In directed HoTT

The directed case is exciting because here, we can relax the continuity condition: type
families still preserve paths, but objects in A may be connected by only a directed
path (morphism), which invariant type families need not respect. Thus, our fibres
may change fundamentally as we progress along a directed path. There are four
(overlapping) cases, viewed in fig. 3.3.

In each case, we have a directed path (morphism) from a to d, passing through
the points b and c. The type family C in the upper left, which is isovariant, maps
the morphism to an equality, so that all the fibres along the directed path must be
equivalent. This is similar to the situation in the symmetric case, only we are now
moving along a directed path in A.

The type family D in the lower left, which is covariant, maps morphisms to
functions. So whenever a point y lies beyond x on the directed path, there must be a
function C(x)→ C(y). So there is a way to walk to the right through the fibration,
but not to the left. This is observed in the figure: when we take a point in the C(b)
and walk to the right, we can only end up in one connected component of C(c), i.e.
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b c
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isovariant C invariant F

contravariant Ecovariant D

Figure 3.3: Behaviour of v-variant type families along a morphism.

the function value is unique up to propositional equality. Conversely, when we take
a point in the upper connected component of C(c) and walk to the left, we reach a
dead end, because those points are not in the image of the function C(b) → C(c).
When we take a point in the lower component and walk to the left, the component of
C(b) where we end up, is not uniquely determined. This indicates that the function
is not injective.

The type family E in the lower right is contravariant, so the situation is flipped
horizontally.

The type family F in the upper right is invariant, so we can get any kind of
fibration. In the case shown in the figure, there is no unique way to walk in either
direction. However, there is still a notion of equality across the type family. Indeed,
all points of F (a) are equal to the points in the upper component of F (d) along
the directed path. This is an interesting observation: invariant type families F
map morphisms a  A d to binary relations between F (a) and F (d). There
are a few remarks to be made about this. First of all, in our examples the total
space is always a groupoid: there are no non-symmetric paths. If we allowed those,
then we get something more bizarre than a binary relation: given α : F (a) and
δ : F (d), we may speak of morphisms α  δ and δ  α, as well as paths α = δ.



3.4. TYPE FAMILIES ARE FIBRATIONS 97

Secondly, this conclusion is based on an informal topological argument. However, we
will derive some type theoretical results in a moment that reflect this observation,
and the topological view provides a frame to think about these results.

It should be emphasized that type families of any variance still map paths to
equivalences.

A question we face is: what is the total space? In the symmetric case, it was
simply the Σ-type, but in directed HoTT, we have Σ-types of all variances. For the
covariant sum, we will see that equality of pairs means componentwise equality, and
a morphism between pairs is a pointwise morphism. This means that if we take the
covariant sums in the four cases in fig. 3.3, then all symmetric paths remain within
their fibre, and all directed paths go to the right.

The covariant sum will sometimes be useful, but it is not the total space one would
expect when looking at fig. 3.3. In the contravariant sum, the symmetric paths are
the same, but the directed paths go to the left. In the invariant sum, even directed
paths have to stay in their fibre.

The isovariant sum is more interesting: here, (a, c) and (b, c′) are equal if (but
not only if) there is a morphism a b and c and c′ are equal along that morphism.
There is a morphism from (a, c) to (b, c′) if (but not only if) there is a morphism in
either direction between a and b, and a morphism from c to c′ in the total space. We
shall call the isovariant sum

∑=
a:AC(a) the total space. Unfortunately, the function

that fibrates this total space cannot be given in type theory, as it is not functorial:
it does not preserve paths along a morphism. If we want to be able to project back,
we need to use the covariant sum:

Lemma 3.4.6. Let A := Uk be a type and C := A→ Uk a type family. Then

+∏
a:A

 +∑
y:
∑+

x:A C(x)

(prl y =A a)

 +' C(a). (3.57)

Proof. (←) We can map c :+ C(a) to ((a, c), refl a). This is type correct, because
a :+ A, c :+ C(a) and refl a :+ prl(a, c) = a.

(→) After currying, we need to prove

+∏
a,b:A

+∏
c:C(b)

(prl(b, c) = a)→ C(a). (3.58)

Now prl(b, c) computes to b, so we can apply path induction (which would even
give a function isovariant in a and b) and need to prove

∏=
a:A

∏+
c:C(a) C(a) which

is proven by the identity function idC(a) which happens to be isovariant in a.
This proof computes as follows: ((a, c), refl a) is mapped to c. This is clearly
the inverse of the other arrow.

For contravariant E, the projection prl :
(∑+

a:AE(a)
) +→ A is apparently a

Grothendieck fibration:
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Definition 3.4.7 (Grothendieck fibration). Let S and A be categories and π : S →
A a covariant functor. A morphism σ ∈ HomS(s, t) is called cartesian (with respect
to π) if, for any morphism ρ ∈ HomS(r, t), we can lift any factorization π(ρ) = π(σ)◦α

π(s)

π(σ) ""

π(r)αoo

π(ρ)||
π(t),

(3.59)

to a factorization ρ = σ ◦ ψ such that π(ψ) = α.
The functor π is called a Grothendieck fibration if, for any t ∈ S, we can lift

any morphism β ∈ HomA(b, π(t)) to a cartesian morphism σ ∈ HomS(s, t) so that
π(σ) = β.

By reverting all arrows, we arrive at the notion of a cocartesian morphism and
a Grothendieck opfibration. [nLa15][Gro64]

Lemma 3.4.8 (Cartesian morphism lifting property). Given a type A := Uk, a con-

travariant type family C := A
−→ Uk, elements b, c := A and t :+ C(c), we can lift a

morphism β :+ b A c to σ : (b, s) (c, t) such that prl (σ) = β.
Moreover, this morphism is cartesian: for all a := A, r := C(a) and ρ :+ (a, r)  

(c, t), we can lift every α :+ a  A b that factorizes prl (ρ) = prl (σ) ◦ α, to a
morphism ψ : (a, r) (b, s) that factorizes ρ = σ ◦ ψ so that prl (ψ) = α.

It is interesting to apply this lemma visually to each of the four drawings, and not
just for the points a, b and c written there. There are two reasons why the lemma fails
in the covariant and invariant cases. Firstly, the dead end caused by non-surjectivity
disables you to lift morphisms. Secondly, in components that have no dead ends, the
forking to the left caused by non-injectivity, disproves that there is always a cartesian
lifting.

Proof. We have a transport function ϕ∗ : C(c)
+→ C(b), so we can take s :≡ ϕ∗(t).

We now have to prove:

=∏
b,c:A

+∏
β:b c

+∏
t:C(c)

(b, ϕ∗(t)) (c, t). (3.60)

The variance of the type on the right allows morphism induction on β. Then we can
assume that b ≡ c and ϕ∗(t) computes to t, so we can take σ :≡ id(c, t). As identity
projects to identity, this is indeed a lifting.

Using target-based morphism induction on β (a and c are fixed as we are dealing
with paths in a c), both β and σ become identity morphisms. Then the fact that
α factorizes prl (ρ) over β means that it equals prl (ρ), so we can take ψ :≡ ρ.

For covariant C, the function prl :
(∑+

a:AC(a)
) +→ A is a Grothendieck opfibration.
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Observe that the lemmas in section 3.2 about functor behaviour of functions, are
all isovariant in the endpoints of paths and morphisms, as well as in the relevant
function. So when we want to state analogues for dependent functions, the variances
are likely to be the same. Suppose that given f :=

∏v
a:AC(a), points a, b := A and

a path p :+ a =A b, we want to say something about f(a) and f(b). Then by path
induction, we may assume that a ≡ b, p ≡ refl a and f(a) ≡ f(b). Moreover, since
both f and a are available isovariantly, so will f(a) be. This leads to the following
definition for identity along identity:

Inductive type family 3.4.9. Let A : Uk be a type and C : A
u→ Uk a type

family over A. We define the identity-along-identity type family, which is
covariant in A and C, with constructor:

• refl2

refl2
:
∏=

a:A

∏=
c:C(a)

c=Cc
refl a:a=Aa

.

The v-variant induction principle says that, in order to prove something from q :v
c=Cc

′

p:a=Ab
, we may assume that a ≡ b, p ≡ refl a, c ≡ c′ and q ≡ refl c

refl a
, where a and c are

available isovariantly.

indv=C/=A
:

=∏
D:...

 =∏
a:A

=∏
c:C(a)

D(a, a, refl a, c, c, refl c/refl a)


→

 =∏
a,b:A

v∏
p:a=b

=∏
c:C(a)

=∏
c′:C(b)

v∏
q:c=Cc′/p

D(a, b, p, c, c′, q)

 . (3.61)

If we don’t care about q, this is precisely what we need for function values of propo-
sitionally equal arguments.

Dependent functions still preserve paths:

Lemma 3.4.10. For every type A := Uk, every type family C := A
u→ Uk and

every function f :=
∏v

x:AC(x), we have

f= :
=∏

a,b:A

+∏
p:a=b

f(a) =C f(b)

p : a =A b
. (3.62)

Proof. After applying path induction to p, we only need reflexivity of f(a) along
reflexivity of a.

Paths along paths are still very easy to characterize:
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Lemma 3.4.11. A path from c : C(a) to c′ : C(b) along p : a = b is the same as
a path from p∗(c) to c’:

=∏
a,b:A

+∏
p:a=b

=∏
c:C(a)

=∏
c′:C(b)

+∏
q:c=Cc′/p

c =C c
′

p : a =A b
'
(
p∗(c) =C(b) c

′) . (3.63)

Proof. (→) By path-along-a-path induction, we need only prove

=∏
a:A

=∏
c:C(a)

(refl a)∗(c) =C(a) c
′, (3.64)

which is proven by reflexivity. So we are mapping a, a, refl a, c, c, refl c
refl a

to refl c.

(←) By path induction, we need only prove

=∏
a:A

=∏
c,c′:C(a)

c =C(a) c
′ +→ c =C c

′

refl a : a =A a
. (3.65)

After applying path induction again, we can use reflexivity along reflexivity. So
we are mapping a, a, refl a, c, c, refl c to refl c/refl a. This is clearly the inverse of
the other arrow.

As any function maps paths to paths, it is not interesting to study morphisms
along paths. However, it is interesting to study paths and morphisms (in either
direction) along morphisms. Therefore, we need the following types:

c =C c
′

ϕ : a A b
,

c C c
′

ϕ : a A b
,

c  C c′

ϕ : a A b
. (3.66)

We give them a completely analogous definition, only with different variance in their
indices. All three types are contravariant in a and covariant in b. The second one is
contravariant in c and covariant in c′, the third one is contravariant in c and covariant
in c′. The induction principles will require type families that have according variance.
The constructor of the first type will be called refl2

id2
; the ones for the other two will

be called id2

id2
.

For type families C that are remotely well-behaved, there is again a general char-
acterization. We give it only for equalities along morphisms, the other cases are
proven analogously.
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Lemma 3.4.12. Let C := A
−→ A

+→ Uk be a type family that is contravariant in
one argument and covariant in the other. Suppose we have objects a, b := A and
a morphism ϕ :+ a A b. Then we get transport functions:

C(a, a)
ϕ∗−→ C(a, b)

ϕ∗←− C(b, b). (3.67)

A path from c : C(a, a) to c′ : C(b, b) along a morphism ϕ : a  A b is the same
as a path from ϕ∗(c) to ϕ∗(c′):

=∏
a,b:A

+∏
ϕ:a b

=∏
c:C(a,a)

=∏
c′:C(b,b)

c =
x
×7→C(x,x)

c′

ϕ : a A b
'
(
ϕ∗(c) =C(a,b) ϕ

∗(c′)
)
. (3.68)

Proof. (→) The type family

a
−7→ b

+7→ ϕ
+7→ c

×7→ c′
×7→
(
ϕ∗(c) =C(a,b) ϕ

∗(c′)
)

(3.69)

has the proper variance to apply path-along-a-morphism induction. Then we
need only prove

=∏
a:A

=∏
c:C(a)

(id a)∗(c) =C(a,a) (id a)∗(c), (3.70)

which is proven by reflexivity. So we are mapping a, a, id a, c, c, refl c
id a

to refl c.

(←) By morphism induction, we need only prove

=∏
a:A

=∏
c,c′:C(a)

c =C(a) c
′ +→ c =C c

′

id a : a A a
. (3.71)

After applying path induction, we can use reflexivity along identity. So we are
mapping a, a, id a, c, c, refl c to refl c/id a. This is clearly the inverse of the other
arrow.

Note that this lemma characterizes paths along morphisms for co-, contra- and iso-
variant type families, as well as for type families that are constructed by combining
these. The only remaining families to investigate are those that are invariant ‘by
nature’. Let us see how that can happen:

• By using strip : A
×→ Acore in the definition of a type family. However, Acore

itself is not the universe, so we would have to compose with Acore +/−/×−−−−→ Uk,
but such functions are constructed by core-induction from (A

×→ Uk), so this is
a non-example, as we needed a invariant type family to begin with.

• By actively weakening a better behaved type family, e.g. if C is covariant,

we could define D :≡ a
×7→ C(a). However, one can prove that

∏
a:AD(x) '∏

a:AC(x), so that we need not consider this case.
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• Type families that have complicated higher order variance that has to be weak-
ened to invariance. Remember that 2op was invariant as it preserves morphisms
contravariantly.

• The identity type is by nature invariant in its indices.

Identity types

We start with the latter case: if a, a′ := A, ϕ :+ a  A b, f, g : A
v→ B, p :

f(a) =B g(a) and p′ : f(a′) =B g(a′), then what is a path q : p=p′

ϕ:a a′ in the family

x
×7→ f(x) = g(x)?
Let us first replace p and p′ by morphisms and assume f and g covariant. Then

we get χ : f(a)  B g(a) and χ′ : f(a′)  B g(a′) and the question is: what is a
path χ=χ′

ϕ:a a′ ? But we know the answer, it is a path from q : ϕ∗(χ) to ϕ∗(χ′). But
transporting morphisms along morphisms is just composition, so we get

q : g (ϕ) ◦ χ = χ′ ◦ f (ϕ), (3.72)

i.e. the following diagram commutes:

f(a)
f (ϕ)//

χ

��

f(a′)

χ′

��
g(a)

g (ϕ)
// g(a′)

(3.73)

As it happens, the situation is identical for paths. We only show this for covariant f
and g.

Lemma 3.4.13. Suppose we have types A,B := Uk and functions f, g : A
+→ B.

Define C :≡ x
×7→ f(x) =B g(x). A path from p : C(a) to p′ : C(a′) along a morphism

ϕ : a A a
′ is the same as a path g (ϕ) ◦ toMorph(p) = toMorph(p′) ◦ f (ϕ):

=∏
a,a′:A

+∏
ϕ:a a

=∏
c:C(a)

=∏
c′:C(a′)

p =C p
′

ϕ : a A a′
' (g (ϕ) ◦ toMorph(p) = toMorph(p′) ◦ f (ϕ)) .

(3.74)
In other words, it means the following diagram commutes:

f(a)
f (ϕ)//

p

f(a′)

p′

g(a)
g (ϕ)

// g(a′)

(3.75)



3.4. TYPE FAMILIES ARE FIBRATIONS 103

Proof. (→) The type family

a
−7→ a′

+7→ ϕ
+7→ p

×7→ p′
×7→
(
g (ϕ) ◦ toMorph(p) =f(a) g(a′) toMorph(p′) ◦ f (ϕ)

)
has the proper variance to apply path-along-a-morphism induction. Then we
need only prove

=∏
a:A

=∏
p:C(a)

(g (id a) ◦ toMorph(p) = toMorph(p) ◦ f (id a)) , (3.76)

but both sides compute to toMorph(p), so we can use reflexivity. Then we are
mapping a, a, id a, p, p, refl p

id a
to refl toMorph(p).

(←) By morphism induction, we need only prove

=∏
a:A

=∏
p,p′:C(a)

toMorph(p) =f(a) g(a) toMorph(p′)
+→ p =C p

′

refl a : a =A a
. (3.77)

Lemma 3.9.8 will assert that (toMorph(p) =f(a) g(a) toMorph(p′)) ' p =C(a) p
′.

Then after applying path induction, we need only prove

=∏
a:A

=∏
p:C(a)

p =C p

refl a : a =A a
, (3.78)

which is proven by reflexivity along identity. So we are mapping a, a, id a, p, p,
refl toMorph(p) to refl c/id a. This is clearly the inverse of the other arrow.

We can now understand why refl had to be isovariant. Suppose we have a, b : A
and ϕ : a A b. Then we would expect that the following diagram commutes:

a
ϕ //

refl a

b

refl b

a ϕ
// b

(3.79)

which is the same as saying that refl a equals refl b in the type family x
×7→ (x =A x).

The opposite type

As an example of a type family that is considered invariant because its higher variance

could not be weakened to any other basic variance, we take the type family X
×7→

Xop. If we have a morphism ϕ : a  A b and a family C : A
−→ A

+→ Uk, then
we cannot immediately transport from C(a, a)op and C(b, b)op to C(a, b)op, as 2op

discards morphisms. However, we do have

C(a, a)op unflip−−−→ C(a, a)
ϕ∗−→ C(a, b)

flip−→ C(a, b)op flip←− C(a, b)
ϕ∗←− C(b, b)

unflip←−−− C(b, b)op,
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which is basically the transport functions ϕ∗ and ϕ∗ transported along the flipping

equivalence X
−' Xop.

Now if we have a covariant function f :
∏+

x:AC(x, x)op, we could expect a mor-
phism (flip ◦ ϕ∗ ◦ unflip)(f(a)) C(a,b)op (flip ◦ ϕ∗ ◦ unflip)(f(b)). However, we cannot
prove this from morphism induction on ϕ, because the identity on the right is invari-
ant in a and b, which is the case because C(a, b)op is invariant in a and b since 2op is
invariant. Had we not weakened the contravariant morphism induction principle to
fit our type system, then we could have applied it here.

What we can do, however, is prove that there is a morphism (ϕ∗◦unflip)(f(b)) C(a,b)

(ϕ∗ ◦ unflip)(f(a)) (note the swapping of a and b). This is conceptually the same,
because the idea of the opposite type is that a morphism x  X y is the same as
a morphism flip y  Xop flipx. We prove that this is the right characterization of a

morphism in the type family x
×7→ C(x, x)op:

Lemma 3.4.14. A morphism from c : C(a, a)op to c′ : C(b, b)op along a morphism
ϕ : a A b is the same as a morphism from (ϕ∗ ◦ unflip)(c′) to (ϕ∗ ◦ unflip)(c):

=∏
a,b:A

+∏
ϕ:a b

=∏
c:C(a,a)op

=∏
c′:C(b,b)op

c Cop(2) c
′

ϕ : a A b

+'
(
(ϕ∗ ◦ unflip)(c′) C(a,b) (ϕ∗ ◦ unflip)(c)

)
.

Proof. (→) The type family

a
−7→ b

+7→ ϕ
+7→ c

−7→ c′
+7→
(
(ϕ∗ ◦ unflip)(c′) C(a,b) (ϕ∗ ◦ unflip)(c)

)
(3.80)

has the proper variance to apply morphism-along-a-morphism induction. Then
we need only prove

=∏
a:A

=∏
c:C(a)

(id a)∗(c) C(a,a) (id a)∗(c), (3.81)

which is proven by the identity morphism. So we are mapping a, a, id a, c, c, id c
id a

to id c.

(←) By morphism induction on ϕ, we need only prove

=∏
a:A

=∏
c,c′:C(a)

c′  C(a) c
+→ c C c

′

id a : a A a
. (3.82)

After applying morphism induction again induction, we can use identity along
identity. So we are mapping a, a, id a, c, c, id, c to id c/id a. This is clearly the
inverse of the other arrow.
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3.5 Bridges

3.5.1 Discussion

Why do we need bridges?

The idea to start reasoning about bridges, comes from two observations that did
not necessarily ask for a common answer. The first observation is that invariant
type families map morphisms to relations, as demonstrated in the previous section.

However, we know that the type of invariant type families A
×→ Uk is covariantly

equivalent to Acore +→ Uk. This indicates that the category structure of A has left a
trace on Acore. Bridgeless groupoids on the other hand, do not exhibit such behaviour.

Indeed, we can define C : N +→ Uk by saying C(zero) :≡ Fin 47 and C(succn) :≡ (N '
N× N), for all n. Now, there is absolutely no natural way of comparing elements of
the finite type with 47 (interchangeable) elements to bijections between the naturals
and the type of pairs of naturals.

Secondly, if it weren’t for bridges, we would have put = ◦ × ≡ ×. But it turns
out that this doesn’t play well with the inference rule for extending the context:

Γ ` A :v Uk
Γ, x := A ` Ctx

extendCtx. (3.83)

Earlier, we derived the following rule from it:

Γ ` A :v Uk
= ◦ Γ, x := A ` Ctx

extendCtx (3.84)

by first composing the premise with isovariance and then applying extendCtx. If = ◦
× ≡ =, then =◦Γ ≡ Γ=. However, if we have =◦× ≡ ×, this no longer holds, meaning
some (fairly important) functions cannot be created any more. For example, there
is the path induction principle, which is defined from the path induction operator as
follows:

ind=A
:≡ C

=7→

(
f :
∏
x:A

C(x, x, reflx)

)
+7→
(
a

=7→ b
=7→ p

+7→ ind=A
(C, x.f(x), a, b, p)

)
.

To construct this function, we repeatedly apply the function definition rule (also
called λ-abstraction, which turns an assumption into an argument), starting from
the judgement

C := · · · , f :+ · · · , a := A, b := A, p := a =A b ` ind=A
(C, x.f(x), a, b, p) :+ · · · (3.85)

where · · · replaces long and complicated types.
Now the problem is that we cannot even obtain this context, because at some

point we have to add the identity type a =A b to the context, but if Γ ` a =A b : Uk,
then Γ needs to assume a, b :× A. However, when we add the identity type to the
context, we get (= ◦ Γ), p : a =A b ` Ctx, but (= ◦ Γ) would still be assuming a and b
invariantly, whereas we need them isovariantly.
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One way to solve this, would be by introducing a fifth constant variance, which
maps no information to equality. Then of course we would have ct ◦ × ≡ ct. By
composing with constancy before applying extendCtx, we could derive

Γ ` A :v Uk
(ct ◦ Γ), x :ct A ` Ctx

. (3.86)

(The constancy of x is not derivable; it follows from a modification of extendCtx
following the philosophy that we should take it in the strongest possible variance so
that we can weaken it; the strongest possible variance is now constancy). However,
Guideline 2.4.2 would then become: Asserting the sheer existence of a type or type
family, falls under constant use. Then the constructor

inl : VecnA
+→ VecnA+B (3.87)

would depend constantly on n, meaning that the one for 8 is equal to the one for 65,
but as 8 and 65 are completely unrelated, there is no obvious way to compare inl8
to inl65, leaving the claim meaningless. (Of course a function f : Vec65A

+→ Vec8A

would yield a commutative diagram, but this is just because inl : X
+→ X + B

depends constantly on X.) Bridges allow us to distinguish between cases where it is
meaningful to claim that terms are equal, and cases where it isn’t, so they seem a
natural way to address this situation.

What are they?

Let’s look back at the invariant type family F : A→ Uk in fig. 3.3 on page 96. Note
that any point in A has a neighbourhood where F is either co- or contravariant. This
suggests that it may be sensible to think of a bridge a _ b as a so called zigzag of
morphisms:

a // a1 a2
//oo . . . an−2

//oo an−1 boo . (3.88)

An isovariant function maps every one of these morphisms to equality, so the entire
bridge is mapped to equality. A covariant function preserves the morphisms and
a contravariant reverts all of them, so that both yield again a bridge. An invariant
function maps each of the morphisms to a bridge, which we can tie together to obtain
another bridge.

From this way of thinking, we can deduce the following properties of bridges:

• A morphism implies a bridge.

• In particular, there will be identity bridges.

• There is an anti-involution 2† : (a _ b)→ (b _ a).

• Bridges can be composed.

• A bridge between types is the same as a relation.
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To see the last property, take a bridge from A to D:

A
f−→ B

g←− C
h−→ D. (3.89)

This constitutes a relation between A and D, where there is a morphism from a : A to
d : D whenever there are b : B and c : C so that (f(a) B b)×(b B g(c))×(h(c) D

d). Conversely, a relation between A and B should probably be defined as a diagram

A
+−→ R

+←− B (3.90)

which is indeed a bridge. (If we wanted to stay closer to the set theoretic definition of
a relation, we might have opted for a diagram A← S → B. However, this definition
does not give us transport functions.)

Of course in the core, where we have thrown away all morphisms, a bridge cannot
possible ‘be’ a zigzag of morphisms, but to some extent they seem to behave as if
they are.

It is quite possible though that this is not the best way to think of bridges. If we
want to think more abstractly about them, then we have to be more careful about
the action of functions of different variance on them. Our basic assumption is that

invariant functions map morphisms to bridges. Suppose we have functions f : A
×→ B

and g : B
v→ C. If g is co- or contravariant, then g ◦ f is invariant and hence maps

morphisms to bridges. Since the only thing that is left in B from a morphism in
A, is a bridge, this indicates that co- and contravariant functions should preserve
bridges. However, for isovariant functions, there is no longer a good argument why
they should map bridges to equality. So we should split up isovariance in strong
isovariance (mapping bridges to equality) and weak isovariance (just mapping bridges
to bridges). Guideline 2.4.2 will then state that asserting the sheer existence of a
type, falls under strongly isovariant use. As most isovariant functions came forth
from Guideline 2.4.2, we wouldn’t often need weakly isovariant functions. Therefore,
we proceed with the rule = ◦ × ≡ =.

3.5.2 Attempts to define bridges

It turns out to be quite difficult to find a good definition for a bridge type. A good
bridge type should satisfy the following criteria:

1. Invariant functions map morphisms to bridges,

2. As a consequence, morphisms imply bridges (since the identity function can be
weakened to invariance),

3. Isovariant functions map bridges to paths,

4. In the universe, a bridge between types is the same as a relation (it is probably
sufficient that a bridge implies a relation, which is analogous to a transport
lemma, whereas the other implication usually requires a univalence axiom),

5. There is an anti-involution 2† : a _ b→ b _ a so that (idbr a)† = idbr a,
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6. There is an identity bridge idbr a in every point a,

7. If bridges are composable, we should not be able to prove for every bridge β
that β† ◦ β = idbr, as this does not hold in general for relations.

We make four attempts at defining bridges.

Using bivariance If a morphism ϕ : a  A b should imply a bridge a _A b, then
we should be able to prove this using the induction principle, which requires that
a _A b is at least contravariant in a and covariant in b. However, a morphism
χ : b  A a should also imply a bridge a _A b, so a _A b should also be covariant
in a and contravariant in b. Actually this make sense: if bridges are zigzags, then we
should be able to transport in either direction along a morphism ψ : b A c:

ψ∗ : (a _A b)
+

� (a _A c). (3.91)

This suggests that we should include bivariant functions, which map a morphism
a b to morphisms (f(a) f(b))×(f(b) f(a)). If we apply this to a zigzag, then
every segment gets mapped to morphisms in both directions, which we can compose.
So a bivariant function will also map bridges a _ b to (f(a) f(b))×(f(b) f(a)).
Finally, as any other function, it should preserve equality. We get the following
composition table:

+ ◦+ ≡ + + ◦ − ≡ − + ◦ × ≡ × + ◦ bi ≡ bi + ◦= ≡ =
− ◦+ ≡ − − ◦ − ≡ + − ◦ × ≡ × − ◦ bi ≡ bi − ◦= ≡ =
× ◦+ ≡ × × ◦ − ≡ × × ◦ × ≡ × × ◦ bi ≡ × × ◦= ≡ =
bi ◦+ ≡ bi bi ◦ − ≡ bi bi ◦ × ≡ bi bi ◦ bi ≡ ? bi ◦= ≡ =
= ◦+ ≡ = = ◦ − ≡ = = ◦ × ≡ = = ◦ bi ≡ = = ◦= ≡ =

Composing two bivariant functions is possibly a problem as we end up with four
morphisms that are not necessarily two by two equal, and it is not obvious which one
we should retain if we want to see the composed function as bivariant.

We can now try to define a bridge type as follows:

Inductive type family 3.5.1. Given a type A : Uk, we define the type family

of bridges 2_A 2 : A
bi→ A

bi→ Uk with constructors:

• idbr :
∏=

a:A a _A a,

• a _A b is bivariant in a,

• a _A b is bivariant in b.

This definition allows us to prove properties 1-3 and 5-6. However, it also lets us
compose bridges without satisfying property 7: by induction, we may assume β ≡ id a,
in which case β† ◦ β computes to id a so that the property is proven by reflexivity.



3.5. BRIDGES 109

As pre-relations Neglecting the fact that there is more than a single universe, we
could define the bridge type as follows:

a _A b :≡
∏

C:A
×→U

Rel(C(a), C(b)). (3.92)

That is: a bridge from a to b is a proof that for any invariant type family C over
A (and hence for any type family C over A), you get a relation between C(a) and
C(b). It allows us to prove properties 1, 2, the weak version of 4 and 5-7. Property
3 however looks problematic, and even in the event where we distinguish between
strongly and weakly isovariant functions, it should still be satisfied for the strongly
isovariant ones.

As zigzags We could actually define a _A b as the type of finite zigzags from a to

b. However, as might be expected, property 1 leads to contradictions for strip : A
×→

Acore. Indeed, if we have a morphism a A b, it leads to a bridge strip a _Acore strip b.

Now we have co- and a contravariant functions unstrip : Acore ±→ A whose invariant
weakenings are equal. But we can actually extract the nodes and the morphisms of our
zigzag in Acore, and each morphism ci  Acore ci+1 is mapped by the covariant unstrip
to unstrip ci  A unstrip ci+1 and by the contravariant one to unstrip ci+1  A unstrip ci.
Then we can compose these morphisms and arrive at morphisms between a and b

in either direction. Applying this to the universe, we get a function 1
+→ 0 because

there is a function 0
+→ 1.

Rethinking invariance An invariant function f : A
×→ C that is built by using

exclusively covariant and contravariant functions, can actually be modelled as f ′ :

A
−→ A

+→ C, where we interpret f(a) as f ′(a, a). We could actually try to take this
as the definition of an invariant function. Then Acore has a single constructor

• strip : A
−→ A

+→ Acore,

so Acore +' Aop × A. Invariant induction principles will no longer work, which is no
big deal since we only ever used them in our discussion of bridged types, and the

results we found there, should be invalidated, as the criterion A
+' A × Aop seems

uninteresting and is not fulfilled by a type such as N.

In particular, this means that we have a type family 2,2 =A 2,2 : A
−→ A

+→
A
−→ A

+→ Uk, with constructor refl :
∏=

a:A a, a =A a, a. Although this is weird, there
may exist an abstract interpretation for the type a, b =A c, d. However, consider the
type

+∏
ϕ:a b

+∏
χ:b c

T (χ ◦ ϕ). (3.93)

This type family is clearly invariant in b, which means that it actually takes a covari-
ant b and a contravariant b. Now if these are not equal, then the term χ ◦ ϕ makes
no sense. A possible solution is to require that there is also a morphism from the
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contravariant b to the covariant one. Then an invariant function f : A
×→ C is the

same as a function f ′ :
∏−

x:A

∏+
y:A(x  A y)

+→ C, interpreting f(a) as f ′(a, a, id a).

In that case, Acore becomes equivalent to
∑−

x:A

∑+
y:A(x  A y), and at least we see

that N +' Ncore.
Note that this means that invariant functions f map morphisms ϕ : a  A b to

cospans
f(a, a, id a) f(a, b, ϕ)  f(b, b, id b), (3.94)

so perhaps we can think of bridges as cospans. The problem is that although covariant
and isovariant functions preserve cospans, contravariant functions g map them to
spans

g(f(a, a, id a))  g(f(a, b, ϕ)) g(f(b, b, id b)), (3.95)

and invariant functions would map them to a double cospan (one for each branch
of the original one). As not every type has pushouts, we cannot always compose
cospans or turn spans into cospans, so the composition table for variances becomes
problematic. On top of that, there will be problems with weakening arbitrary higher
order variances to invariance.

3.5.3 An axiomatic treatment of bridges

As we will see in chapter 4, the existence of a bridge type with the desired properties
doesn’t seem to be outrageous. For want of a better solution, we add the bridge
type to the theory using an alarmingly long series of axioms (and a few inference
rules for computation in specific cases), and we will avoid its use as much as possible.
The main reason to add it nonetheless, is because it is a necessary ingredient of the
semantics in chapter 4. The axioms are partly based on chapter 4, partly on intuition
and partly on what I want to be true. These are prototypes, especially the variance
annotations may be completely off.

Axiom 3.5.2. There is a type family 2 _2 2 :
∏+

A:Uk a
×→ b

×→ Uk. For every type
A := Uk, it satisfies the following properties:

• There is an identity bridge at every point: idbr :
∏=

a:A a _A a,

• There is an anti-involution 2† :
∏=

a,b:A(a _A b)
+' (b _A a),

so that (idbr a)† ≡ idbr a,

• A morphism implies a bridge, invariantly: toBrid :
∏=

a,b:A(a A b)
×→ (a _A b),

and toBrid(id a) ≡ idbr a.

In the universe, a bridge β : A _ B implies a cospan, i.e. a relationa, invariantly:

A
leftTransport(β)−−−−−−−−→ Rel(β)

rightTransport(β)←−−−−−−−−− B. (3.96)
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• Rel :
∏×

A,B:Uk(A _ B)
+→ Uk,

so that Rel(idbrA) ≡ A,

and Rel(β†) ≡ Rel(β),

• leftTransport :
∏=

A,B:Uk

∏+
β:A_B A

+→ Rel(β),

so that leftTransport(idbrA) ≡ idA,

and leftTransport(β†) ≡ rightTransport(β),

• rightTransport :
∏=

A,B:Uk

∏+
β:A_B B

+→ Rel(β),

so that rightTransport(idbrA) ≡ idA,

and rightTransport(β†) ≡ leftTransport(β)

For any types A,C := Uk, and every function f := A
×→ C, we have:

• The function f preserves bridges: f_ :
∏=

a,b:A

∏?
β:a_b f(a) _C f(b).

So if C : A
×→ Uk is an invariant type family and β : a _A b, then we get a cospan

C_(β) whose components will be denoted by:

C(a)
β∗−→ RelC(β)

β∗←− C(b). (3.97)

• For any A := Uk and any C := A
−→ A

+→ Uk, define D :≡ a
×7→ C(a, a). The

above cospan for the type family D equals:

C(a, a)
ϕ∗−→ C(a, b)

ϕ∗←− C(b, b). (3.98)

• More generally, a path/morphism in a type family C along a morphism ϕ should
be the same as a path/morphism between the transports to RelC(toMorph(ϕ)).

Now that we know that, we can state how dependent functions preserve bridges.

Let A := Uk be a type and C := A
×→ Uk an invariant type family. Then for any

f :=
∏v

a:AC(a), we have

• If v 6≡ =, then f maps bridges to bridges:

f_ :
=∏

a,b:A

?∏
β:a_b

β∗(f(a)) _RelC(β) β
∗(f(b)), (3.99)

so that

1. f_(idbr a) ≡ idbr f(a) : f(a) _C(a) f(a),

2. f_(β†) ≡ f_(β)†,

3. If f is invariant and non-dependent, then f_(β) in this sense is judgemen-
tally equal to the previous sense,
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4. If f is covariant, applying f commutes with toBrid:

ϕ : (a b)
_

toBrid
��

� f // ϕ∗(f(a)) ϕ∗(f(b))

toBrid
��

β : (a _ b) �
f_

// ϕ∗(f(a)) _ ϕ∗(f(b)).

(3.100)

5. If f is contravariant, applying f commutes with toBrid up to an anti-
involution:

ϕ : (a b)
_

toBrid

��

� f // ϕ∗(f(b)) ϕ∗(f(a))

toBrid
��

ϕ∗(f(b)) _ ϕ∗(f(a))

2†

��
β : (a _ b) �

f_
// ϕ∗(f(a)) _ ϕ∗(f(b)).

(3.101)

• If f is isovariant, then it maps bridges to paths:

f_ :
=∏

a,b:A

+∏
β:a_b

β∗(f(a)) =RelC(β) β
∗(f(b)), (3.102)

so that

1. f_(idbr a) ≡ refl f(a) : f(a) =C(a) f(a),

2. f_(β†) ≡ f_(β)−1,

3. Applying f commutes with weakening to a bridge:

ϕ : (a b)
_

toBrid

��

�

f **
ϕ∗(f(a)) = ϕ∗(f(b))

β : (a _ b).
)

f_
44

(3.103)

aThe reason we choose for a cospan, rather than a span, is that a cospan A → X ← B encodes
equality and morphisms between elements a : A and b : B in a much simpler way than a span could:
we just transport both to X and compare them there.

With that, we can prove the following simple lemma:
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Lemma 3.5.3. For any type A := Uk and any a, b := A, the following diagram
commutes:

(a = b)
2−1

toMorph

yy

(b = a)
toMorph

%%
(a b)

toBrid %%

(b a)

toBridyy
(a _ b)

2†
(b _ a).

(3.104)

Proof. We start in (a = b) and use path induction:

toBrid(toMorph(refl a))† ≡ toBrid(id a)† ≡ (idbr a)† ≡ idbr a, (3.105)

toBrid(toMorph((refl a)−1)) ≡ toBrid(toMorph(refl a)) ≡ toBrid(id a) ≡ idbr a.

We will not use bridges again in the remainder of this chapter. Chapter 4 sketches
a possible consistency proof which would also show consistency of the above axioms.
Looking back, we see that all 7 criteria for a good bridge type are satisfied, the 7th
one by not allowing composition. It is probably possible to axiomatize a composable
bridge type, which would coincide with zigzags in many types, but it is more com-
plicated. For example, we would want to be able to remove identity morphisms from
zigzags and cancel out inverses.

3.6 Homotopies and natural transformations

This section is based on [Uni13, §2.4].

In symmetric HoTT

In absence of function extensionality (see section 3.8.8) and the univalence axiom (see
section 3.8.9), there turns out to be some freedom in what an equality p : f = g between
functions f, g :

∏
x:AC(x) means. So we should ask ourselves: what should it mean? In

classical mathematics, two functions are equal if and only if they are pointwise equal. We
can define an analogous notion in type theory:

f ∼ g :≡
∏
x:A

f(x) =C(x) g(x). (3.106)

We call an element of f ∼ g a homotopy or natural equivalence from f to g, and the
following lemma explains why:

Lemma 3.6.1. Let f, g : A → C be functions and H : f ∼ g be a homotopy. If we
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have elements a, b : A and p : a =A b, then the following diagram commutes:

f(a)
H(a)

f=(p)

g(a)

g=(p)

f(b)
H(b)

g(b).

(3.107)

In other words, we have
∏

a,b:A

∏
p:a=b(g

=(p) ◦H(a)) =f(a)=g(b) (H(b) ◦ f=(p)).

Proof. After path induction, we must prove
∏

a:A(g=(refl a) ◦H(a)) = (H(a) ◦ f=(refl a)),
and both sides compute to H(a).

In the topological interpretation of HoTT, this shows that a homotopy H : f ∼ g consists
not only of a path f(a) = g(a) for every a : A, but it actually fills all the squares induced
by paths in A. That is, it is also a homotopy in the topological meaning of the word.

In the groupoid interpretation, this shows that a homotopy H : f ∼ g is actually a
natural equivalence of f and g.

Lemma 3.6.2. Equal functions are homotopic:

happly :
∏

f,g:
∏

x:A C(x)

(f = g)→ (f ∼ g). (3.108)

Proof. After path induction, we can use pointwise reflexivity.

Remark 3.6.3. The function extensionality axiom in 3.8.8 will assert that a path
between functions is the same as a homotopy, i.e. that the above lemma is an equiv-
alence.

In directed HoTT

In directed HoTT, we can define symmetric homotopies as well as a directed variant
which we will call natural transformations. We only consider covariant functions
f, g :

∏+
x:AC(x) as any function can be turned into a covariant one using variance

currying. The only thing we have to decide is the variance on the product sign, and
we will pick isovariance because we want commuting diagrams rather than awkward
morphisms between both branches of the diagram:

f ∼ g :≡
=∏
x:A

f(x) =C(x) g(x), (3.109)

f � g :≡
=∏
x:A

f(x) C(x) g(x). (3.110)

Lemma 3.6.4. Let f, g := A
+→ C be functions and H := f ∼ g be a homotopy. If we

have elements a, b := A and p :+ a =A b or ϕ :+ a A b, then the following diagrams
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commute:

f(a)
H(a)

f=(p)

g(a)

g=(p)

f(b)
H(b)

g(b).

f(a)
H(a)

f (ϕ)
��

g(a)

g (ϕ)
��

f(b)
H(b)

g(b).

(3.111)

In other words, we have

=∏
a,b:A

+∏
p:a=b

(g=(p) ◦H(a)) =f(a)=g(b) (H(b) ◦ f=(p)),

=∏
a,b:A

+∏
ϕ:a b

(g (ϕ) ◦ toMorph(H(a))) =f(a) g(b) (toMorph(H(b)) ◦ f (ϕ)).

Proof. This follows immediately from the meaning of a path along a path/morphism

in the type family x
×7→ f(x) = g(x), and is also straightforwardly proven using path

or morphism induction.

Lemma 3.6.5. Let f, g := A
+→ C be functions and N := f � g be a homotopy. If we

have elements a, b := A and p :+ a =A b or ϕ :+ a A b, then the following diagrams
commute:

f(a)
N(a) //

f=(p)

g(a)

g=(p)

f(b)
N(b)

// g(b).

f(a)
N(a) //

f (ϕ)

��

g(a)

g (ϕ)

��
f(b)

N(b)
// g(b).

(3.112)

In other words, we have

=∏
a,b:A

+∏
p:a=b

(toMorph(g=(p)) ◦N(a)) =f(a) g(b) (N(b) ◦ toMorph(f=(p))),

=∏
a,b:A

+∏
ϕ:a b

(g (ϕ) ◦N(a)) =f(a) g(b) (N(b) ◦ f (ϕ)).

Proof. This follows immediately from the meaning of a morphism along a path/morphism

in the type family x
×7→ f(x) = g(x), and is also straightforwardly proven using path

or morphism induction.

Lemma 3.6.6. For any type A := Uk and any type family C := A
×→ Uk, we have
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that equal functions in
∏+

x:AC(x) are homotopic,

happly :
=∏

f,g:
∏+

x:A C(x)

(f = g)
+→ (f ∼ g). (3.113)

and that a morphism between functions implies a natural transformation:

napply :
=∏

f,g:
∏+

x:A C(x)

(f  g)
+→ (f � g). (3.114)

Proof. After path/morphism induction, we can use pointwise reflexivity/identity.

Remark 3.6.7. The function extensionality axiom in 3.8.8 will assert that a path/morphism
between functions is the same as a homotopy/natural transformation, i.e. that the
above lemma is an equivalence.

Remark 3.6.8. In particular, if we have a function f : A
+→ B

+→ C and morphisms
(or paths, or one morphism and one path) α : a  A a′ and β : b  B b′, then the
following diagram commutes:

f(a, b)
f([α],b) //

f(a,[β])
��

f(a′, b)

f(a′,[β])
��

f(a, b′)
f([α],b′)

// f(a′, b′),

(3.115)

where f([α], b) is defined as the natural transformation obtained from f (α) : f(a) 
f(b), applied to b, and f(a, [β]) is defined as f(a) (β). This is just a special case of
the results in this section.

3.7 Groupoids

In section 2.12, we introduced bridged and bridgeless groupoids. The basic property
of bridged groupoids, that +, - and = are interchangeable for functions whose domain
is a bridged groupoid, was proven there. However, we have been a bit short on the
nature of these equivalences, and even more so when we treated bridgeless groupoids.
In this section, we analyse these equivalences properly and prove a few additional
results.

Bridged groupoids
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In section 2.12, we defined a bridged groupoid as a type G for which the function

unstrip :Gcore +→ G is an equivalence. We proved that for any bridged groupoid G and

any type family C : G
×→ Uk, we have(
×∏
x:G

C(x)

)
+'

(
+∏
x:G

C(x)

)
+'

(
−∏
x:G

C(x)

)
. (3.116)

However, this doesn’t say what these equivalences do. Fortunately, we have the
following lemma:

Lemma 3.7.1. Let G := Uk be a bridged groupoid, and C := G
×→ Uk a type

family. Then the weakening to invariance of co- or contravariant functions from
G into the type family C, is an equivalence: isEquiv(2×), where 2× is defined as

2× :≡ f
+7→ (x

×7→ f(x)) :

(
±∏
x:G

C(x)

)
+→

(
×∏
x:G

C(x)

)
. (3.117)

Proof. We construct an inverse s to weakening. Let g :
∏×

x:GC(x) be invariant.

Then r(g) :≡ ind±Gcore(x
×7→
′
C(unstripx′), g) is a covariant or contravariant function∏±

x′:Gcore C(unstripx′). To see that it is correctly typed, note that g(x) : C(x) ≡
C(unstrip (stripx)), as required by the induction principle. The result computes:
r(g)(stripx) ≡ g(x) : C(unstrip (stripx)). Now define s(g) :≡ r(g) ◦ unstrip−1.

To see that s is left inverse to weakening, take f :
∏±

x:GC(x). We have to show
that s(f×) = f . We first show that s(f×) ◦ unstrip = f ◦ unstrip. Take x′ :± Gcore. By
induction, we may assume that x′ ≡ stripx for some x :× G. Then

(s(f×) ◦ unstrip)(x′) ≡ r(f×)(unstrip−1(unstrip (stripx)))

≡ r(f×)(stripx) ≡ f×(x) ≡ f(x) ≡ f(unstripx′). (3.118)

Now we compose both functions with unstrip−1, finding

s(f×) = s(f×) ◦ unstrip ◦ unstrip−1 = f ◦ unstrip ◦ unstrip−1 = f. (3.119)

To see that s is right inverse to weakening, take g :
∏×

x:GC(x). We have to
show that s(g)× = g. The reasoning is identical, as weakening doesn’t really do
anything.

Now that we know that these equivalences are very well-behaved, we can denote
each of these types as

∏3
x:GC(x) and implicitly applying the equivalences whenever

necessary.

Lemma 3.7.2. Let G := Uk be a bridged groupoid. Then we have

=∏
x,y:G

(x G y)
+' (x =G y). (3.120)
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Proof. (→) As the type family x
37→ y

37→ (x =G y) has the proper variance, we can
apply morphism induction and map x, x, idx to reflx.

(←) By path induction, we can map x, x, reflx to idx.
These functions are clearly inverses.

Bridgeless groupoids

In section 2.12, we defined a bridgeless groupoid as a typeG with a function i : G
=→ G

that weakens to identity: i+ = idG.

Lemma 3.7.3. Every bridgeless groupoid is a bridged groupoid:

=∏
G:Uk

isBridgelessGrpd(G)
+→ isBridgedGrpd(G). (3.121)

Proof. Let i : G
=→ G be the isovariant identity function. Then (strip ◦ i)+ is easily

shown to be an inverse of unstrip.

We argued earlier that for a bridgeless groupoid G,(
×∏
x:G

C(x)

)
+'

(
+∏
x:G

C(x)

)
+'

(
−∏
x:G

C(x)

)
+'

(
=∏
x:G

C(x)

)
. (3.122)

The following lemma characterizes the equivalences between isovariant functions on
one hand and co- or contravariant functions on the other hand:

Lemma 3.7.4. Let G := Uk be a bridgeless groupoid, and C := G
×→ Uk a type

family. Then the weakening to co- or contravariance of isovariant functions from G
into the type family C, is an equivalence: isEquiv(2±), where 2± is defined as

2± :≡ f
+7→ (x

±7→ f(x)) :

(
=∏
x:G

C(x)

)
+→

(
±∏
x:G

C(x)

)
. (3.123)

Proof. It is easy to show that f
+7→ f ◦ i is an inverse to either weakening.

Thus, we can denote all four function types as
∏4

x:GC(x), implicitly applying
equivalences where necessary.

If the codomain is a bridgeless groupoid, variance doesn’t matter either. We can
even show this for dependent functions:

Lemma 3.7.5. Let A := Uk be a type, G := A
×→ Uk a type family and p :∏=

a:A isBridgelessGrpd(G(a)) a proof that G is a family of bridgeless groupoids in
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a natural way. Then for any variance v, the weakening function

2v :

(
=∏
a:A

G(a)

)
+→

(
v∏
a:A

G(a)

)
(3.124)

is an equivalence.

Proof. Let ia be the isovariant identity for G(a). Note that it depends isovariantly
on a because p is isovariant. We define an inverse s for 2v, by setting s(f) :≡ a

=7→
ia(f(a)). Now s(f)(a) ≡ ia(f(a)) = idG(a)(f(a)) ≡ f(a). Since weakening doesn’t do
anything, this allows one to prove that s is an inverse for 2v.

Thus, we get(
4∏
a:A

G(a)

)
:
+'

(
×∏
a:A

G(a)

)
+'

(
+∏
a:A

G(a)

)
+'

(
−∏
a:A

G(a)

)
+'

(
=∏
a:A

G(a)

)
. (3.125)

3.8 The higher category structure of some basic types

The definitions of the identity and morphism types are rather mysterious. In this section,
we investigate what the meaning of equality and morphisms actually is. Often, we will
be able to prove that they mean what one would expect they mean. In a few cases,
we will only be able to prove that they imply what one would expect they mean; the
other implication will have to be assumed by axiom. The characterizations of the identity
type generally also hold in the symmetric case and can be obtained by removing variance
annotations.

3.8.1 The coproduct

This section is based on [Uni13, §2.12]. We define a type family P : A+B
×→ A+B

×→
Uk by induction on the coproduct as follows:

P (inl a, inl a′) :≡ a =A a
′,

P (inl a, inr b′) :≡ 0,

P (inr b, inl a′) :≡ 0,

P (inr b, inr b′) :≡ b =B b
′. (3.126)

Lemma 3.8.1. For any two types A,B := Uk and for all x, y := A+B, the type
of paths from x to y is equivalent to P (x, y) (as defined above):

=∏
x,y:A+B

(x = y)
+' P (x, y). (3.127)
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This basically means that elements of A+B are equal if and only if they come from
the same side and they were equal there.

Proof. (→) After path induction, we have to prove

=∏
x:A+B

C(x, x). (3.128)

After induction on x, we only need

=∏
a:A

P (inl a, inl a),
=∏
b:B

P (inr b, inr b). (3.129)

Since P (inl a, inl a) ≡ (a =A a) and P (inr b, inr b) ≡ (b =B b), we can prove this
by reflexivity. So we are mapping inl a, inl a, refl(inl a) to refl a and inr b, inr b, refl(inr b)
to refl b.

(←) We apply induction to x and y, leading to four cases. When x and y come from

different sides, we have to prove 0
+→ (x = y) which is automatically true by

induction on the empty type. In the other two cases, we can subsequently apply
path induction and use refl(inl a) and refl(inr b). So we are mapping a, a, refl a
to refl(inl a) and b, b, refl b to refl(inr b), which is clearly the inverse of the other
arrow.

We also define a type family M : A+B
×→ A+B

×→ Uk by

M(inl a, inl a′) :≡ a A a
′,

M(inl a, inr b′) :≡ 0,

M(inr b, inl a′) :≡ 0,

M(inr b, inr b′) :≡ b B b
′. (3.130)

Lemma 3.8.2. For any two types A,B := Uk and for all x, y := A+B, the type
of morphisms from x to y is equivalent to M(x, y) (as defined above):

=∏
x,y:A+B

(x y)
+'M(x, y). (3.131)

Proof. Analogous – the variances are always right for applying morphism induction.

3.8.2 The naturals

This section is based on [Uni13, §2.13] We define a type family P : N 4→ N 4→ Uk by
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induction on the naturals as follows:

P (zero, zero) :≡ 1,

P (zero, succn) :≡ 0,

P (succm, zero) :≡ 0,

P (succm, succn) :≡ P (m,n). (3.132)

Lemma 3.8.3. For all m,n :4 N, the type of paths from m to n is equivalent to
P (x, y) (as defined above):

=∏
m,n:N

(m = n)
+' P (m,n). (3.133)

This is a recursive way to say that natural numbers are only equal to themselves and
only in one way.

Proof. (→) By path induction, we need only prove

k :
=∏
n:N

P (n, n). (3.134)

We define k(zero) :≡ ? and k(succn) :≡ k(n). So we get a function f that
computes: fzero,zero(refl zero) ≡ ? and fsuccn,succn(refl(succn)) ≡ fn,n(refln).

(←) We construct an inverse g. By induction on m and n, we get four cases, two of
which are resolved by applying induction on 0. We set gzero,zero(?) :≡ refl zero
and gsuccm,succn(p) :≡ succ=(gm,n(p)).

We show that
∏4

m,n:N gm,n ◦ fm,n = idm=n. By function extensionality, that becomes∏4
m,n:N

∏+
p:m=n gm,n(fm,n(p)) = p. By path induction, we need η :

∏4
n:N gn,n(fn,n(refln))

= refln. For n ≡ zero, both sides compute to refl zero so we can take reflexivity.
For n ≡ succm, the left side computes to succ=(gm,m(fm,m(reflm)), but applying
ηm,m(reflm) under succ= shows that this is equal to succ=(reflm), which computes to
refl(succm), just like the right hand side.

Conversely, we show that
∏4

m,n:N fm,n ◦ gm,n = idP (m,n). Again, function exten-

sionality we need ζ :
∏4

m,n:N
∏+

p:P (m,n) fm,n(gm,n(p)) = p. By induction on m and n,
we get four cases of which two are trivial. If both m and n are zero, then we can
assume that p ≡ ? in which case the left hand side also computes to ?. If both are
successors, we can compute:

fsucc i,succ j(gsucc i,succ j(p)) ≡ fsucc i,succ j(succ=(gi,j(p))). (3.135)

Now, since fsucc i,succ i(succ=(refl i)) ≡ fsucc i,succ i(refl(succ i)) ≡ fi,i(refl i), it follows by
path induction that fsucc i,succ j(succ=(q)) = fi,j(q) for any path q. So we can proceed:

fsucc i,succ j(succ=(gi,j(p))) = fi,j(gi,j(p)), (3.136)
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which is equal to p by ζi,j(p).

Since the naturals form a bridgeless groupoid, a morphism between naturals is
the same as a path, by lemma 3.7.2.

3.8.3 The opposite

Lemma 3.8.4. For any type A := Uk, we have

=∏
a′,b′:Aop

(a′ =Aop b′)
+' (unflip a′ =A unflip b′). (3.137)

Proof. (→) By path induction, we need only prove
∏=

a′:Aop unflip a′ =A unflip a′. This
could be done by reflexivity, but to get a more comprehensible function, we
apply induction on a′ and have to prove

∏=
a:A a =A a as unflip(flip a) computes

to a. This is proven by reflexivity. So we are mapping flip a, flip a, refl(flip a) to
refl a.

(←) By induction on a′ and b′, we have to prove

=∏
a,b:A

(a =A b) = (flip a =Aop flip b). (3.138)

This is proven by flip=, which computes flip=
a,a(refl a) ≡ refl(flip a), so ultimately

we are mapping flip a, flip a, refl a to refl(flip a), which is clearly the inverse of the
other arrow.

Lemma 3.8.5. For any type A := Uk, we have (note the swapping of a′ and b′):

=∏
a′,b′:Aop

(a′  Aop b′)
+' (unflip b′  A unflip a′). (3.139)

Proof. (→) By morphism induction, we need to prove
∏=

a′:Aop unflip a′  A unflip a′.
Again, we choose to apply induction on a′ and have to prove

∏=
a:A a A a which

is proven by id a. So we are mapping flip a, flip a, id(flip a) to id a

(←) By induction on a′ and b′, we have to prove

=∏
a,b:A

(a A b) = (flip b Aop flip a). (3.140)

This is proven by flip , which computes flip a,a(id a) ≡ id(flip a), so ultimately
we are mapping flip a, flip a, id a to id(flip a), which is clearly the inverse of the
other arrow.
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3.8.4 The core

Lemma 3.8.6. For any type A := Uk, we have

=∏
a′,b′:Acore

(a′ =Aop b′)
+' (unstrip a′ =A unstrip b′). (3.141)

Proof. Replace flip and unflip with strip and unstrip in the proof of lemma 3.8.4.

Since a type’s core is a bridged groupoid, the morphism types are equivalent to the
equality types.

3.8.5 The localization

Theorem 3.8.7. For any type A := Uk, we have the following property:

=∏
a,b:A

(gather a =Aloc gather b)
+'

 =∏
X:Uk

=∏
f :A

=→X

f(a) =X f(b)

 , (3.142)

i.e. a proof that gather a = gather b is the same as a proof that a and b are
mapped to equal values by any isovariant function whose codomain is also in Uk.

Proof. The idea of the proof is that since (Aloc, gather) is the initial object of the
category of all tuples of a type X with an isovariant function f : A

=→ X, to say that
gather a = gather b is the same as to say that f(a) = f(b) for all such tuples (X, f)
in a natural way.

Pick a, b := A.

(→) Take X := Uk and f := A
=→ X. Then r(f) :≡ rec=

Aloc(X, f) is a covariant

function Aloc +→ X that computes: r(f)(gather a) ≡ f(a). Note that r(f) is
isovariant in A and X and covariant in f . Now we map p : gather a = gather b
to r(f)=(p) : f(a) = f(b), which is isovariant in f as 2= is isovariant.

(←) Take a proof η of the right hand side. Then η(Aloc, gather) proves gather a =
gather b.

Pick a, b := A. Call the function to the right R and the one to the left L. We have
R(p)(X, f) ≡ r(f)=(p) and L(η) ≡ η(Aloc, gather).

• We show that L ◦R = id.

(L ◦R)(p) ≡ L(Xf
=7→ r

=7→ (f)=(p)) ≡ r(gather )=(p). (3.143)
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We now show that
=∏

a′,b′:Aloc

+∏
p:a′=b′

r(gather )=(p) = p. (3.144)

By path induction, we need only prove
∏=

a′ r(gather )=(refl a′) = refl a′. But the
left hand side computes:

r(gather )=(refl a′) ≡ refl(r(gather )(a′)). (3.145)

By induction on a′, we may assume that a′ ≡ gather c, and then we have
r(gather )(a′) ≡ r(gather )(gather c) ≡ gather c ≡ a′. So we conclude that
refl(r(gather )(a′)) = refl a′, which proves (3.144). Then that equation applies
in particular to a′ :≡ gather a and b′ :≡ gather b. Then (L ◦ R)(p) = id(p), and
by function extensionality, L ◦R = id.

• We also show that R◦L = id. By function extensionality, we should prove that
(R ◦ L)(η)(X, f) = η(X, f) for all X := Uk and f := A

=→ X. We have

(R◦L)(η)(X, f) ≡ R(η(Aloc, gather))(X, f) ≡ r(f)=(η(Aloc, gather)) : f(a) =X f(b).

Now, r(f) is a covariant function Aloc +→ X, so by the directed univalence
axiom (see section 3.8.9) we get a morphism dua(r(f)) : Aloc  Uk X. Then
η maps dua(r(f)) to a proof that η(Aloc) is η(X) along dua(r(f)) in the type

family Z
×7→
(∏=

f :A
=→X f(a) =Z f(b)

)
. One can prove that this means that for

any function h : A
=→ Aloc:

r(f)=(η(Aloc, h)) = η(X, r(f) ◦ h). (3.146)

Applying this to gather, and using that r(f)◦gather = f from the computation
rule of r(f), we obtain

r(f)=(η(Aloc, gather)) = η(X, f), (3.147)

as we needed to prove.

Since a type’s localization is a bridgeless groupoid, the morphism types in the local-
ization are equivalent to the equality types.

The above characterization may create the impression that we should define a _A

b :≡ gather a =Aloc gather b. Although this definition satisfies properties 1-3 and 5-7
from section 3.5, it violates the requirement that a bridge between types should be

the same as a relation. Indeed, for any type A : Uk, we have a function f : A
+→ 1.

Then the directed univalence axiom gives a morphism dua(f) : A  1. But since
X

=7→ (gatherX = gatherB) is isovariant, we can conclude

(gatherA = gatherB)
+' (gather 1 = gatherB). (3.148)
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However, we clearly do not have for all A,B : Uk:

Rel(A,B)
+' Rel(1, B). (3.149)

3.8.6 The product

This section is based on [Uni13, §2.6].

Lemma 3.8.8. For any types A,B := Uk, we have

=∏
c,c′:A×B

(c =A×B c
′)

+' (prl c =A prl c′)× (prr c =B prrc′). (3.150)

Proof.

(→) We can map r : c = c′ to (prl=(c), prr=(c)). The computation rule is that we map
c, c, refl c to (refl(prl c), refl(prr c)).

(←) After currying, we have to prove

=∏
a,a′:A

=∏
b,b′:B

(a =A a)
+→ (b =B b)

+→ ((a, b) = (a′, b′)). (3.151)

Double path induction leaves only
∏=

a:A

∏=
b:B(a, b) = (a, b), which is proven by re-

flexivity. The computation rule is that we map (a, b), (a, b), (refl a, refl b) to refl (a, b).
This is clearly the inverse of the other arrow.

Lemma 3.8.9. For any types A,B := Uk, we have

=∏
c,c′:A×B

(c A×B c
′)

+' (prl c A prl c′)× (prr c B prrc′). (3.152)

Proof. Analogous.

3.8.7 Dependent pair types

This section is based on [Uni13, §2.7]. We consider only covariant and isovariant depen-
dent pair types, as the others can be reduced to covariant ones using the opposite and
the core.

Covariant dependent pair types
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Lemma 3.8.10. For any type A := Uk and any type family B := A
×→ Uk, we

have
=∏

c,c′:
∑

x:AB(x)

(c = c′)
+'

(
+∑

p:prl c=Aprl c′

prr c =B prr c′

p

)
. (3.153)

Proof. (→) We can map c, c, refl c to
(

refl(prl c) +, refl(prr c)
refl(prl c)

)
.

(←) We can map (a +, b) , (a +, b) ,
(
refl a +, refl b

refl a

)
to refl (a +, b). This is clearly the in-

verse of the other arrow.

Lemma 3.8.11. For any type A := Uk and any type family B := A
×→ Uk, we

have
=∏

c,c′:
∑

x:AB(x)

(c c′)
+'

(
+∑

ϕ:prl c Aprl c′

prr c B prr c′

ϕ

)
. (3.154)

Proof. (→) We can map c, c, id c to
(

id(prl c) +, id(prr c)
id(prl c)

)
.

(←) We can map (a +, b) , (a +, b) ,
(
id a +, id b

id a

)
to id (a +, b). This is clearly the inverse

of the other arrow.

Isovariant dependent pair types are injective limits

The fact that (
∑=

a:A 1)
+' Aloc, indicates that it will be less easy to characterize

equalities and morphisms in
∑=

a:AB(a). We can aim for a universal property as we
had for the equation in Aloc:

=∏
a,a′:A

=∏
b,b′:B(a)

((a =, b) = (a′ =, b′))
+'

(
=∏

X:Uk

=∏
t:A

B(t)
+→ X

)
. (3.155)

The proof of the characterization of equality for Aloc, was based on the idea that
(Aloc, gather) is an initial object of all pairs consisting of a type X and an isovariant
function A

=→ X. In fact, the pair (
∑=

a:AB(a), (2 =, 2)) is an initial object of all pairs

consisting of a type X and a function f :
∏=

t:AB(t)
+→ X. Now, we can also regard

f as a family of functions ft : B(t)
+→ A indexed over A. If the type family B is

covariant, the fact that this family is isovariant in t means that for every morphism
ϕ : a A a

′, the following diagram commutes:

X

B(a)

fa

<<

ϕ∗
// B(a′).

fa′
bb (3.156)
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Now if
∑=

a:AB(a) with the family of functions (t =, 2) : B(t)
+→
∑=

a:AB(a) is the initial
object of such constructions, that just means it is the injective limit:

∑=
a:AB(a) =

lim−→a:A
B(a), with (a =, 2) the natural injections.

The universal property of the injective limit L = lim−→a:A
B(a) states that for

any type X, functions f : L
+→ X are in bijection with families of functions f ′ :∏=

a:AB(a)
+→ X; where the family is obtained from f by composing with the nat-

ural injections qa : B(a)
+→ L. It automatically follows that this correspondence is

natural in X, in the sense that for any function g : X
+→ Y , the family of functions

corresponding to g ◦ f is the family of functions corresponding to f , composed with
g. In directed HoTT, this translates to

∏=
X:Uk isEquiv(κ(X)), where

κ :≡ X
=7→ f

=7→
(
a

=7→ b
+7→ (f ◦ qa)(b)

)
:

=∏
X:Uk

(
L

+→ X
)

+→

(
=∏
a:A

B(a)
+→ X

)
.

(3.157)
We know that κ(X) is isovariant in X; the fact that the proof of isEquiv(κ(X))
is isovariant in X means that the left and right inverses are also isovariant in X
(and imposes well-behavedness restrictions on the proofs that they are left and right
inverses).

We have the following lemma, which, for covariant B, is to the statement that∑=
a:AB(a) = lim−→a:A

B(a).

Lemma 3.8.12. For any type A := Uk and any type family B := A
×→ Uk, we have∏=

X:Uk isEquiv(κ(X)) where

κ :≡X =7→ f
+7→
(
a

=7→ b
+7→ f((a =, b))

)
:

=∏
X:Uk

((
=∑
a:A

B(a)

)
+→ X

)
+→

(
=∏
a:A

B(a)
+→ X

)
. (3.158)

Proof. This is a special case of currying, see Remark 2.13.6 on page 55.
We can expect to be able to prove the following:

Conjecture 3.8.13. For any type A := Uk and any type family B := A
×→ Uk, we

have the following property:

=∏
a,a′:A

=∏
b:B(a)

=∏
b′:B(a′)

((a =, b) = (a′ =, b′))
+'

 =∏
X:Uk

=∏
f :
∏=

t:AB(t)
+→X

f(a, b) = f(a′, b′)

 ,

and the same holds when we replace = with  .
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However, the fact that
∑=

a:AB(a) is likely more interesting than a characterization
of its identity and morphism types.

3.8.8 Dependent function types

The parts of this section that treat function extensionality are based on [Uni13, §2.9].

Function extensionality in symmetric HoTT

Lemma 3.6.2 in section 3.6 stated that equal functions are homotopic:2

happly :
∏

f,g:
∏

a:A C(a)

(f = g)→ (f ∼ g). (3.159)

We would like this to be an equivalence, so that we could characterize paths in the Π-type
as homotopies. Unfortunately, classical MLTT is insufficient to prove this. Therefore, we
assume

Axiom 3.8.14 (Function extensionality). The function happly is an equivalence:
funExt : isEquiv(happly). Hence, for all f, g :

∏
a:AC(a), we have (f = g) ' (f ∼ g).

An axiom in type theory is a bit different from an axiom in first order logic. In first order
logic, stating an axiom simply means that you assume that proposition to be true. In
type theory, we say that a proposition is true by giving an element of it. So here, we are
assuming that isEquiv(happly) contains an element funExt, and this element is completely
unknown in the sense that we have no computation rules for it.

The inverse happly−1 : (f ∼ g) → (f = g) will also be denoted funExt. We do know
something about this funExt, namely that funExt ◦ happly = id and happly ◦ funExt = id.

In homotopy type theory, the function extensionality axiom can actually be proven
from the univalence axiom (see [Uni13, §4.9]) or from the existence of an interval type
(a type containing two distinct points and a path between them; essentially the type
theoretic equivalent of the topological space [0, 1]).

Function extensionality in directed HoTT

Lemma 3.6.6 in section 3.6 stated that equal functions are homotopic and a morphism
between functions implies a natural transformation:

happly :
=∏

f,g:
∏

a:A C(a)

(f = g)
+→ (f ∼ g), (3.160)

napply :
=∏

f,g:
∏

a:A C(a)

(f  g)
+→ (f � g). (3.161)

We assume:

2The name happly comes from [Uni13]. I think the ‘h’ stands for ‘homotopy’.
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Axiom 3.8.15 (Directed function extensionality). The function napply is an
equivalence: dirFunExt : isEquiv(napply). Hence, for all f, g :=

∏+
a:AC(a), we

have (f  g) ' (f � g).

The directed function extensionality axiom can be proven from the existence of a
directed interval type, consisting of two points and a morphism between them. It
can possibly be proven from the directed univalence axiom.

We also assume:

Axiom 3.8.16 (Function extensionality). The function happly is an equivalence:
funExt : isEquiv(happly). Hence, for all f, g :=

∏+
a:AC(a), we have (f = g) ' (f ∼

g).

It can still be proven from the existence of an interval type, and presumably also
from combining the directed and categorical univalence axioms. A co-inductive proof
using only directed function extensionality and the categorical univalence axiom is
possible, but co-induction is not obviously valid here.

Isovariant dependent function types are projective limits

Let A : Uk be a type and B : A
+→ Uk a covariant type family. Then a function

f :
∏

a:AB(a) ‘is’ an element f(a) of every B(a) such that a morphism ϕ : a  A a
′

implies that ϕ∗(f(a)) = f(a′). That sounds a lot like a projective limit.
The universal property of the projective limit L = lim←−a:A

B(a) with natural pro-

jections pa : L
+→ B(a), is that for any type X : Uk, the functions f : X

+→ L are in

bijection with families of functions f ′ :
∏=

a:AX
+→ B(a), where f ′ is obtained from f

by composing with the projections. These families f ′ should be isovariant in a so as
to assure that for every morphism ϕ : a A a

′, the following diagram commutes:

X
fa

||

fa′

""
B(a) ϕ∗

// B(a′).

(3.162)

In directed HoTT, this universal property can be formulated as
∏=

X:Uk isEquiv(κ(X))
where

κ(X) :≡ f
+7→
(
a

=7→ x
+7→ pa(f(x))

)
: (X

+→ L)
+→

(
=∏
a:A

X
+→ B(a)

)
. (3.163)

For covariant B, the following lemma states that
∏=

a:AB(a) with projections w
+7→

w(a), is the projective limit lim←−a:A
B(a):

Lemma 3.8.17. For any type A := Uk and any type family B := A
×→ Uk, we have
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∏=
X:Uk isEquiv(κ(X)) where

κ :≡X =7→ f
+7→
(
a

=7→ x
+7→ f(x)(a)

)
:

=∏
X:Uk

(
X

+→

(
=∏
a:A

B(a)

))
+→

(
=∏
a:A

X
+→ B(a)

)
. (3.164)

Proof. Note that κ(X) simply swaps arguments. This is clearly an equivalence.

3.8.9 Universe types and univalence

In this section, we add the critical element that turns MLTT into HoTT: the univalence
axiom ua, which characterizes equality in the universe by stating that a path between
types is the same as an equivalence. In directed HoTT, the univalence axiom generalizes
in two ways: the directed univalence axiom dua, which characterizes morphisms between
types as covariant functions, and the categorical univalence axiom cua, which characterizes
paths in any type as isomorphisms. The original axiom ua will then be provable from cua
and dua. We start by demonstrating (and absolutely not proving), in the symmetric case,
that we have the liberty to add such a bold axiom.

There is room for an axiom

We called 0 the empty type because it has no constructors. We called
∑

a:AB(a) a
dependent pair type because its only constructor takes two arguments. We claimed that
the terms of Fin(n) are 0n, 1n, . . . , (n− 1)n. Every time, we are silently assuming that the
type contains no other terms than those created by its constructors. If we make the same
assumption about identity types, then we find that a =A b only contains refl a when a ≡ b
and is empty otherwise; in other words that a = b implies a ≡ b. If we look back at most
results in this chapter from that perspective, then we see that all of them are trivial. This
section demonstrates that the situation is different for identity types than for others. As
an example of the situation in other types, we prove the following lemma:

Lemma 3.8.18. Every term of A + B is equal either to inl(a) for some a : A or to
inr(b) for some b : B.

Proof. We have to construct a function

f :
∏

x:A+B

(∑
a:A

x = inl(a)

)
+

(∑
b:B

x = inr(b)

)
. (3.165)

By induction on x, we can map inl a to (a, refl(inl a)) and inr b to (b, refl(inr b)).

Note that this does not mean that every x : A + B is of the form inl a or inr b, but just
that there is always a path to an element of that form, which is sufficient to determine
the behaviour of x up to equality.

When introducing inductive type families, we noted that the disjoint union of an
entire type family is isomorphic to an inductive type. In fact, we can prove the follow-
ing:
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Lemma 3.8.19. Every term of
∑

a,b:A(a =A b) is equal to a term of the form
(c, c, refl c) for some c : A.

Proof. We have to construct a function of the type

f0 :
∏

x:
∑

a,b:A(a=Ab)

∑
c:A

x = (c, c, refl c). (3.166)

By repeated induction, we can map (a, a, refl a) to (a, refl(a, a, refl a)).

So take any (a, b, p) :
∑

a,b:A a =A b. Then there exists a c so that q : (a, b, p) = (c, c, refl c).
Projecting that path, we find pr=

1 (q) : a = c and pr=
2 (q) : b = c. The third projection of q

shows that p : a =A b equals refl c : c =A c, but these live in different types, so we have to
transport them. Then we conclude that the following diagram commutes:

a
p

pr=1 (q)

b

pr=1 (q)

c.

(3.167)

Again, we do not find that any path is reflexivity, but just that any path can be contracted
to refl c for some point c : A. That is sufficient to define the path’s behaviour up to
propositional equality. Moreover, this property is perfectly compatible with the groupoid
or topological interpretation of types in symmetric HoTT. But it is also compatible with
a discrete identity type that coincides with judgemental equality. This indicates that we
need an axiom somewhere if we want to characterize equality completely. In fact, classical
MLTT has a principle called uniqueness of identity proofs:∏

x,y:A

∏
p,q:x=y

p =x=y q. (3.168)

HoTT instead has the univalence axiom, which exploits the groupoid structure of the
identity type by making it coincide with the natural groupoid structure of the universe.

Univalence in symmetric HoTT

This section is based on [Uni13, §2.10]. Remember that a path p : A =Uk B implied an
equivalence transport(p) : A ' B. Voevodsky’s univalence axiom states that this is an
equivalence:

Axiom 3.8.20 (Univalence). The function transport is itself an equivalence:

ua : isEquiv(transport). (3.169)

The left and right inverses (A ' B)→ (A = B) of transport (which are equal), as well
as the equivalence (A ' B) ' (A = B), are also denoted ua.
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Lemma 3.8.21. 1. For every equivalence e : A ' B, we have transport(ua(e)) = e.

2. For every path p : A = B, we have ua(transport(p)) = p.

3. The function ua behaves well with respect to the equivalence relation structure:

(a) ua(idA) = reflA,

(b) ua(e ◦ f) = ua(e) ◦ ua(f),

(c) ua(e−1) = ua(e)−1.

Proof. 1. Since ua is the right inverse of transport.

2. Since ua is the left inverse of transport.

3. Prove the corresponding theorems for transport by induction; then apply ua= to the
proofs and cancel out ua ◦ transport.

Directed univalence

Recall that the transport function from symmetric HoTT had two generalizations:

the directed transport function dirTransport : (A  Uk B)
+→ (A

+→ B) and the

categorical transport function catTransport : (a =A b)
+→ (a ∼=A b). The former

was based on the idea that morphisms are non-invertible paths and functions are
non-invertible equivalences, the latter is based on the idea that morphisms bring the
category structure of the universe in symmetric HoTT to arbitrary types in directed
HoTT.

We will turn each of these into an equivalence by axiom; then we can prove

that the ordinary transport function transport : (A =Uk B)
+→ (A

+' B) is also an
equivalence. We begin with dirTransport:

Axiom 3.8.22 (Directed univalence). The function dirTransportA,B : (A  Uk
B)

+→ (A
+→ B) is itself an equivalence:

dua :
=∏

A,B:Uk

isEquiv(dirTransportA,B). (3.170)

Lemma 3.8.23. 1. For every function f : A
+→ B, we have dirTransport(dua(f)) =

f .

2. For every path ϕ : A = B, we have dua(dirTransport(ϕ)) = ϕ.

3. The function dua behaves well with respect to the category structure:

(a) dua(idA) = idA,

(b) dua(f ◦ g) = dua(f) ◦ dua(g).
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Proof. 1. Since dua is the right inverse of dirTransport.

2. Since dua is the left inverse of dirTransport.

3. Prove the corresponding theorems for dirTransport by induction; then apply
dua= to the proofs and cancel out dua ◦ dirTransport.

3.9 Categorical univalence

3.9.1 Category theory in HoTT

A formulation of category theory within HoTT is given in [Uni13, ch.9]. In this section,
we formulate the definition of a category given there, after the necessary preparation.
Most of this section is based on [Uni13, §9.1].

Definition 3.9.1. A type P is a mere proposition if any two terms of P are equal
[Uni13, §3.3]:

isProp(P ) :≡
∏
x,y:P

x = y. (3.171)

A type S is a set if equality of terms of S is a mere proposition [Uni13, §3.1]:

isSet(S) :≡
∏
x,y:S

∏
p,q:x=y

p = q. (3.172)

We can now define a precategory:

Definition 3.9.2. A precategory C is a dependent tuple consisting of:

1. A type A0 of objects, also denoted A,

2. For all a, b : A, a set a A b of morphisms,

3. For each a : A, an identity morphism id a : a a.

4. For all a, b, c : A a composition function ◦ : (b c)→ (a b)→ (a c),

5. A proof that the identity morphisms are left and right unit for composition,

6. A proof that composition of morphisms is associative.

There are no higher coherence laws, as this is a 1-dimensional category whose mor-
phism types are sets.

This already sounds like a good notion of a category. Note that it is somewhat different
from a category in classical category theory: a precategory A has a category structure
by definition, but on top of that, A0 carries a higher groupoid structure induced by the
identity type family, just as any type does. If this higher groupoid structure has no
meaning related to our category structure, we would like to get rid of it. One way to do
this is to require that the objects type, too, is a set. Then we arrive at the notion of a
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strict category [Uni13, §9.6]. This is somewhat analogous to introducing uniqueness of
identity proofs (see section 3.8.9) to get rid of the non-trivial higher groupoid structure
in any type. However, the univalence axiom also has its analog: we may require identity
to coincide with isomorphism. The definition of isomorphism given in [Uni13, §9.1] is the
following:

Definition 3.9.3. A morphism f : a b is an isomorphism if there is a morphism
g : b a such that g ◦ f = id a and f ◦ g = id b. We write a ∼= b for the type of such
isomorphisms. (Verbatim from [Uni13, §9.1])

We can spell this out as:

(a ∼= b) :≡
∑
f :a b

∑
g:b a

(g ◦ f = 1a)× (f ◦ g = 1b) . (3.173)

Remember that there were problems with the similarly defined notion of quasi-inverse (see
section 3.3). It was possible that, for a single function f : A → B, there were multiple
distinct proofs that f was invertible in that sense. The reason that the same problem
does not occur here, is that we required the morphism types to be sets. In directed
HoTT, where the morphism types also have their category structure, we had to take the
left-and-right-inverse approach.

Analogous to the situation in the universe, we have a “transport morphism” a  b
along any path p : a = b, and this transport morphism is an isomorphism. We prove right
away that a = b implies isomorphism:

Lemma 3.9.4. In a precategory A, identity of objects implies isomorphism: for all
a, b : A, we have a function

catTransporta,b : (a =A b)→ (a ∼=A b).

Proof. We have to find a function ∏
a,b:A

∏
p:a=b

a ∼= b. (3.174)

By induction, we can map a, a, refl a to the isomorphism built from id a.

Definition 3.9.5. A category is a precategory A such that for all a, b : A, the
function catTransporta,b is an equivalence.

That is: in a category, identity and isomorphism coincide. Or: a category is a univalent
precategory.

3.9.2 Categorical univalence
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At this point, all types in directed HoTT have the structure of a higher precategory:
they bear a groupoid structure induced by the identity types, and a category struc-
ture induced by the morphism types. The catTransport function shows that a path
always implies an isomorphism, but there is some degree of arbitrariness as to which
isomorphisms are paths. Indeed, both judgemental equality a ≡ b and isomorphisms
a ∼=A b induce an ∞-groupoid structure and hence a consistent equality type.

In the universe, the directed univalence axiom enforces that the category structure
induced by the morphism type corresponds to the one induced by covariant functions.
The categorical univalence axiom turns all types from higher precategories into higher
categories:

Axiom 3.9.6 (Categorical univalence). The function catTransportA,a,b : (a =A

b)
+→ (a ∼=A b) is itself an equivalence:

cua :
=∏

A:Uk

=∏
a,b:A

isEquiv(catTransportA,B). (3.175)

Lemma 3.9.7. Let A := Uk be a type.

1. For every isomorphism η : a ∼=A b, we have catTransport(cua(η)) = η.

2. For every path p : a =A b, we have cua(catTransport(p)) = p.

3. The function dua behaves well with respect to the category structure:

(a) cua(id a) = refl a,

(b) cua(ζ ◦ η) = cua(ζ) ◦ cua(η),

(c) cua(η−1) = cua(η)−1.

Proof. 1. Since cua is the right inverse of catTransport.

2. Since cua is the left inverse of catTransport.

3. Prove the corresponding theorems for catTransport by induction; then apply
cua= to the proofs and cancel out cua ◦ catTransport.

In the proof of Lemma 3.4.13 we have used the injectivity of the function toMorph:

Lemma 3.9.8. For any type A := Uk, the function toMorph :
∏=

a,b:A(a =A b)
+→

(a A b) is injective:

=∏
A:=Uk

=∏
a,b:A

=∏
p,q:a=Ab

(p = q)
+' (toMorph(p) = toMorph(q)). (3.176)

Proof. As toMorph(refl a) ≡ id a and catTransport(refl a) is the identity isomorphism,
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we see that toMorph(ϕ) is just the underlying morphism of catTransport(ϕ).

(→) This is proven by toMorph=.

(←) Take s : toMorph(p) = toMorph(q). We know that catTransport(p) is an iso-
morphism with underlying morphism toMorph(p). This means we have a proof
x : isEquiv(toMorph(p)). Similarly, we have a proof y : isEquiv(toMorph(q)).
Now s∗(x) is in the type isEquiv(toMorph(q)) and since that is a mere proposi-
tion (theorem 3.3.4), we conclude that s∗(x) = y and therefore

catTransport(p) = (toMorph(p), x) =a∼=b (toMorph(q), y) = catTransport(q).
(3.177)

Applying cua= yields p = q.

We show that applying first the arrow to the left and then the one to the right, yields
identity. Since toMorph = prl ◦ catTransport, we get toMorph ◦ cua = prl and thus
toMorph= ◦ cua= = prl=. Now prl= applied to our proof that (toMorph(p), x) =a∼=b
(toMorph(q), y), yields the original path s.

We show the converse by induction. The path refl p is mapped to refl toMorph(p).
Then in the construction of the arrow ‘←’, we can assume that p ≡ q, x ≡ y and
s ≡ refl toMorph(p). Now the proof we gave for s∗(x) = y was obtained from the fact
that isEquiv(q) is a mere proposition, so it doesn’t necessarily compute to reflexivity.
However, one can show that the type c =P d in a mere proposition P , is also a mere
proposition. Then the proof of s∗(x) = y is equal to reflexivity, so that we end up at
refl p, where we started.

3.9.3 Univalence in directed HoTT

In this section, we prove the original univalence axiom from categorical and directed
univalence. We begin with the following lemma:

Lemma 3.9.9. For any types A,B := Uk, there is an equivalence (A ∼=Uk B)
+'

(A
+' B), which corresponds to dirTransport and dua for the underlying functions.

Proof. (→) We build an equivalence of types from the isomorphism (ϕ, (µ, p), (ρ, q))
by applying dirTransport to ϕ, µ and ρ and dirTransport= to p : µ◦ϕ = idA and
q : ϕ ◦ ρ = id b.

(←) Similarly, we map (f, (`, p), (r, q)) to (dua(f), (dua(`), dua=(p)), (dua(r), dua=(q))).
One can easily show that 2= preserves composition and identity, so that these

functions are obviously each others inverse.

We will call the equivalence from this lemma dirTransport as well, and its inverse dua.
We get:
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Lemma 3.9.10. For any types A,B := Uk, the following diagram commutes:

A = B

transport

��

catTransport

&&
A ∼=Uk B

dirTransportyy

A
+' B.

(3.178)

Proof. By function extensionality, we have to show

=∏
A,B:Uk

=∏
p:A=B

transport(p) = (dirTransport ◦ catTransport)(p). (3.179)

By path induction, this becomes

=∏
A:Uk

transport(reflA) = (dirTransport ◦ catTransport)(reflA). (3.180)

Now the left hand side computes to (idA, (idA, refl idA), (idA, refl idA)), and the right
hand side to

dirTransport(id a, (id a, refl(id a)), (id a, refl(id a))) (3.181)

≡ (idA, (idA, refl idA), (idA, refl idA)).

These lemmas prove:

Theorem 3.9.11 (Univalence). For any types A,B := Uk, the function transport
is an equivalence, with inverse cua ◦ dua.
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Chapter 4

Exploring semantics and consistency

The Curry-Howard correspondence encodes ‘false’ as 0. Since every proposition is encoded
as the type of its proofs, we would like 0 to be really empty. In other words, the judgement
` x :+ 0 should not be derivable. This is the criterion for directed HoTT to be consistent.

The ambition of this chapter is not to give a proof of consistency, but rather to explore
how it could be done. So far, we have been reasoning within directed HoTT – at this
point, we want to reason about the theory, so we need to step outside it and pick another
formal reasoning system in which we can try to prove the consistency of directed HoTT.
Zermelo-Fraenkel set theory with the axiom of choice (ZFC, [Kun13]) is generally the most
trusted one, but the gap between type theory and ZFC is fairly big, so that a consistency
proof in ZFC would become highly technical and provide little insight in the meaning of
judgements in directed HoTT.

The approach I suggest to take is to interpret the language of directed HoTT in
a version of Martin-Löf type theory without any axioms about propositional equality.
Basically, that means the theory defined by the inference rules for the non-directed case
in chapter 2. The translation itself will be defined using elementary reasoning principles
that are assumed to exist outside of both directed HoTT and MLTT; these will be called
the metatheory. There, we see both theories as a set of formal semantic trees, spanned
by the inference rules.

The plan is to define in the metatheory a function J2K that maps judgements (true
or not) from directed HoTT to judgements of MLTT. If for any inference rule in directed
HoTT (left), we can derive the rule on the right in MLTT,

P1 . . . Pn
J

JP1K J. . .K JPnK
JJ K

(4.1)

then inconsistency of directed HoTT implies that J` x :+ 0K holds in MLTT. If moreover
we can derive in MLTT

J` x :+ 0K
` x : 0

(4.2)

then we can conclude that directed HoTT is consistent if MLTT is.
The first step will be to identify judgements in directed HoTT that clearly mean the

same, in order to be able to write every judgement uniquely in the form ` x :+ A for some
terms x and A. Secondly, we will define an interpretation function for terms, also denoted
J2K, that takes terms from directed HoTT to terms of MLTT. In MLTT we will construct
a type Typek of type labels for the kth universe, with a function El : Typek → Uk.

139
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Remarkably, these labels will distinguish to some extent between different types from
directed HoTT whose elements interpret in the same type in MLTT, but not always. We
will set JUkK :≡ Typek.

Untrue judgements in directed HoTT might contain completely nonsensical terms, so
we will assume that MLTT has a symbol  that only occurs in false judgements, and
we will interpret nonsensical terms to  . By passing the desired type a : Typek to the
interpretation function, we can assert that the interpretation of terms is either type-safe
or contains the symbol  : for any a : Typek, the interpretation JxKa will either be an
element of El a or  .

The interpretation we give here, relies heavily on co-inductive reasoning within MLTT.
A more meticulous analysis is needed to establish whether our reasoning is actually valid.

4.1 Basic preparations

Grasping the universes

Suppose, metatheoretically, that directed HoTT is inconsistent. Then we can construct a
proof of ` x : 0. This proof consists of finitely many steps, so it can mention only finitely
many universes. Then in order to prove that directed HoTT with an infinite tower of
universes is consistent, it suffices to prove that directed HoTT with an arbitrarily large
but finite tower of universes is consistent. We will do the latter and construct, for any
natural number m in the metatheory, an interpretation of directed HoTT with m universes
in MLTT. This is practical, because it allows us to assume that whatever appears to the
right of the colon in a judgement of directed HoTT, is an element of Um (which is the
(m+ 1)th universe).

Judgments, terms and variance

Before we start interpreting judgements, let us reduce the collection of judgements by
identifying some of them:

(Γ ` Ctx) ≡
(
Γ ` ? :+ 1

)
,

(Γ ` x := A) ≡
(
Γ ` gather x :+ Aloc

)
,

(Γ ` x ≡ y := A) ≡
(
Γ ` gather x ≡ gather y :+ Aloc

)
,(

Γ ` x :− A
)
≡
(
Γ ` flipx :+ Aop

)
,(

Γ ` x ≡ y :− A
)
≡
(
Γ ` flipx ≡ flip y :+ Aop

)
,(

Γ ` x :× A
)
≡
(
Γ ` stripx :+ Acore

)
,(

Γ ` x ≡ y :× A
)
≡
(
Γ ` stripx ≡ strip y :+ Acore

)
,(

Γ, x :v A ` b[x] :+ B[x]
)
≡

(
Γ ` x v7→ b[x] :+

v∏
x:A

B[x]

)
,

(
Γ, x :v A ` b[x] ≡ c[x] :+ B[x]

)
≡

(
Γ `

(
x

v7→ b[x]
)
≡
(
x

v7→ c[x]
)

:+
v∏
x:A

B[x]

)
. (4.3)

Now every judgement is of the form ` x :+ A or ` x ≡ y :+ A.
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Pre-paths

In 1-dimensional category theory, the localization Aloc of a category A has the same ob-
jects as A, and its morphisms are the zigzags of A, divided out by an equivalence relation.
Indeed, the category with objects from A and morphisms all zigzags (undivided), clearly
has a functor to Aloc that is constant on objects. Conversely, the category with objects
from A and as Hom(a, b) the set of zigzags from a to b divided out by the equivalence re-
lation ‘true’ clearly has a functor from Aloc that is constant on objects, as it is a groupoid
and it has such a functor from A. So Aloc is somewhere in between.

Not only is this equivalence relation non-trivial, the concept of an equivalence relation
itself is non-trivial in HoTT. Instead of constructing Aloc from zigzags, we will construct
it using the following type family:

Inductive type family 4.1.1. For any type A : Uk, we define the type family
2 mA 2 : A

=→ A
=→ Uk, which is covariant in A, with the following constructors:

• prerefl :
∏=

a:A a mA a,

• a mA b is isovariant in a,

• a mA b is isovariant in b.

Lemma 4.1.2. For any type A := Uk, we have:

=∏
a,b:A

(a mA b)
+' (gather a =Aloc gather b). (4.4)

Proof. (→) The right hand side is isovariant in a and b, so we can apply prepath induction
and map a, a, refl a to refl(gather a).

(←) Using the recursion principle for Aloc, we define a type family C : Aloc +→ Aloc +→ Uk,
so that C(gather a, gather b) ≡ (a mA b). Then it suffices to prove

+∏
a′,b′:Aloc

(a′ =Aloc b′)
+→ C(a′, b′). (4.5)

By path induction, we just need
∏=

a′:Aloc : C(a′, a′), and induction on a′ leaves∏=
a:AC(gather a, gather a), but here, we can just take prerefl a. So we are mapping

a, a, refl(gather a) to prerefl a, which is clearly the inverse of the other arrow.

Lemma 4.1.3. The localization of the universe is a mere proposition.

Proof. Take types A,B := Uk. The induction principle for 0 gives us functions A ←
0 → B, so that gather A = gather B. Then the induction principle for Aloc allows us to
conclude

∏=
A′,B′:Uk loc A′ = B′.
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Since one can prove that every mere proposition is also a set (a type in which equality is
a mere proposition), we conclude that for any A,B := Uk, the type A m B is equivalent
to 1. We will use this when interpreting pre-paths.

By lack of a good understanding of the notion ‘along a pre-path’, a good interpretation
of pre-path preservation is problematic and at the same time, pre-paths are necessary to

interpret Aloc and
∑=

a:AC(a) (note that Aloc +'
∑=

a:A 1). This means that we will be
demonstrating consistency of the theory without those types. We will interpret pre-paths
as far as we can, clearly exposing where the problem occurs.

Quotes

We will occasionally need to port back terms from MLTT to directed HoTT. When x is
a term in MLTT, we will denote by 〈x〉 a term in directed HoTT that evaluates to x if
the proper type is given, and to  otherwise.

Labelling types

It is about time we define Typek. The sum and product label constructors will already have
to refer to El, which is a bit problematic since we would like to define El by recursion on
Typek. The trick is to define them simultaneously in an inductive-recursive definition:
we give an inductive definition of Typek that refers to El and as we go, define El recursively.
Of course there are restrictions as to what is legal, which are treated in [Dyb00]. A
standard application of inductive-recursive definitions is to define a type of labels of
the universe (as opposed to a formal universe from a different theory, as we are doing
here), which is useful, because it provides an induction principle over the universe. An
inductive-recursive definition of Typek together with El is not fundamentally different from
that standard application, so it is most likely sound.

Unfortunately, we don’t need an inductive type Typek, but rather a partially co-
inductive one. Without going into the details, if a constructor is inductive in an ar-
gument, you may not use self-references in that argument when constructing an element,
but you may do so when eliminating one. For example, we cannot define a natural num-
ber by n :≡ succn, but we can define Fin(n) : U0 by saying Fin(succn) :≡ Fin(n) + 1.
Conversely, consider the type StrA of infinite streams of elements of A. It has a con-
structor :: : A → ∞ StrA → StrA (where the ∞-symbol is pronounced ‘delayed’ and
indicates that the argument is co-inductive). When creating a stream, we are allowed to
use self-references:

naturals :≡ zero :: addOne(naturals), (4.6)

but not when eliminating:

f(a :: α) :≡ f(α) (4.7)

does not terminate. Co-inductive types are available in the proof assistants Agda and
Coq.

So our type Typek becomes some kind of inductive-co-inductive-recursive type, whose
soundness requires more careful analysis. Moreover, from the way we define El, we are
assuming that the type formers × and Σ of the real universe in MLTT are co-inductive as
well. Another suspicious feature of this definition is that at one point, we are referring to
the interpretation function, which is defined from the metatheory by induction over Type.
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Note that the Σ-types get variance and the Π-types do not; that localization, oppo-
site and core are included; that an equality label

.
= is present that encodes equality in

MLTT, which is possibly more strict than equality in directed HoTT; but bridges, paths,
morphisms and pre-paths are not. The constructors of Typek are selected in such a way
that every type from directed HoTT can be defined in terms of them.

The delay constructor is useful because it allows us to define JxK in terms of JyK,
even when y is not a subterm of x. It is a kind of anti-safety that endangers termina-
tion.

Definition 4.1.4. For k : Fin(m+ 2) define the type Typek of labels for types in
Uk and a function El : Typek → Uk as follows:

• U2 : Fin(k)→ Typek, where El(Uj) = Typej,

• 0 : Typek, where El(0) = 0,

• 1 : Typek, where El(1) = 1,

• ⊗ : Typek →∞Typek → Typek, where El(a⊗ b) = El(a)× El(b),

• ⊕ : Typek → Typek → Typek, where El(a⊕ b) = El(a) + El(b),

• N : Typek, where El(N) = N,

• P :
∏

a:Typek
(El(a)→ Typek)→ Typek,

where El(Pv(a, c)) =
∏

a:El(a) El(c(a)),

• S : Var→
∏

a:Typek
∞
(

El
r
〈a〉 ×→ Uk

z)
→ Typek,

where El(Sv(a, C)) =
∑

a:El(a) El J〈C〉 (〈a〉)K,

• .
=:
∏

S,e,w

∏
a:Typek

El(a)→ El(a)→ Typek, where El(a
.
=a b) = (a =El(a) b),

• 2op : Typek → Typek, where El(aop) = El(a),

• 2core : Typek → Typek, where El(acore) = El(a),

• 2loc : Typek → Typek, where El(aloc) = El(a),

• delay :∞Typek → Typek, where El(delay a) = 1× El(a).

We will write a⇒ c for the non-dependent function label P(a, a 7→ c).

We will interpret judgements as follows:

q
` x :+ A

y
as ` JxKJAKUm+1

: El JAKUm+1
,

q
` y ≡ y :+ A

y
as ` JxKJAKUm+1

≡ JyKJAKUm+1

: El JAKUm+1
. (4.8)
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4.2 Interpreting terms

In this section, we sketch how we will interpret terms from directed HoTT. The interpre-
tation function JtKa takes as arguments a term t and a type label a : Typek, and should
output an MLTT-term of type El a, or  .

A problem when interpreting HoTT (in particular when you want to implement it as
a programming language), is that it contains an axiom: the terms ua and funExt have no
computation rules, and it is not immediately clear what they are, and the fact that we
can nevertheless prove quite a few theorems about them, makes interpretation a delicate
matter. In directed HoTT, this problem multiplies: we have cua, dua, funExt, dirFunExt
and a truckload of axioms for bridges.

Back in the days before the univalence axiom, funExt was already posing a similar
problem in MLTT: unless you want to identify any two pointwise equal functions judge-
mentally (which complicates automatic type-checking), funExt(H) : f = g might be an
equality between different functions, in which case transport along funExt(H) is not triv-
ial to understand or, in programming applications, to compute. In [AMS07], Altenkirch,
McBride and Swierstra present a type theory which has function extensionality, but also
computing transport (which is as good as the induction principle). The key idea is to
define a =A b by induction on the type A, so that you can implement the transport func-
tion, also by induction on A. For example, they define equality of pairs as componentwise
equality and equality of functions as pointwise equality. This provides an easy way to im-
plement funExt: it is the identity function. We will do the same, not only for the identity
type, but also for bridges, morphisms and pre-paths. We start with the identity type.

4.2.1 Interpreting types

Identity types

The categorical univalence axiom suggests that we should define a =A b as a ∼=A b. Since
isomorphism is defined in terms of equality, this seems to be a problem, but fortunately,
we are doing co-induction, so it isn’t:

Ja =A bKUi
:≡ delay Ja ∼=A bKUi

. (4.9)

Morphism types

Much like in [AMS07], we will define Ja A bKUi
by induction on JAKUi

. Since any term
in MLTT can be computed to a unique normal form [ML84] (this property is called
strong normalization), we may assume that JAKUi

is either  or an instance of one of the
constructors of Typei. We define the interpretation of morphisms as follows:

JAKUi
Ja A bKUi

  
Uj delay

r
a

+→ b
z

0, 1,N JaK .= JbK
c⊗ d delay

(q
prl a 〈c〉 prl b

y
⊗
q

prr a 〈d〉 prr b
y)

c⊕ d by induction on JaKc⊕d and JbKc⊕d
inl a′, inl b′ 7→ delay J〈a′〉 c 〈b′〉K
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JAKUi
Ja A bKUi

inr a′, inr b′ 7→ delay J〈a′〉 d 〈b′〉K
otherwise 7→ 0

P(c, d) delay P
(
c, (x : El c) 7→

q
a(〈x〉) 〈d(x)〉 b(〈x〉)

y)
As El P(c, d) contains ordinary functions with no variance behaviour,
there is nothing more to say.

S
+(c, D) delay S

+
(q

prl a 〈c〉 prl b
y
,
r
ϕ
×7→ β∗(prr a) RelD(β) β

∗(prr b)
z)

where β :≡ toBrid(ϕ)

S
−(c, D) delay S

+
(q

prl b 〈c〉 prl a
y
,
r
ϕ
×7→ β∗(prr a) RelD(β) β∗(prr b)

z)
where β :≡ toBrid(ϕ)

S
×(c, D) delay S

+
(q

prl a =〈c〉 prl b
y
,
r
p
×7→ β∗(prr a) RelD(β) β

∗(prr b)
z)

where β :≡ toBrid(toMorph(p))

S
=(c, D) delay S

+
(q

prl a m〈c〉 prl b
y
,
r
p
×7→ problematic

z)
Note that the variance of the sums on the right is not a typo.

x
.
=X y JaK .= JbK
aop delay

q
unflip b 〈a〉 unflip a

y

acore delay
q

unstrip a =〈a〉 unstrip b
y

aloc Since El a = El aloc, we can interpret terms of aloc and plug them into a:
delay

q
〈JaKaloc〉 m〈a〉 〈JbKaloc〉

y

delay a delay
q

prr a 〈a〉 prr b
y

Bridge types

We define the interpretation of bridges through the following table:

JAKUi
Ja _A bKUi

  
Uj delay

r∑+
X:Uj(a

+→ X)× (b
+→ X)

z

0, 1,N JaK .= JbK
c⊗ d delay

(q
prl a _〈c〉 prl b

y
⊗
q

prr a _〈d〉 prr b
y)

c⊕ d by induction on JaKc⊕d and JbKc⊕d
inl a′, inl b′ 7→ delay J〈a′〉_c 〈b′〉K
inr a′, inr b′ 7→ delay J〈a′〉_d 〈b′〉K
otherwise 7→ 0

P(c, d) delay P
(
c, (x : El c) 7→

q
a(〈x〉) _〈d(x)〉 b(〈x〉)

y)
S

+/−/×(c, D) delay S
+
(q

prl a _〈c〉 prl b
y
,
r
β
×7→ β∗(prr a) RelD(β) β

∗(prr b)
z)

S
=(c, D) delay S

+
(q

prl a m〈c〉 prl b
y
,
r
p
×7→ problematic

z)
x
.
=X y JaK .= JbK
aop delay

q
unflip a _〈a〉 unflip b

y

acore delay
q

unstrip a _〈a〉 unstrip b
y

aloc Since El a = El aloc, we can interpret terms of aloc and plug them into a:
delay

q
〈JaKaloc〉 m〈a〉 〈JbKaloc〉

y

delay a delay
q

prr a _〈a〉 prr b
y
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Pre-path types

We define the interpretation of pre-paths through the following table:

JAKUi
Ja _A bKUi

  
Uj 1

0, 1,N JaK .= JbK
c⊗ d delay

(q
prl a m〈c〉 prl b

y
⊗
q

prr a m〈d〉 prr b
y)

c⊕ d by induction on JaKc⊕d and JbKc⊕d
inl a′, inl b′ 7→ delay J〈a′〉 mc 〈b′〉K
inr a′, inr b′ 7→ delay J〈a′〉 md 〈b′〉K
otherwise 7→ 0

P(c, d) delay P
(
c, (x : El c) 7→

q
a(〈x〉) m〈d(x)〉 b(〈x〉)

y)
S

v(c, D) delay S
+
(q

prl a m〈c〉 prl b
y
,
r
p
×7→ problematic

z)
x
.
=X y JaK .= JbK
aop delay

q
unflip a m〈a〉 unflip b

y

acore delay
q

unstrip a m〈a〉 unstrip b
y

aloc Since El a = El aloc, we can interpret terms of aloc and plug them into a:
delay

q
〈JaKaloc〉 m〈a〉 〈JbKaloc〉

y

delay a delay
q

prr a m〈a〉 prr b
y

Function types

A covariant function f : A
+→ C is a function f : A→ C that preserves morphisms, bridges

and pre-paths in a way that commutes with the weakening of morphisms to bridges and

bridges to pre-paths. Thus, we interpret A
+→ C as:

• the type label for ordinary functions A→ C: JAK⇒ JCK,

• times the claim that f preserves morphisms:
r(∏=

a,b:A

∏+
ϕ:a b f(a) f(b)

)
core

z
,

• times the claim that f preserves bridges:
r(∏=

a,b:A

∏?
ϕ:a_b f(a) _ f(b)

)
core

z
,

• times the claim that f preserves pre-paths:
r(∏=

a,b:A

∏+
ϕ:amb f(a) m f(b)

)
core

z
,

• times the claim that this all happens in a well-behaved way (again taking the core
of the proposition).

The reason we have to take the core of all the additional information, is that it is available
isovariantly in the theory. Now if we have a morphism f  g, then we have a morphism
between the proofs of covariance of f and g in the core, so that the proofs are equal (after
transport).

So
r
A

+→ B
z

Ui

is interpreted as:

(JAK⇒ JCK)⊗

t(
=∏

a,b:A

+∏
ϕ:a b

f(a) f(b)

)
core

|
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⊗

t(
=∏

a,b:A

?∏
β:a_b

f(a) _ f(b)

)
core

|

⊗

t(
=∏

a,b:A

+∏
p:amb

f(a) m f(b)

)
core

|

⊗ JwellBehavedcoreK , (4.10)

or as  if A or B are not types.
We can write similar interpretations for function types of different variances. For

dependent functions, we state all the good-behaviour properties in the type RelC(β), where
β is a bridge obtained from the given bridge or morphism. Again, pre-path preservation for
dependent functions is problematic because there is no analogue of RelC(p) for pre-paths
p.

Other types

The interpretation of most other types is trivial:

JA×BK :≡ JAK⊗ JBK , JA+BK :≡ JAK⊕ JBK ,

J0K :≡ 0, J1K :≡ 1, JNK :≡ N,

JAopK :≡ JAK op, JAcoreK :≡ JAK core,
q
Aloc

y
:≡ JAK loc,

t
v∑
x:A

C(x)

|

Uk

:≡
v

S
(
JAK , JCKr

A
×→Uk

z

)
.

4.2.2 Functorial behaviour

There is very much to say about the interpretation of the functorial behaviour of all
functions. We just consider two cases.

The identity type maps morphisms to bridges

As x
×7→ a =A x is an invariant function, a morphism ϕ : b  c should yield a bridge

(a = b) _ (a = c). In particular, if β ≡ toBrid(ϕ), we get

(a = b)
β∗−→ Rela=2(β)

β∗←− (a = c). (4.11)

From chapter 3, we know that p : a = b and q : a = c are transported to equal elements
of Rela=2(β) precisely if they are equal along ϕ, which we showed is equivalent to saying
that the following diagram commutes:

a
p

id a

��

b

ϕ

��
a q c.

(4.12)

It is not immediately clear what the type Rela=2(β) could look like. However, the inter-
pretation of a =A b is the same as that of a ∼=A b, and we can spell that out:

+∑
ϕ:a b

(
+∑

µ:b a

µ ◦ ϕ =a a id a

)
×

(
+∑

ρ:b a

ϕ ◦ ρ =b b id b

)
. (4.13)
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This expression only uses a and b co- and contravariantly, never invariantly, so we could
actually construct a bridge from a ∼=A b to a ∼=A c within directed HoTT! So we can
interpret the functorial behaviour of a = 2 as that of a ∼= 2.

The morphism type preserves bridges

As a  A c is contravariant in a and covariant in c, it should preserve bridges on both
sides. When we consider how bridges and morphisms are interpreted in the different base
types from Type, we see that there are only a few cases where this is a remarkable fact:
the core, the universe and Σ-types.

In the core, a morphism a  Acore c has the same interpretation as a path unflip a =A

unflip c, and a bridge a _Acore b is just a bridge unflip a _A unflip b, so basically it is
sufficient to show that paths preserve bridges. But paths are isomorphisms, which are
defined as morphisms, so we can delegate the issue from Acore to A.

For Σ-types, the problem for the first component can simply be delegated to that
component’s type (or its opposite/core/localization). As for the second component, the
transporting complicates the situation. I have no solution for this case.

For function types, it is clear that a cospan B
f−→ X

g←− C leads to a cospan from

A
+→ B to A

+→ C, so (non-dependent) function types preserve bridges in the codomain.
In the domain, the cospan is mapped to a span

(B
+→ A)

2◦f←−− (X
+→ A)

2◦g−−→ (C
+→ A). (4.14)

Then functions h : B
+→ A and k : C

+→ A are considered equal if there is a function ` :

X
+→ A so that h = `◦f and k = `◦g. This is the same as saying that h and k take identical

values on arguments that are assumed to be identical along the cospan of domains. If
we want to be able to transport, we can take the pushout of the span of functions, or
equivalently the pullback of the cospan of domains. Pushouts and pullbacks could be
constructed using the (problematic)

∑=-types and an additional type that represents the
index category of spans.

4.3 Interpreting axioms

Function extensionality As we have interpreted a morphism between functions as a
morphism on every point and an equality of the functoriality proofs (which, after trans-
port, should amount to saying that all the necessary diagrams commute), dirFunExt should
now be implementable. As a path is an isomorphism, which consists of infinitely many
morphisms, funExt is can probably be interpreted co-inductively in terms of the interpre-
tation of dirFunExt.

Categorical univalence By interpreting paths as isomorphisms, the interpretation of
catTransport has probably effectively become the identity function. Then cua can be
interpreted as a proof that the identity function is an equivalence.

Directed univalence Similarly, we have interpreted morphisms between types as co-
variant functions, so dirTransport should also have become the identity function, and then
dua, too, can be interpreted as a proof that the identity is an equivalence.
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The bridge axioms A type per type analysis of whether and how bridges can be
preserved, could (in)validate the list of bridge axioms from section 3.5.

Morphism induction Paths, morphisms, and pre-paths are the only types T where
the elimination rule does not automatically compute for all elements of El JT K. (For the
bridge type, it is disputable which rules are axioms and which ones are elimination rules.)
Therefore, they are a bit like axioms and it is interesting to consider their interpretation.
We only treat the covariant morphism induction principle here. We can interpret it quite
easily as follows:

Given a type family C : A
−→ A

+→ A and a function f :
∏=

x:AC(x)(x), we interpret
ind+
 (C, f)(a, b, ϕ) as (C(a) (ϕ))∗ (f(a)) : C(a)(b).

Higher order variance In this chapter, we have completely ignored the existence of
functions with complicated higher order variance, such as A 7→ Aop. They are likely to
make the problem more complicated and subtle.

4.4 Conclusion

In this chapter, we made a first few steps at interpreting directed HoTT in MLTT. We
encountered several issues on the way:

• A high degree of co-inductiveness, as well as a co-inductive-inductive-recursive type
are involved.

• An interpretation of morphisms in the localization and the
∑=-type is problematic,

due to the difficulty of understanding the notion ‘along a pre-path’. In particular,
a pre-path in the universe contains no information.

• The functorial behaviour of the morphism type in
∑

x:AC(x) is problematic when C
uses x invariantly, due to the non-composability of bridges. If we allow composition
of bridges, then the notion of equality of bridges becomes difficult.

• Higher order variance probably interacts poorly with this interpretation. It is prob-
ably better to have native higher order variance annotations in directed HoTT.

Nevertheless, this interpretation makes the univalence axioms very plausible and is promis-
ing when it comes to the function extensionality axioms. Moreover, it suggests that we
could add an inference rule to the theory that takes:

• An invariant function f :
∏×

x:AC(x),

• A proof that it preserves morphisms,
∏=

a,b:A

∏+
ϕ:a b ϕ∗(f(a)) RelC(ϕ) ϕ

∗(f(b)),

• A proof that this preservation is well-behaved with respect to the already present
preservation of paths and bridges,

and yields a covariant function g so that g× = f . Of course there would be similar rules
for other variances.



150 CHAPTER 4. EXPLORING SEMANTICS AND CONSISTENCY



Chapter 5

Conclusion

5.1 Morphisms and morphisms

In symmetric HoTT, the univalence axiom implies a more general these that isomor-
phic structures are equal. In directed HoTT, the directed univalence axiom leads
to the these that a domain specific morphism implies a type theoretic morphism.
This section demonstrates the these by proving informally that a morphism between
groups is the same as a group morphism.

Definition 5.1.1. An (unordered) set is a bridgeless groupoid with uniqueness of
identity proofs:

isSet(A) :≡ isBridgelessGrpd(A)×
=∏

a,b:A

=∏
p,q:a=b

p =a=b q. (5.1)

Definition 5.1.2. A group G : Grp is a (covariant) dependent tuple consisting of:

• A type G,

• A proof that G is a set,

• A binary operation ∗ : G
4→ G

4→ G,

• A neutral element e : G,

• An inversion function 2−1 : G
4→ G,

• A proof of associativity: for all x, y, z :4 G, we have x ∗ (y ∗ z) = (x ∗ y) ∗ z,

• A proof of neutrality of e: for all x :4 G, we have e ∗ x = x and x ∗ e = x,

• A proof that inversion works: for all x :4 G, we have x∗x−1 = e and x−1∗x = e.

151
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Definition 5.1.3. Let G,H : Grp be groups. A morphism of groups is a dependent
tuple consisting of:

• A function f : G
4→ H,

• For all x, y :4 G, a proof that f(x ∗G y) =H f(x) ∗H f(y),

• A proof that f(eG) =H eH ,

• For all x :4 G, a proof that f(x−1) =H f(x)−1.

Proposition 5.1.4. A group morphism is a morphism between groups:

=∏
G,H:Grp

(G  Grp H)
+' GrpMph(G,H). (5.2)

Plausibility argument. We will assume that isSet(A) is always a mere proposition
and, in particular, a mere proposition. From the characterization of morphisms in
the

∑+-type, morphisms along morphisms and the directed transport lemma, as well
as a few easily provable facts about transport, we know that a morphism G  Grp H
boils down to:

• A function f : G
4→ H,

• A proof that the proofs of G and H being sets, are related along dua(f), which
is trivially true as isSet(A) is always a mere proposition,

• A proof that f(2 ∗G 2) =H f(2) ∗H f(2),

• A proof that f(eG) =H eH ,

• A proof that, for all x :4 G, f(x−1) =H f(x)−1,

• A proof that the associativity, neutrality and inversion proofs are compatible
along dua(f), which is trivially true since all of them are mere propositions.

Now all we need to do is throw out those components that are trivially true (equivalent
to 1) and apply happly/funExt to some others.

It should be noted that some of the details may actually pose substantial prob-
lems. Moreover, morphisms seem less well-behaved when we don’t require types to
be groupoidal. Consider for example the type

∑+
A:Uk A of types with a designated

element. A morphism (A, a)  (B, b) consists of a function f : A
+→ B and a mor-

phism f(a) B b. That is peculiar, we would have expected a path f(x) =B b. This
can be solved by taking the core: perhaps we should instead have considered the type∑+

A:Uk A
core. The question is whether this quick-and-dirty solution is well-behaved.
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5.2 Applications

When using directed HoTT as a foundation for mathematics, you don’t need to define
morphisms any more: the definition of a vector space gives you linear maps, the definition
of a group gives you group morphisms, etc. Moreover, in order to prove that a property
of e.g. a group element is preserved under morphisms, you just need to show that the
property is covariant in the group.

Infinite dimensional category theory is a subject that is not yet completely under-
stood. If directed HoTT can be shown to be consistent relative to something other than
infinite category theory, then it may be a useful tool in studying that subject, providing
a constructive and potentially computer verified way to work with infinite dimensional
categories.

In computer science, it could provide a safe and nearly automatic way to keep track
of naturality. This may allow for quick implementations of non-trivial functions and
properties. Consider monads, for example. A nice property of dependent type theory
is that it allows you to implement the monad laws. Directed HoTT would allow you
to guarantee that these laws are satisfied with much less work: you would only need a

functor M : U +→ U, natural transformations return : id  M and join : (M ◦M)  M
and a proof of associativity. Naturality would do the rest.

Moreover, isovariant dependent functions are constructive projective limits, which
ought to have applications in computer science. For example, co-inductive types can
be written as a projective limit. Isovariant dependent pairs are constructive injective
limits, but as they don’t seem to preserve decidability of equality (unless the collection
of morphisms in the index category is manageable), they are probably only useful for
enforcing contracts.

Denotational semantics often translate languages and theories to category theory. Al-
though directed HoTT itself should not be trusted at this moment, it provides a nice
combination of category and computer-friendliness, which is ideal for formal implementa-
tion of denotational semantics.

5.3 Discussion and further work

The theory as it stands, is quite a few loose ends. One way to make it more trustworthy,
is by only allowing dependent pair and function types over type families of the form

a
×7→ C(a, a) for some family C : A

−→ A
+→ Uk, and by setting = ◦× ≡ ×, which wouldn’t

change all that much to the results proven in this text. This would remove the need for
bridges.

However, I think we should not just cut them out. Rather, I think one should try
to understand them and reduce them to something that makes sense and looks good.
Studying the behaviour of relations between types in HoTT may well be rewarding.

The consistency argument is exploratory at best. MLTT is likely not the best en-
vironment for interpreting directed HoTT. It would be good to find a more suitable
environment, as better understanding of semantics may lead to answers about bridges
and would allow a rule for creating e.g. covariant functions by proving covariance for an
invariant function.

As the reader may have noticed, the one thing that makes directed HoTT interesting
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for computer science – the fact that so much naturality work happens in the background
– makes it a bit problematic for paper proving. Customizing a proof assistant to become
compatible with this theory is probably necessary if further research within it is to be
conducted.

Theorem 3.8.7 was a fascinating result. I think there is more to be found in that
direction. For example, it is a known fact that inductive types are initial algebras, and
co-inductive types are final algebras. Maybe we can actually state that and prove it in
directed HoTT.

Finally, we didn’t treat higher inductive types in the directed case at all. Nonetheless,
they are a very interesting ingredient, especially for obtaining index categories to take
limits over. There is no particular reason they were left out, apart from the fact that
they did not appear in the basic results treated in chapter 3. An interesting question is
whether we can view A as a higher inductive type over Acore. That would lead to a more
general set of rules than just a rule that lets you prove a function’s covariance.
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List of Symbols and Abbreviations

〈x〉 A term x of MLTT, quoted as a term of directed HoTT. 142

brefl Constructor of the based identity type. 65, 68

a _A b Bridge type. 110

2_ Action of a function on bridges. 111

Cat Category of categories. 7

catTransport Categorical transport function. 90

:: Cons, the list or vector constructor that adds an element to the front. 34, 36, 59

Acore Core of A. 16, 47

cua Categorical univalence axiom. 135

2† Anti-involution on the bridge types. 110

‡ The empty list or vector. 34, 36, 59

dirFunExt Directed function extensionality. 129

dirTransport Directed transport function. 89

dua Directed univalence axiom. 132

a =A b Identity type; type of paths or proofs of equality. 64, 67

= Isovariance. 15

2= Action of a function on paths. 82

!a =A b Identity type based at a. 65, 68

a mA b Type of pre-paths, equivalent to gather a =Aloc gather b. 141

f ∼ g Type of homotopies. 113

Fin(n) Finite type with n elements. 39, 40

mn The mth element of Fin(n). 39

flip Constructor of Aop. 44

4 Variance annotation for functions from or to a bridgeless groupoid, when variance doesn’t matter. 38

c=Cc′

p:a=Ab Heterogeneous equality and morphism types. 94, 99, 100

refl c
refl a Constructors of heterogeneous equality and morphism types. 94, 99, 100

A→ B Type of non-dependent functions. 2, 21

A
v→ B Type of non-dependent v-variant functions. 23
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158 List of Symbols and Abbreviations

funExt Function extensionality. 28, 128, 129

gather Constructor of Aloc. 51

f � g Type of natural transformations. 114

Grpd Category of groupoids. 9

happly Function that turns paths between functions into homotopies. 114, 116

HoTT Homotopy type theory. xi

id Constructor of the morphism type. 70

idbr Identity bridge. 110

indA Induction principle for the inductive type (family) A. 30

inl Left injection to the coproduct. 29, 31

inr Right injection to the coproduct. 29, 31

JJ K Interpretation of the judgement of directed HoTT J as a judgement in MLTT. 139

JxKa Interpretation of the term of directed HoTT x as a term of type El a in MLTT. 140, 144

JxK Interpretation of the term of directed HoTT x as a term of type El a in MLTT, where we neglect to
mention a. 140, 144

isEquiv(f) Proposition that f is an equivalence. 27, 86

isIsom(ϕ) Proposition that ϕ is an isomorphism. 89

a ∼=A b Type of isomorphisms. 89

isProp(A) Proposition that A is a mere proposition. 88, 133

isSet(A) Proposition that A is a set. 133

leftInv(f) Type of left inverses of f . 86, 89

leftTransport Left transport function along a bridge. 110

 A symbol in the alphabet of MLTT that never occurs in true judgements. 140

ListA Type of lists. 34, 36

Aloc Localization of A. 16, 51

m Assumed height of the universe tower in directed HoTT. 140

(x : A) 7→ b[x] Function that maps x : A to b[x]. 22, 25

(x : A)
v7→ b[x] The v-variant function that maps x : A to b[x]. 23, 26

− Contravariance. 15

MLTT Martin-Löf type theory. xi

a A b Type of morphisms. 70

2 Action of a function on morphisms. 84

!a A b Morphism type based at a. 71

N Type of natural numbers. 36, 37

napply Function that turns morphisms between functions into natural transformations. 116
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1 Unit type. 2, 39, 40

Aop Opposite of A. 16, 44

(2,2) Pair constructor in symmetric HoTT; non-dependent or covariant dependent pair constructor in
directed HoTT. 41, 42, 53, 56

(2 v, 2) The v-variant dependent pair constructor. 55

A+B Coproduct/disjoint union. 2, 29, 31

+ Covariance. 15

prerefl Constructor of the pre-path type. 141

prl Left projection from the product. 41, 43, 54, 56, 57∏
x:A C(x) Type of dependent functions. 3, 25∏v
x:A C(x) Type of v-variant dependent functions. 26

prr Right projection from the product. 41, 43, 54, 56

qInv(f) Type of quasi-inverses of f . 86

recA Recursion principle for the inductive type (family) A. 29

refl Constructor of the identity type. 64, 67

RelC(β) Relation along a bridge. 111

rightInv(f) Type of right inverses of f . 86, 89

rightTransport Right transport function along a bridge. 110

sbid Source based morphism constructor. 71

A ' B Type of equivalences. 27

A
+' B Type of (covariant) equivalences. 28, 86

? The element of the unit type. 2, 39

strip Constructor of Acore. 47

succn Successor of the natural number n. 37∑
x:A C(x) Type of dependent pairs. 3, 53∑v
x:A C(x) Type of v-variant dependent pairs. 55

tbid Target based morphism constructor. 71

3 Variance annotation for functions from a bridged groupoid, where +, - and × are interchangeable. 50

× Invariance. 15

A×B Cartesian product. 2, 41, 42

toBrid Function that weakens morphisms to bridges. 110

toMorph Function that weakens paths to morphisms. 82

transport Transport function. 88

2DTT 2-dimensional directed type theory. 6

ua Univalence axiom. 131
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uip Uniqueness of identity proofs. 5

unflip Eliminator of Aop. 46

Uk The kth universe. 20

unstrip Eliminator of Acore. 48

VecnA Type of vectors of length n. 59

0 Empty type. 2, 38, 39

zero Zero, the natural number. 37
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∞-groupoid, xi, 5, 78

Agda, 4
axiom K, 5

bivariance, 108
bridges, xii, 15, 105

category, 134
coherence laws, 79
composition

of functions, 22, 24
of variance, 16

computation rule, 22
conjunction, 2
constancy, 106
context, 14
contravariance, 10, 15
coproduct, 2, 28, 119
core, 7, 9, 16, 47, 123
covariance, 10, 15
cumulativity of universes, 20
Curry-Howard correspondence, 2
currying

core, 48
dependent, 54, 55
localization, 51
non-dependent, 41, 43
opposite, 45
variance, 45, 48, 51

dimension, 6
directed function extensionality, 129
disjunction, 2

element relation, 3
empty type, 38
equality

judgemental, xi, 3, 14
propositional, xi, 3, 64

equivalence, 27, 86
logical, 2

false, 2
family of finite sets, 39
fibration, 92
first order logic, 2

formation rule, 21
function

dependent, 3, 25, 128
extensionality, 28
non-dependent, 21

function extensionality, 128, 129

Grothendieck fibration, 97
groupoid

bridged, 49, 116
bridgeless, 52, 118

higher inductive type, 75
homotopy, 113
homotopy hypothesis, xi, 5

identity
function, 22, 24
isovariant, 38, 40, 49, 52, 52
morphism, 70

identity type, 3, 64
implication, 2
induction principle, 30
inductive type, 28

family, 57
inhabited, 1
injective limit, 126
introduction rule, 22
invariance, xii, 10, 15
inverse

left, 86
quasi-, 86
right, 86

isomorphism, 89
in categories in symmetric HoTT, 134

isovariance, xii, 10, 15

judgement, 1, 13

law of excluded middle, 2
localization, 9, 16, 51, 123, 141

Martin-Löf type theory, xi
mere propoisition, 133
mere proposition, 88
metatheory, 139
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natural equivalence, 113
natural numbers, 36, 120
natural transformation, 114
negation, 2

opposite, 9, 16, 44, 122

pair
dependent, 3, 53, 125

path, 64
path induction, 65

based, 65
pre-paths, 141
precategory, 133
product, 2, 41, 125
projective limit, 129

quantification
existential, 3
universal, 2

recursion principle, 29

set, 133
symmetric HoTT, xii

total space, 92, 97
transport, 88

categorical, 90
directed, 89
in categories in symmetric HoTT, 134

true, 2
type family, 57

uniqueness of identity proofs, xi, 3, 5
uniqueness principle, 22
unit type, 39
univalence, xi, 9, 131

categorical, 135
directed, 132
theorem in directed HoTT, 137

univalence axiom, 5
universe, 20, 130

variance
higher order, 10

vector, 59

W-types, 74

zigzag, xii, 106, 109, 141
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