Contributions to Multimode and Presheaf Type Theory -
Motivation, Overview and Discussion

Andreas Nuyts

May 9, 2022

Abstract

This note describes and discusses my PhD dissertation ‘Contributions to Multimode and Presheaf Type
Theory’. The PhD project was motivated by the quest for a higher-dimensional directed type theory
with interoperating functoriality-for-free and naturality-for-free (NatDTT). We discuss the various con-
tributions — to wit: a study of the internalization of (natural transformations between / adjunctions of)
morphisms of CwFs, parametric quantifiers (ParamDTT), degrees of relatedness (RelDTT), multimode
type theory (MTT), the transpension type, the robustness criterion for (contextual) fibrancy and a study
of internal fibrancy — as well as how they fit together and serve the higher purpose of NatDTT.

This text reuses parts from [Nuy20a, ch. 1 and 10]. That chapter 1 in turn reuses parts of a non-public grant
renewal application at the Research Foundation - Flanders (FWO), authored by myself in collaboration with
Dominique Devriese.

1 Motivation: Higher-dimensional Directed Type Theory

The goal we originally set out for this PhD project [Nuy20a, henceforth referred to as ‘PhD’] was to es-
tablish higher-dimensional directed dependent type theories by formulating them, implementing them,
proving their consistency and demonstrating their use. By a directed dependent type theory, we mean a
dependent type theory which has not only a built-in notion of equality, but also of transformation. Such
theories would provide a powerful framework for computer-assisted reasoning about asymmetric phe-
nomena such as subtyping, syntactic substitution and various kinds of non-invertible transformations. In
particular, we expect to obtain functoriality-for-free, relieving programmers from the burden of explic-
itly implementing the ‘map’ operation of functors and proving that it respects identity and composition.
Moreover, we aim to generalize the notion of parametricity in programming languages to one of natural-
ity, interacting smoothly with the aforementioned functoriality. This would first of all extend the concept
of naturality beyond natural transformations but also relieve mathematicians from the burden to prove
that their operations are natural by giving them a method that asserts naturality by construction. On top
of that, the intention was for naturality theorems to be provable within dependent type theory.

Unsurprisingly for those who tried, this turned out to be a project for more than a single PhD. None
of the original goals has been fully achieved, but I believe that with this dissertation and its associated
papers and technical reports, my co-authors and I make several important contributions in mapping out
the road and freeing it from some important obstructions, and each of these contributions has collateral
benefits.

2 Context

Static type systems provide a way of guaranteeing safety and termination of computer programs, by
preventing at compile-time that variables are assigned inappropriate values. They are also interesting
from a logical perspective, as the Curry-Howard correspondence associates type operators to logical op-
erators, so that propositions may be translated into types and vice versa [How80]. Proving a proposition
then corresponds to constructing an element of the associated type.



Dependent type theories such as Martin-Lof type theory (MLTT) [ML82, ML98] include type theo-
retic counterparts for universal (V) and existential (3) quantification in logic. As such, all possible proposi-
tions can be translated into dependent types, and they can be proven formally by constructing a program
of the corresponding type and having it type-checked by a computer. This crucial observation allows the
use of dependently typed functional programming languages such as Coq [Coq14], Agda [Nor09] and
Idris [Bral3], as proof assistants for proving either mathematical theorems or program correctness.

An important ingredient of logical reasoning is the concept of equality. This, too, has a type theoretic
counterpart in MLTT: given values a, b : A, we have an ‘identity type’ or a =4 b of proofs that a and b
are equal. The precise definition of the identity type is subtle, but we have three operators at hand to
ensure that equality is an equivalence relation on the elements of A: a reflexivity constructor ensuring
that everything is equal to itself, a proof-composition operator (x =4 y) — (y =4 z) — (x =4 2)
ensuring transitivity, and an inversion operator ensuring symmetry. As such, (classical) MLTT equips
every type with a built-in equivalence relation called ‘(propositional) equality’.

Homotopy Type Theory (HoTT [Unil3]) starts from the observation that two objects can be iden-
tified in multiple ways. For example, a boolean is essentially the same thing as a bit: it takes one out of
two values. But if I want to encode a boolean as a bit, do I encode true as 1 or as 0? I have to pick one
of two ways in which a boolean is the same as a bit. While MLTT is usually equipped with a ‘unique-
ness of identity proofs’ axiom (UIP) [Unil3, §7.2], which states that all elements (proofs) of a =4 b are
equal and hence that the only information encoded in an equality proof, is its existence; HoTT abandons
this principle and interprets the type a =4 b as the type of all isomorphisms between a and b. This is
formalized by Voevodsky’s univalence axiom [KLV12, Unil3], which essentially states that equality of
types simply means isomorphism. The reflexivity, transitivity and symmetry operations now serve as the
identity, composition and inversion operations of a (higher) groupoid: a category in which all morphisms
are invertible.

If MLTT is a type theory with good support for notions of equality and HoT T is one with good support
for notions of isomorphism, then directed type theories [LH11, Nuy15, RS17, Nor19, WL20] are aimed
at supporting various asymmetric phenomena, such as a subtyping relation on types [Abe08], syntactic
substitutions in programming language formalization [LH11], transformations between mathematical
structures such as vector spaces or monads, functorial behaviour etc.

The key idea is to abandon the symmetry of the equality relation, leading to a type a <4 b of inequality
proofs. We can do this in the spirit of classical MLTT, with a ‘uniqueness of inequality proofs’ axiom,
and obtain a theory that automatically equips any type with a kind of order relation. Or we can do this
in the spirit of HoTT, interpreting a <4 b as the type of transformations from a to b. In that case, we
are equipping types with a much richer structure of transformations; what is mathematically called a
(higher) category. An important aspect to consider in directed type theories is variance: dependencies
can be increasing/covariant, decreasing/contravariant, or can disrespect inequality altogether. Modalities
are annotations on function types and can be used to keep track of the variance of functions.

3 Higher Directed Type Theory in Practice

Although no type theory for higher! categories exists yet, we will demonstrate with an example what we
hope to achieve with such a system.

Example Problem In purely functional programming languages like Haskell, functions behave (al-
most) the way they do in mathematics: calling the same function with the same inputs multiple times,
will yield the same output, and no side effects occur in the process.

If we do want to allow a function to cause side-effects, then we can give it a monadic return type
[Mog89]. For example, if we want a function with output type A to be able to log messages of type W,
then we give it output type Writer W A := W X A. The type W should have the structure of a monoid, with
an associative binary operation * : WXW — W for concatenating messages, and a unit element e : W that
serves as the empty message. Then the functor Writer W is a monad, whose unit (a.k.a. return) function

!n the sense of (n, r)-categories. Type systems for (o, 1)-categories do exist [RS17, WL20].



n:A — WriterWA : a — (e, a) creates programs making no use of the logging functionality in the
sense that they return the empty message, and whose bind operation concatenates programs’ messages.

If we want to add logging functionality to an existing monad M, we use the monad transformer
WriterT W, where WriterTW M A := M(W X A). For example M could be the Maybe monad, where
elements of Maybe A are either nothing or justa where a : A (i.e. Maybe A = A @ Unit). A function
of output type Maybe A is conceptually a function of output type A that has the option to fail. Then a
function of output type WriterT W Maybe A := Maybe(W X A) is a function that has the option to fail
and, if it doesn’t, will yield an output of type A and may log messages of type W.

A monad morphism is nothing but a natural transformation that respects the unit and bind operations.
In Moggi’s framework of monadic side effects, a monad morphism m : My — M; can be thought of as a
compiler that compiles the effectful operations available in M, to effects in M;.

Recall that the free monoid over S is given by (List S, [], ++). Thus, an arbitrary function s : o — S;
gives rise to a monoid morphism Lists : (List So, [],++) — (List Sy, [], ++), which in turn gives rise to a
monad morphism WriterT (Lists) M : WriterT (List So) M — WriterT (List S;) M for any monad M. On
the other hand, a monad morphism m : My, — M should give rise to a monad morphism WriterT W m :
WriterT W My — WriterT W M; for any monoid W.

The challenge is now to construct the aforementioned monad morphisms and to prove commutativity
of the following diagram:

. . WriterT (List Sp) m . .
WriterT (List Sg) My ————— > WriterT (List Sy) M;

WriterT (List s) My j lWriterT (Lists) M;

WriterT (LlSt 51) MO m WriterT (LlSt S]) M1

If s = capitalize : String — String and m = just : Id — Maybe, then what this says is that it doesn’t
matter whether we first capitalize all logged messages and then decide to allow but not use the option to
fail, or the other way around.

Existence of the functions underlying the monad morphisms may be needed already when defining
a program. The fact that the functions are monad morphisms and that the diagram commutes, may be
necessary to prove correctness of a program. However, since all of these results are completely obvious
and dull from a categorical viewpoint, we want to spend minimal time on implementing and proving
them, and in particular we prefer not to bother with list induction. This is why we want native support
for category theory in our programming language.

In Plain Dependent Type Theory If we want to face the challenge in plain dependent type theory in
a somewhat principled manner, we would do the following:

« Show that List is a functor from types to monoids:

— For every f : A — B, show that there is a monoid morphism List f : List A — List B:

» Define List f, by list recursion,
= Show that it respects the empty list (trivial) and list concatenation (by list induction).

— Show that this operation respects identity and composition,? by list induction.
« Show that WriterT is a functor from monoids to covariant monad transformers:

— Show that WriterT W is a covariant monad transformer for every monoid W:

« Show that WriterT W M is a monad for every monad M.

« Show that, for any monad morphism m : My — M;, we get a monad morphism WriterT W m :
WriterT W My — WriterT W M;:

- Define WriterTW m A : WriterT W My A — WriterT W M; A for any type A,

2This is not actually needed for the challenge at hand, but is a matter of not doing half work.



- Show that it is natural in A,
- Show that it respects the monad operations.
» Show that this operation respects identity and composition.

— For any monoid morphism w : Wy — W, show that there is a morphism of covariant monad
transformers WriterT w : WriterT Wy — WriterT Wi:

» Define WriterTw M A : WriterT Wy M A — WriterT W; M A for any monad M and type
A,

» Show that it is natural in M,

» Show that it is natural in A,

« Show that it respects the monad transformer operation lift.>

— Show that this operation respects identity and composition.

In Homotopy Type Theory (HoTT) Let us see how this simplifies in homotopy type theory (HoTT)
[Uni13]. Of course, HoT T only has native support for isomorphisms, so we will assume that s and m are
isomorphisms. We will also assume that Haskell types are sets (in the HoTT sense) and thus that kinds
are 1-groupoids. We then have to do the following:

« Show that List is a groupoid functor from types to monoids.

— For every f : A = B, the univalence axiom provides an equality proof (a.k.a. pathyuaf: A =
B. The function AX.(List X, [], ++, _) sending the type X to the free monoid?* over X respects
equality, so we get a proof of (List A, [], ++, ) =monoid (List B, [], ++, -), which by the structure
identity principle (SIP) [Uni13, §9.8] is the same as a monoid isomorphism.

— This operation automatically respects identity and composition, because all HoTT functions
respect identity and composition of paths.

So it turns out that we can prove this without knowing the implementation of List and with little
knowledge of the definition of a monoid (we merely need to know that it is a ‘standard notion of
structure’). We get this result essentially for free.

« Show that WriterT is a groupoid functor from monoids to groupoid-functorial monad transformers:

— Show that WriterT W is a groupoid-functorial monad transformer for every monoid W:

+ Show that WriterT W M is a monad for every monad M.

= Again, we get groupoid functoriality for free. Indeed, given a monad isomorphism m :
My = M;, we get My =monad M; by the SIP, whence a proof of WriterT W My =monad
WriterT W M, which by the SIP is the same as an isomorphism between the writer mon-
ads.

- By similar reasoning, groupoid functoriality of WriterT is also for free.

In Higher Directed Type Theory with Naturality (NatDTT) In the previous subsection, we saw
that we could greatly shorten our todo list by moving to HoT T, and moreover that we are rid of all list
inductions. The price we paid and which we seek to unpay by moving to higher DDTT, is that we had to
assume that m and s are isomorphisms. In higher DDTT, we expect that our todo list will look like this:

« Let the type-checker check that List is covariant (i.e. can be annotated with the covariance modal-
ity). In fact, let it check that the function AX.(List X, [], ++, -) sending the type X to the free monoid
over X, is covariant. This requires that monoids depend on their structure by a special modal-
ity: a directed analogue of the structural modality which we introduced in Degrees of Relatedness
[ND18a][PhD, ch. 9].

Shttps://hackage.haskell.org/package/transformers-0.5.6.2/docs/
Control-Monad-Trans-Class.html
“The underscore stands for the proofs of the monad laws.


https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html

« Show that List is a functor from types to monoids.

— For every f : A — B, the directed univalence axiom [WL20] provides an inequality proof
(a.k.a. morphism or directed path) dua f : A < B. By covariance, we get a proof of (List A, [],
++,-) <Monoid (List B, [],++, -), which by an expected directed SIP is the same as a monoid
morphism.

— This operation automatically respects identity and composition, because all covariant func-
tions respect identity and composition of morphisms.

Again, we get this result essentially for free.
« Show that WriterT is a functor from monoids to covariant monad transformers:

— Show that WriterT W is a covariant monad transformer for every monoid W:

« Show that WriterT W M is a monad for every monad M.

» Let the type-checker check that WriterT W M satisfies the covariance modality w.r.t. M.

» Again, we get the covariant action and laws for free. Indeed, given a monad morphism m :
My — M, we get My <monad M; by the directed SIP, whence a proof of WriterT W My <monad
WriterT W M;, which by the directed SIP is the same as a morphism between the writer
monads.

— By similar reasoning, functoriality of WriterT is also for free.

Thus, we expect that higher DDTT can drastically simplify proofs of boring properties where HoTT can
already do so for isomorphisms. This generalization is necessary because most transformations are not
invertible. It is also complex, because while in HoTT all functions respect equality/isomorphism, in higher
DDTT it is not reasonable to expect that all functions respect inequality/morphisms. Therefore, we need
to keep track of the behaviour of functions in order to assert covariance, contravariance, naturality etc.
of functions by construction, in a way that can (hopefully) be verified by a type-checker. This thesis is
not concerned with the variance checking aspect, but with paving the road towards the design of a sound
system in the first place.

4 Contributions

Note: a diagram of the contributions in my dissertation, together with some important prior work and
some intended future work is given on page 10.

4.1 ParamDTT: Parametric Quantifiers

In my master thesis [Nuy15], I studied higher DDTT from a purely type theoretic point of view, trying
to set up a system of typing rules that appeal to category-theoretic intuition and do not obviously intro-
duce contradictions. At the start of my PhD, I wanted to underpin the work of my master thesis with
a denotational semantics. The most natural setting to formulate these semantics seemed to be (higher)
category theory, but attempts to model the style of directed type theory from my master thesis in this
setting kept failing.> For the category theorist, the problem can be succinctly described by saying that
the functor category functor Cat°? x Cat — Cat : (C, D) — D€ does not preserve composition of pro-
functors®, failing the interpretation of the function type. For the type theorist, this problem is the reason
that Reynolds’ relationally parametric interpretation of System F [Rey83] features an identity extension
lemma but no composition extension lemma as it would be violated by the function type, and that later
models of parametricity [AM13, AGJ14] are formulated in reflexive graphs, which are exactly categories
without composition.

SLicata and Harper [LH11] do provide a model in category theory, but this work has a coupling of variance of types and terms
(covariant terms live in covariant types) that we seek to relax.
®It does laxly, but this can be broken by exponentiating again [PhD, ex. 8.1.27].



The second most natural setting to work in, are presheaf categories — such as the category of re-
flexive graphs mentioned above — which are automatically models of dependent type theory [Hof97] but
are also used as models of higher category theory (e.g. via the notion of quasi-categories [nLa20b]) and
homotopy type theory [CCHM17, Hub16, BCH14, KLV12].

The idea arose in discussion with Andrea Vezzosi and Andreas Abel to model the undirected part of
the intended NatDTT, i.e. a type system with a naturality modality, but no modalities for functoriality.
Naturality is then more typically called parametricity. This simplification of the ideas in my master thesis
led to a dependently typed system ParamDTT in which function types could be annotated as parametric
or non-parametric, i.e. a system featuring a parametric ¥ alongside the non-parametric IT [NVD17][PhD,
§9.2]. The idea to use a modality to keep track of parametricity, turned out to be an answer to an open
question in the literature. Indeed, parametricity results about simpler type systems such as System F (the
polymorphic A-calculus) and System Fw had not been properly carried over to dependent type theory
where large types are involved.

The original paper on ParamDTT [NVD17] is not subsumed in this thesis, but in [PhD, §9.2] we give
a high-level discussion of the system and its model, and explain how the system can be constructed more
cleanly and efficiently with the tools that are available today.

The parametricity modality is modelled as a CwF morphism [Dyb96], which prompted a study of the
internalization of CwF morphisms, as well as natural transformations between and adjunctions of
CwF morphisms, into type theory [Nuy17, ch. 2][PhD, §5.1]. The results on adjunctions overlap with
independent work by Birkedal et al. on dependent right adjoints [BCM*20], as discussed in [PhD, §5.2].

Following Bernardy, Coquand and Moulin [BCM15, Mou16] (henceforth: BCM), ParamDTT was mod-
elled in cubical sets, whose edges however we annotated as expressing either equality (paths) or related-
ness (bridges) [Nuy17]. Following Atkey, Ghani and Johann [AGJ14], Reynolds’ identity extension lemma
[Rey83] was modelled by restricting to discrete types.

We also wanted free parametricity theorems to be provable internally in ParamDTT. We could not
rely on the internal parametricity operators by BCM [BCM15, Mou16], because these require an affine
cubical model whereas discreteness of bridge and path types requires a cartesian cubical model. Instead,
we used the Glue type from cubical HoTT [CCHM17] (stripped of its Kan fibrancy requirements) and
introduced a dual type Weld. We showed that these types can be modelled in arbitrary presheaf models
[Nuy17] and discuss them in [PhD, ch. 6] on presheaf type theory. We refer to the paper [NVD17] for
examples on how to apply these operators.

4.2 RelDTT: Degrees of Relatedness

In follow-up work [ND18a, Nuy18a], we abandon the idea that types and kinds should be the same thing,
inspired via directed type theory by the fact that in category theory, the collection of n-categories is of
course an n-category but, much more interestingly, is an (n + 1)-category. This solves technical inconve-
niences in ParamDTT, such as the fact that small types contain unnecessary relational structure, whereas
universes seemed to lack structure.

Following [LS16], we move from a modal type theory where function types are annotated by a modal-
ity (e.g. parametric or not) to a multimode type theory. In a multimode type theory, every judgement is
annotated by a mode, which is of course just a syntactic feature but conceptually tells you in what cat-
egory the judgement should be interpreted. Modalities then have a domain and a codomain and are
modelled by CwF morphisms between the corresponding categories.

We exhibit parametricity as just one out of many interesting and less interesting modalities, including
ad hoc polymorphism, irrelevance (at type-checking type) [Pfe01, MS08, BB08, AS12], shape-irrelevance
[AVW17], as well as a novel structural modality which explains how algebras (living in a kind) depend
on their structure (a lower-level object living in a type).

The original paper on this type system RelDTT [ND18a] is not subsumed in this thesis, but again a
high-level discussion that also relates it to today’s state of the art is given in a dedicated chapter [PhD,
ch. 9]. Other aspects of the system are handled the same way as for ParamDTT, see the previous section.

Theoretical importance My research indicates that, if we care for dependently typed parametricity
with identity extension even for large types, then we should be looking towards modalities or at least a



stratification of types based on their relational complexity (which may or may not be decoupled from the
level). I would argue that RelDTT is so general that such modal or stratified systems should be almost
always explicable as a subsystem of RelDT'T, e.g. the following theorem is proven by translation to ReIDTT
[PhD, thm. 9.5.1]:

Theorem 4.1. There exists a non-trivial model of DTT with Agda-style cumulativity, in which any func-
tion f : Uy — A where A : Uy, is constant.

Practical importance A type system like ReIDTT [ND18a], with infinitely many modes and modal-
ities, is at first sight likely unappetizing to the practical programmer, even when they are familiar with
DTT. However, a few modes RelDTT already appear in a language like Haskell, with programs living at
mode 0, types at mode 1 and kinds at mode 2. Adding a mode —1 for proofs does not seem outrageous.
As shown in the original paper [ND18a, fig. 2], all modalities up to mode 1 can be expressed in terms of
modalities that were known prior to ReIDTT and/or structurality, the novel modality by which algebras
depend on their structure.

Haskell unfortunately has completely different languages at mode 0 and 1. A general theory of rela-
tional modalities may advise more consistent language development in the future. And while full ReIDTT
provides w modes, most non-logicians will only need the lowest few which are in fact relatively familiar,
and need not be hampered by the existence of others.

An understandable concern is that programming becomes ‘very complicated’ if we have to constantly
think about which modality we should annotate our functions with. I suggest to look at this from a
different angle. Supposing one needs to rely on a ‘free’ parametricity theorem, would programmers rather
go back to all code they have been relying on and recursively prove that it satisfies its parametricity
predicate, or would they rather put a few modalities here and there to point out to the type-checker that,
by non-violation, their program is parametric?

4.3 Transpension: The Right Adjoint to the II-type

The observation by Dominique Devriese that it seemed impossible to prove parametricity of System F in
ParamDTT, sparked an investigation of the comparative expressivity of internal parametricity operators
[ND18b]. The crux, it turned out, is that the operators by BCM [BCM15, Mou16] do something that Glue
and Weld do not: promote cells of a cubical set to a higher dimension. Of course abstraction over a di-
mension does the opposite, e.g. a square in IT(i : I).A where i ranges over the interval (i.e. a line), is a cube
in A. In [PhD, ch. 7][ND20] and its associated technical report [Nuy20b], we introduce the transpension
type former () i.A which is right adjoint to the function type. We explain how this operation, together
with the strictness axiom [OP18] and a pushout type former [PhD, ch. 6] can be used to reconstruct all
existing internal presheaf operators that we are aware of.

The semantics of the transpension type and its associated operators are parametrized by an almost
arbitrary functor which we call a multiplier and which interprets context extension with a shape variable
u : U. We introduce a series of criteria (including ‘affine’ and ‘cartesian’) for classifying multipliers and
deduce internal properties depending on those criteria.

4.4 Robust Notions of Fibrancy

Many type systems modelled in presheaf categories interpret the type judgement not in the standard
way, but have to restrict to a subset of all presheaf types. As mentioned, in order to validate Reynolds’
identity extension lemma, in models of parametricity we need to restrict to discrete types [AGJ14, NVD17,
ND18a, CH19]. In models of HOTT [KLV12, CCHM17], one restricts to Kan fibrant types, which are types
equipped with appropriate composition operations for (higher) paths. In presheaf models of directed type
theory [RS17, WL20], one is interested in Segal fibrant types (with composition operations for (higher)
morphisms), covariant types (essentially Haskell’s functors), and other notions.” In models of guarded
type theory [BM18], one restricts to clock-irrelevant types. All of these conditions are notions of fibrancy,
which means that they arise from a factorization system on the presheaf CwF.

7Restricting to those types is in general not feasible, as they are not closed under important type formers.



Because the most obvious interpretation for the parametric quantifier 3 in ParamDTT does not auto-
matically preserve discreteness, we instead have to use its ‘discrete replacement’ to actively force it to be
discrete. Hence, we want this discrete replacement operation to be stable under substitution. The techni-
cal report on ParamDTT [Nuy17] contains an unwieldy ad hoc proof that this is the case. The prospect
of developing RelDTT and NatDTT asked for a more principled approach, so I developed the robustness
criterion [Nuy18b][PhD, §8.4]. Robust notions of fibrancy, such as discreteness [PhD, ex. 8.4.7], automat-
ically come with a fibrant replacement monad which is stable under substitution and can be axiomatized
internally. Fibrant types can then be defined internally as algebras of this monad.

Moreover, robust fibrancy has the property that the function type is fibrant as soon as its codomain
is. Although Segal fibrancy [PhD, ex. 8.1.8] is not robust, we can follow Boulier and Tabareau’s approach
for Kan fibrancy [BT17] in moving to contextual fibrancy, in which case we can satisfy the robustness
criterion and thus model the directed function type under restricted circumstances [PhD, prop. 8.6.2] for
some notion of Segal fibrancy.

4.5 MTT: Well-Behaved Multimode Type Theory

Following Pfenning [Pfe01] and Abel [Abe06, Abe08], we had formulated ParamDTT and RelDTT with
a left division operation on contexts: whenever the type-checker moves into a modal subterm, its left
Galois connection (left adjoint) is applied to all modality annotations in the context.

While trying to implement a proof-assistant for these type systems [Nuy19, ND19], I noticed that
computation of the left division could be postponed until usage of a variable subject to the division, and
even then could be brought to the right again, so that the division in fact never needs to be computed. As
such, I was able to turn the division from a context operation into a context constructor, inadvertently
creating a hybrid with the Fitch-style approach of modal type theory [BGM17, BCM*20, GSB19].

This hybrid multimode type system subsequently underwent the scrutiny of my co-authors Daniel
Gratzer, G. A. Kavvos and Lars Birkedal — who praised it for having a cleaner substitution calculus
than other modal type systems, be they Fitch-style or based on left division — which resulted in a pa-
per [GKNB20b][PhD, §5.3], a journal paper [GKNB21] and an extensive technical report [GKNB20a].

Applications MTT is parametrized by a mode theory, specifying the available modes and modalities
and their laws, which can be instantiated at will. Applications of modal type theory in general in-
clude: modal logic (eponymously) [PD01], variance of functors [Abe06, Abe08, LH11], intensionality
vs. extensionality [Pfe01], irrelevance [Pfe01, Miq01, BB08, MS08, Ree03, AS12, AVW17, ND18a], shape-
irrelevance [AVW17, ND18a], parametricity [NVD17], axiomatic cohesion [LS16], globality [LOPS18],
guarded type theory [Nak00, CBGB16, BGC*16, VvdW19, Gua18] and the metatheory of programming
languages [Ste22, BKS21].

Sikkel and general modular presheaf type theory Different extensions of type theory have been
developed for different purposes. This is not a good situation from a programmer’s perspective: when
faced with a certain problem that is solved by a language extension, the entire program needs to be
moved to a different flavour of type theory. When faced with a second such problem, the corresponding
extension may not be (known to be) compatible with the previous one.

We would instead prefer a situation where a language extension can be used only in the program
module that requires it. Sikkel [CND22] is a library for Agda, based on (currently simply-typed) MTT,
that achieves exactly that. Users can write MTT programs in a deeply embedded implementation of
MTT, which are interpreted in a presheaf model built in Agda. If the final result lives at the trivial mode,
interpreted in a set model, then we can extract an ordinary Agda program.

5 Towards Natural Dependent Type Theory (NatDTT)

A higher directed type system providing functoriality and naturality for free as sketched in sections 1
and 3 has several requirements, which are also found in the diagram on page 10:



Variance Some functions will be increasing/covariant, some decreasing/contravariant, some neither.
In order to keep track of this, we need a modal type system such as MTT.

Non-self-classification In ReIDTT [ND18a], we have abandoned the idea that types and their kinds
should be the same thing, and instead used a multimode system [LS16] to embrace the diversity. This still
applies — and perhaps in a more familiar way — to a directed system. There, we may still be concerned
with types that are essentially sets, such as Bool or N, and it will be pointless to consider the variance
of functions to or from such types. On the other hand, a universe of such sets is of course a category,
or indeed a pro-arrow equipped category [nLa20a]. A universe of (pro-arrow equipped) categories, is
then a 2-category, or indeed a 2-dimensional generalization of a pro-arrow equipped category. On a 2-
category C, we can reverse 1-arrows (yielding C°P) or 2-arrows (yielding C°), so that we clearly need
more modalities for variance of functors between 2-categories than between 1-categories. A multimode
type system instantiating MTT is an excellent answer to this phenomenon.

Multimode HoTT 'This idea already pays off in undirected HoT T. Types in HoT T are usually viewed
as oo-groupoids, which can be thought of as topological spaces. This is great for topologists seeking to
formalize their results in a proof assistant, but of little use for practical programmers, who are typically
only faced with data types (sets or 0-groupoids), kinds (1-groupoids), propositions (—1-groupoids) and
very occasionally a universe of kinds (2-groupoid). These people will find little joy in having to prove the
groupoid dimension (h-level) of their types. A multimode system with a mode for every h-level would be
more suited when applying HoTT to practical programming.

Pro-arrows, structurality & naturality One of our main desiderata was to be able to reason about
naturality, for which we would like to have a modality. ParamDTT [NVD17] features bridges (relations)
between types, across which we can consider heterogeneous paths (proofs of relatedness). Parametric
dependencies were identified to be those that promote bridges to paths. In RelDTT, we additionally dis-
covered the novel structural modality by which algebras depend on their structure and which is right
adjoint to parametricity. Directifying all of this, bridges (relations) should turn into pro-arrows (profunc-
tors), across which we can consider heterogeneous morphisms. Natural dependencies will be those that
promote pro-arrows to morphisms and the structural modality will be paramount to obtaining a sensible
directed structure identity principle (SIP) [Uni13, §9.8].

Twisted interval In cubical homotopy type theory [CCHM17, for example], propositional equality
a =4 b is proven by giving a function f : I — A from the interval I, a special type which has essentially
two elements 0 and 1 that are considered equal, such that the ‘endpoints’ f 0 and f 1 are definitionally
(computably) equal to a and b respectively. In directed type theory, this is difficult, because the Hom-
type is contravariant in the source and covariant in the target, so that application to 0 of functions over
the interval would have to have different variance than application to 1. Strikingly, Pinyo and Kraus’s
twisted prism functor [PK19][PhD, ex. 7.4.11] gives us exactly that: it comes with natural transformations
(idw,0) : W — W xTand (idw,1) : W — W x L. The techniques related to the transpension type
[ND20][PhD, ch. 7] will allow us to some extent to treat the twisted prism functor internally as though it
were a (special) type. Weinberger [Wei22, §7.2.3] makes a similar observation.

Fibrancy See section 4.4.

Internal presheaf operators Generalizing internal parametricity operators, we would like internal
operators that allow us to inhabit naturality squares simply from the knowledge that a function type-
checks as natural. From [ND20][PhD, ch. 7], we know that the transpension type and the strictness
axiom together give us all the wealth of currently known presheaf operators, which is encouraging.



Cubical HoTT Parametricity Modalities with Internal
[CCHM17] [Rey83, AGJ14] left division /‘ """""""""""""""""" Kan universe
: [PhD, §9.1] [Pfe01, Abe10] : [LOPS18]
§ 5 DRAs
/_ .......................... [BCM+20]
X [PhD, §5.2]
Qe _/
Morphisms, P
ng't. tratx_lsfs, Adjoint Internal
a g}lr(l;N llgsns logic parametricity
[Nuy17, ch. 2] [leé] [Mou16, BCM15]
[PhD, §5.1] =
VY vY TY VY :
MTT ranspension Internal
ParamDTT -5 RelDTT | [GKNB21] || & multipliers presheaf
[NVD17, Nuy17] [ND18a, Nuy18a]
[PhD, §9.2] [PhD, ch. 9] [GKNB20a] [ND20, Nuy20b] operators
i i [PhD, §5.3] [PhD, ch. 7] _ (PhD, §7.8]
Robust
(contextual) gﬁtre;rrll:}lj
fibrancy | i i | : :
[PhD, §8.1-4] /- [PhD. §8.5-7]
A
Contéxtual . . /- . . \
. Sikkel : Twisted prism : I
Kan fibrancy P [CND22] : functor [PK19] :
[BT17] U g | J
v
Pro-arrows, v % V
structurality 1N01'1ﬁ_ self- Variance ’_I“WIStE(}
& naturality classi :catlon : mte:rva

. -

vy v
Ho"_I'T ........................... > Multimode
[Uni13] HoTT

VYV
Formalized
mathematics

General
modular

g

presheaf TT
VY VYV
NatDTT P
[PhD, §1.2] Py
[PhD, §10.1.1] .
[Nuy20c]

Practical
verified

pro %r&mming



References

[Abe06]

[Abe0s]

[Abe10]
[AGJ14]

[AM13]

[AS12]

[AVW17]

[BBOS]

[BCH14]

[BCM15]

[BCM*20]

[BGC*16]

[BGM17]

[BJP12]

Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD
thesis, Ludwig-Maximilians-Universitit Minchen, 2006. URL: http://www.cse.
chalmers.se/abela/diss.pdf.

Andreas Abel. Polarised subtyping for sized types. Mathematical Structures in Computer
Science, 18(5):797-822, 2008. doi:10.1017/5S0960129508006853.

Andreas Abel. Miniagda: Integrating sized and dependent types. In PAR 2010, 2010.

Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent
type theory. In Principles of Programming Languages, 2014. doi:10.1145/2535838.
2535852.

Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. In
Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Func-
tional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 197-208. ACM,
2013. doi:10.1145/2500365.2500597.

Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative
type theory. Logical Methods in Computer Science, 8(1):1-36, 2012. TYPES’10 special issue.
doi:http://dx.doi.org/10.2168/LMCS-8(1:29)2012.

Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. Normalization by evaluation for
sized dependent types. Proc. ACM Program. Lang., 1(ICFP):33:1-33:30, August 2017. URL:
http://doi.acm.org/10.1145/3110277,d0oi:10.1145/3110277.

Bruno Barras and Bruno Bernardo. The Implicit Calculus of Constructions as a Programming
Language with Dependent Types, pages 365-379. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008. doi:10.1007/978-3-540-78499-926.

Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in Cubical Sets. In
19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26, pages
107-128, Dagstuhl, Germany, 2014. URL: http://drops.dagstuhl.de/opus/
volltexte/2014/4628,doi:10.4230/LIPIcs.TYPES.2013.107.

Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of para-
metric type theory. Electron. Notes in Theor. Comput. Sci., 319:67 — 82, 2015. doi:http:
//dx.doi.org/10.1016/j.entcs.2015.12.006.

Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Magelberg, Andrew M.
Pitts, and Bas Spitters. Modal dependent type theory and dependent right adjoints.
Mathematical Structures in Computer Science, 30(2):118-138, 2020. doi:10.1017/
S0960129519000197.

Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Moagelberg, and Lars
Birkedal. Guarded dependent type theory with coinductive types. In FOSSACS ’16, 2016.
doi:10.1007/978-3-662-49630-5“2.

Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Mogelberg. The clocks are tick-
ing: No more delays! In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-12, 2017. doi:10.1109/LICS.
2017.8005097.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free — para-
metricity for dependent types. Journal of Functional Programming, 22(02):107-152, 2012.
URL: https://publications.lib.chalmers.se/cpl/record/index.
xsql?pubid=135303,doi:10.1017/S0956796812000056.

11


http://www.cse.chalmers.se/~abela/diss.pdf
http://www.cse.chalmers.se/~abela/diss.pdf
https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/2500365.2500597
https://doi.org/http://dx.doi.org/10.2168/LMCS-8(1:29)2012
http://doi.acm.org/10.1145/3110277
https://doi.org/10.1145/3110277
https://doi.org/10.1007/978-3-540-78499-9_26
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=135303
https://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=135303
https://doi.org/10.1017/S0956796812000056

[BKS21]

[BM18]

[Bra13]

[BT17]

[CBGB16]

[CCHM17]

[CH19]

[CND22]

[Coq14]

[Dyb9e6]

[GKNB20a]

[GKNB20b]

[GKNB21]

[GSB19]

[Gua18]

Rafaél Bocquet, Ambrus Kaposi, and Christian Sattler. Induction principles for type theories,
internally to presheaf categories. CoRR, abs/2102.11649, 2021. URL: https://arxiv.
org/abs/2102.11649,arXiv:2102.11649.

Ales Bizjak and Rasmus Ejlers Mogelberg. Denotational semantics for guarded dependent
type theory. CoRR, abs/1802.03744, 2018. URL: http://arxiv.org/abs/1802.
03744,arXiv:1802.03744.

Edwin Brady. Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of Functional Programming, 23:552-593, 2013.

Simon Boulier and Nicolas Tabareau. Model structure on the universe in a two level type the-
ory. Working paper or preprint, 2017. URL: https://hal.archives-ouvertes.
fr/hal-01579822.

Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. The guarded
lambda-calculus: Programming and reasoning with guarded recursion for coinductive types.
Logical Methods in Computer Science, 12(3), 2016. doi:10.2168/LMCS-12(3:7)
2016.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical type theory:
A constructive interpretation of the univalence axiom. FLAP, 4(10):3127-3170, 2017. URL:
http://www.cse.chalmers.se/simonhu/papers/cubicaltt.pdf.

Evan Cavallo and Robert Harper. Parametric cubical type theory. CoRR, abs/1901.00489,
2019. arXiv:1901.00489.

Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. Sikkel: Multimode simple type
theory as an agda library. In MSFP, 2022. URL: http://eptcs.web.cse.unsw.
edu.au/paper.cgi?MSFP2022.5.pdf.

The Coq Development Team. The Coq proof assistant: reference manual, 2014. v8.4, https:
//coq.inria.fr/refman/.

Peter Dybjer. Internal type theory, pages 120-134. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1996. doi:10.1007/3-540-61780-966.

Daniel Gratzer, Alex Kavvos, Andreas Nuyts, and Lars Birkedal. Type theory a la mode. Pre-
print, 2020. URL: https://anuyts.github.io/files/mtt-techreport.
pdf.

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent type
theory. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS
’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbriicken, Germany,
Fuly 8-11, 2020, pages 492-506. ACM, 2020. doi:10.1145/3373718.3394736.

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. = Multimodal De-
pendent Type Theory.  Logical Methods in Computer Science, Volume 17, Issue 3,
July 2021. URL: https://1lmcs.episciences.org/7713, doi:10.46298/
Imcs-17(3:11)2021.

Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a modal dependent type
theory. Proc. ACM Program. Lang., pages 107:1-107:29, 2019. doi:10.1145/3341711.

Adrien Guatto. A generalized modality for recursion. In Proceedings of the 33rd Annual
ACMY/IEEE Symposium on Logic in Computer Science, LICS *18. ACM, 2018. doi:10.1145/
3209108.3209148.

12


https://arxiv.org/abs/2102.11649
https://arxiv.org/abs/2102.11649
http://arxiv.org/abs/2102.11649
http://arxiv.org/abs/1802.03744
http://arxiv.org/abs/1802.03744
http://arxiv.org/abs/1802.03744
https://hal.archives-ouvertes.fr/hal-01579822
https://hal.archives-ouvertes.fr/hal-01579822
https://doi.org/10.2168/LMCS-12(3:7)2016
https://doi.org/10.2168/LMCS-12(3:7)2016
http://www.cse.chalmers.se/~simonhu/papers/cubicaltt.pdf
http://arxiv.org/abs/1901.00489
http://eptcs.web.cse.unsw.edu.au/paper.cgi?MSFP2022.5.pdf
http://eptcs.web.cse.unsw.edu.au/paper.cgi?MSFP2022.5.pdf
https://coq.inria.fr/refman/
https://coq.inria.fr/refman/
https://doi.org/10.1007/3-540-61780-9_66
https://anuyts.github.io/files/mtt-techreport.pdf
https://anuyts.github.io/files/mtt-techreport.pdf
https://doi.org/10.1145/3373718.3394736
https://lmcs.episciences.org/7713
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1145/3209108.3209148

[Hof97]

[How80]

[Hub16]

[KL12]

[KLA*]

[KLV12]

[LH11]

[LOPS18]

[LS16]

[Miqo1]

[ML82]

[ML98]

[Mog89]

[Mou16]

[MS08]

[Nako0]

Martin Hofmann. Syntax and Semantics of Dependent Types, chapter 4, pages 79-130. Cam-
bridge University Press, 1997.

William A. Howard. The formulae-as-types notion of construction, pages 479-490. Academic
press, 1980. Original manuscript from 1969.

Simon Huber. Cubical Interpretations of Type Theory. PhD thesis, University of Gothen-
burg, Sweden, 2016. URL: http://www.cse.chalmers.se/simonhu/misc/
thesis.pdf.

Chantal Keller and Marc Lasson. Parametricity in an impredicative sort. In Computer Sci-
ence Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL
2012, September 3-6, 2012, Fontainebleau, France, pages 381-395, 2012. doi:10.4230/
LIPIcs.CSL.2012.381.

Chantal Keller, Marc Lasson, Abhishek Anand, Pierre Roux, Emilio Jests Gallego Arias, Cyril
Cohen, and Matthieu Sozeau. Paramcoq. 2012-2018. URL: https://github.com/
cog-community/paramcoq.

Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model of
univalent foundations. 2012. Preprint, http://arxiv.org/abs/1211.2851.

Daniel R. Licata and Robert Harper. 2-dimensional directed type theory. Electr. Notes Theor.
Comput. Sci., 276:263-289, 2011. doi:10.1016/j.entcs.2011.09.026.

Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in models of
homotopy type theory. In 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, pages 22:1-22:17, 2018. doi:10.
4230/LIPIcs.FSCD.2018.22.

Daniel R. Licata and Michael Shulman. Adjoint Logic with a 2-Category of Modes, pages 219-
235. Springer International Publishing, 2016. doi:10.1007/978-3-319-27683-0
16.

Alexandre Miquel. The implicit calculus of constructions. In TLCA, pages 344-359, 2001.
doi:10.1007/3-540-45413-627.

Per Martin-Lo6f. Constructive mathematics and computer programming. In Logic, Methodol-
ogy and Philosophy of Science VI, pages 153-175, 1982.

Per Martin-Lof. An intuitionistic theory of types. In Twenty-five years of constructive type
theory, pages 127-172. Oxford University Press, 1998.

Eugenio Moggi. Computational lambda-calculus and monads. In 4th annual symposium on
logic in computer science, pages 14-23. IEEE Press, 1989.

Guilhem Moulin. Internalizing Parametricity. PhD thesis, Chalmers University of Tech-
nology, Sweden, 2016. URL: publications.lib.chalmers.se/records/
fulltext/235758/235758.pdf.

Nathan Mishra-Linger and Tim Sheard. Erasure and Polymorphism in Pure Type Systems,
pages 350-364. 2008. doi:10.1007/978-3-540-78499-925.

Hiroshi Nakano. A modality for recursion. In 15th Annual IEEE Symposium on Logic in Com-
puter Science, Santa Barbara, California, USA, June 26-29, 2000, pages 255-266. IEEE Com-
puter Society, 2000. doi:10.1109/LICS.2000.855774.

13


http://www.cse.chalmers.se/~simonhu/misc/thesis.pdf
http://www.cse.chalmers.se/~simonhu/misc/thesis.pdf
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://github.com/coq-community/paramcoq
https://github.com/coq-community/paramcoq
http://arxiv.org/abs/1211.2851
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/3-540-45413-6_27
publications.lib.chalmers.se/records/fulltext/235758/235758.pdf
publications.lib.chalmers.se/records/fulltext/235758/235758.pdf
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1109/LICS.2000.855774

[ND18a]

[ND18b]

[ND19]

[ND20]

[nLa20a]

[nLa20b]

[Nor09]

[Nor19]

[Nuy15]

[Nuy17]

[Nuy18a]

[Nuy18b]

[Nuy19]

[Nuy20a]

[Nuy20b]

[Nuy20c]

[NVD17]

Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for
parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in de-
pendent type theory. In Logic in Computer Science (LICS) 2018, Oxford, UK, July 09-12, 2018,
pages 779-788, 2018. doi:10.1145/3209108.3209119.

Andreas Nuyts and Dominique Devriese. Internalizing Presheaf Semantics: Charting
the Design Space. In Workshop on Homotopy Type Theory / Univalent Foundations,
2018. URL: https://hott-uf.github.io/2018/abstracts/HOoTTUF18
paperl.pdf.

Andreas Nuyts and Dominique Devriese. Menkar: Towards a multimode presheaf proof
assistant. In TYPES, 2019.

Andreas Nuyts and Dominique Devriese. Transpension: The right adjoint to the pi-type,
2020. arXiv:2008.08533.

nLab authors. 2-category equipped with proarrows, April 2020. Revision 32. URL:
http://ncatlab.org/nlab/show/2-category%20equipped%20with%
20proarrows.

nLab authors. quasi-category, April 2020. Revision 69. URL: http://ncatlab.org/
nlab/show/quasi-category.

Ulf Norell. Dependently typed programming in Agda. In Advanced Functional Programming,
pages 230-266. Springer, 2009.

Paige Randall North. Towards a directed homotopy type theory. Proceedings of the Thirty-
Fifth Conference on the Mathematical Foundations of Programming Semantics, MFPS 2019, Lon-
don, UK, June 4-7, 2019, pages 223-239, 2019. doi:10.1016/j.entcs.2019.09.
012.

Andreas Nuyts. Towards a directed homotopy type theory based on 4 kinds of variance.
Master’s thesis, KU Leuven, Belgium, 2015. URL: https://anuyts.github.io/
files/mathesis.pdf.

Andreas Nuyts. A model of parametric dependent type theory in bridge/path cubical sets.
Technical report, KU Leuven, Belgium, 2017. Subsumed in [Nuy18a]. URL: https://
arxiv.org/abs/1706.04383.

Andreas Nuyts. Presheaf models of relational modalities in dependent type theory. CoRR,
abs/1805.08684, 2018. arXiv:1805.08684.

Andreas Nuyts. Robust notions of contextual fibrancy. In Workshop on Homotopy Type
Theory / Univalent Foundations, 2018. URL: https://hott-uf.github.io0/2018/
abstracts/HoTTUF18paper2.pdf.

Andreas Nuyts. Menkar. https://github.com/anuyts/menkar, 2019.

Andreas Nuyts. Contributions to Multimode and Presheaf Type Theory. PhD thesis, KU Leuven,
Belgium, 8 2020. URL: https://anuyts.github.io/files/phd.pdf

Andreas Nuyts. The transpension type: Technical report, 2020. arXiv:2008.08530.

Andreas Nuyts. A vision for natural type theory. Unpublished note, 2020. URL: https:
//anuyts.github.io/files/nattt-vision.pdf.

Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for depen-
dent type theory. PACMPL, 1(ICFP):32:1-32:29, 2017. URL: http://doi.acm.org/
10.1145/3110276,doi:10.1145/3110276.

14


https://doi.org/10.1145/3209108.3209119
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_1.pdf
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_1.pdf
http://arxiv.org/abs/2008.08533
http://ncatlab.org/nlab/show/2-category%20equipped%20with%20proarrows
http://ncatlab.org/nlab/show/2-category%20equipped%20with%20proarrows
http://ncatlab.org/nlab/show/quasi-category
http://ncatlab.org/nlab/show/quasi-category
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/j.entcs.2019.09.012
https://anuyts.github.io/files/mathesis.pdf
https://anuyts.github.io/files/mathesis.pdf
https://arxiv.org/abs/1706.04383
https://arxiv.org/abs/1706.04383
http://arxiv.org/abs/1805.08684
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_2.pdf
https://hott-uf.github.io/2018/abstracts/HoTTUF18_paper_2.pdf
https://github.com/anuyts/menkar
https://anuyts.github.io/files/phd.pdf
http://arxiv.org/abs/2008.08530
https://anuyts.github.io/files/nattt-vision.pdf
https://anuyts.github.io/files/nattt-vision.pdf
http://doi.acm.org/10.1145/3110276
http://doi.acm.org/10.1145/3110276
https://doi.org/10.1145/3110276

[OP18]

[PDO1]

[Pfeo1]

[PK19]

[PMD15]

[Ree03]

[Rey83]

[RS17]

[Ste22]

[Uni13]

[VvdW19]

[Wad89]

[Wei22]

[WL20]

Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos. Logical
Methods in Computer Science, 14(4), 2018. doi:10.23638/LMCS-14(4:23)2018.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511-540, 2001. doi:10.1017/
50960129501003322.

Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory.
In LICS °01, pages 221-230, 2001. doi:10.1109/LICS.2001.932499.

Gun Pinyo and Nicolai Kraus. From cubes to twisted cubes via graph morphisms in type
theory. CoRR, abs/1902.10820, 2019. URL: http://arxiv.org/abs/1902.10820,
arXiv:1902.10820.

Andrew M. Pitts, Justus Matthiesen, and Jasper Derikx. A dependent type theory
with abstractable names.  Electronic Notes in Theoretical Computer Science, 312:19 -
50, 2015. Ninth Workshop on Logical and Semantic Frameworks, with Applications
(LSFA 2014). URL: http://www.sciencedirect.com/science/article/
pii/S1571066115000079, doi:https://doi.org/10.1016/j.entcs.
2015.04.003.

Jason Reed. Extending higher-order unification to support proof irrelevance. In TPHOLs
2003, pages 238-252. 2003. doi:10.1007/1093075516.

John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages
513-523, 1983.

E. Riehl and M. Shulman. A type theory for synthetic co-categories. ArXiv e-prints, May
2017. arXiv:1705.07442.

Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metathe-
ory of Cubical Type Theory. 4 2022. URL: https://kilthub.cmu.edu/
articles/thesis/FirstStepsinSyntheticTaitComputability
TheObjectiveMetatheoryofCubicalTypeTheory/19632681,
doi:10.1184/R1/19632681.v1.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Math-
ematics. http://homotopytypetheory.org/book,IAS, 2013.

Niccolo Veltri and Niels van der Weide. Guarded recursion in agda via sized types. In
Herman Geuvers, editor, 4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages
32:1-32:19. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2019. doi:10.4230/
LIPIcs.FSCD.2019.32.

Philip Wadler. Theorems for free! In FPCA ’89, pages 347-359, New York, NY, USA, 1989.
ACM. doi:10.1145/99370.99404.

Jonathan Weinberger. A Synthetic Perspective on (oo, 1)-Category Theory: Fibrational and
Semantic Aspects. PhD thesis, TU Darmstadt, Germany, 2022. URL: https://arxiv.
org/abs/2202.13132,arXiv:2202.13132.

Matthew Z. Weaver and Daniel R. Licata. A constructive model of directed univalence in
bicubical sets. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, edi-
tors, LICS 20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbriicken,
Germany, July 8-11, 2020, pages 915-928. ACM, 2020. doi:10.1145/3373718.
3394794.

15


https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1109/LICS.2001.932499
http://arxiv.org/abs/1902.10820
http://arxiv.org/abs/1902.10820
http://www.sciencedirect.com/science/article/pii/S1571066115000079
http://www.sciencedirect.com/science/article/pii/S1571066115000079
https://doi.org/https://doi.org/10.1016/j.entcs.2015.04.003
https://doi.org/https://doi.org/10.1016/j.entcs.2015.04.003
https://doi.org/10.1007/10930755_16
http://arxiv.org/abs/1705.07442
https://kilthub.cmu.edu/articles/thesis/First_Steps_in_Synthetic_Tait_Computability_The_Objective_Metatheory_of_Cubical_Type_Theory/19632681
https://kilthub.cmu.edu/articles/thesis/First_Steps_in_Synthetic_Tait_Computability_The_Objective_Metatheory_of_Cubical_Type_Theory/19632681
https://kilthub.cmu.edu/articles/thesis/First_Steps_in_Synthetic_Tait_Computability_The_Objective_Metatheory_of_Cubical_Type_Theory/19632681
https://doi.org/10.1184/R1/19632681.v1
http://homotopytypetheory.org/book
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://doi.org/10.1145/99370.99404
https://arxiv.org/abs/2202.13132
https://arxiv.org/abs/2202.13132
http://arxiv.org/abs/2202.13132
https://doi.org/10.1145/3373718.3394794
https://doi.org/10.1145/3373718.3394794

	1 Motivation: Higher-dimensional Directed Type Theory
	2 Context
	3 Higher Directed Type Theory in Practice
	4 Contributions
	4.1 ParamDTT: Parametric Quantifiers
	4.2 RelDTT: Degrees of Relatedness
	4.3 Transpension: The Right Adjoint to the Pi-type
	4.4 Robust Notions of Fibrancy
	4.5 MTT: Well-Behaved Multimode Type Theory

	5 Towards Natural Dependent Type Theory (NatDTT)

