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Abstract (EN)

In modal type theory, all functions and all variables are annotated with a
modality describing the behaviour of the dependency. Applications include:
modal logic (eponymously), variance of functors, parametricity and proof-
irrelevance. The collection of modalities typically has the structure of an
ordered monoid. Sometimes, the set of available modalities µ for functions
(µ p x : A)→ B depends on the types A and B. For example, when considering
functions from N to Bool, we need not distinguish between parametric and
non-parametric functions. Recently, Licata and Shulman have explained these
phenomena by moving from an ordered monoid to a 2-category, whose objects
are called modes and whose morphisms serve as modalities. In this case, we
speak of multimode type theory. Here, one assigns a mode to every type, and
the modality of a function must match the domain and codomain modes.

Presheaf models of dependent type theory have been successfully applied to
model homotopy type theory (HoTT), parametricity, and directed and guarded
type theory. There has been considerable interest in internalizing aspects of
these presheaf models, either to make the resulting language more expressive
(e.g. by providing internal parametricity operators for proving free theorems),
or in order to carry out further reasoning internally, i.e. within type theory,
allowing greater abstraction and sometimes automated verification.

This thesis makes a number of contributions in multimode and presheaf type
theory, motivated by the preparation of the development of a higher-dimensional
directed dependent type system with interacting modalities for functoriality and
naturality. In such a type system, naturality of a construction could be asserted
by construction, i.e. by non-violation, rather than by a tedious naturality proof.

In joint work with Gratzer, Kavvos and Birkedal, we developed a multimode type
system MTT which is parametrized by an arbitrary external 2-category called
the mode theory. We discuss semantics and demonstrate the good syntactic
properties of this type system by being able to prove a canonicity result.

xi



xii ABSTRACT (EN)

We give an overview of some base-category-agnostic presheaf operators including
the Glue-type from cubical type theory, its dual Weld and the strictness axiom.
We sketch a type-checking algorithm that is not specialized to some cubical
system and that takes into account proposition variables.

While the constructions of presheaf models largely follow a common pattern,
approaches towards internalization do not. Throughout the literature, various
internal presheaf operators can be found and little is known about their relative
expressivity. Moreover, some of these require that variables whose type is a
shape (representable presheaf) be used affinely. We propose a novel type former,
the transpension type, which is right adjoint to universal quantification over a
shape. We give general typing rules and a presheaf semantics in terms of base
category functors dubbed multipliers. We demonstrate how the transpension
type and the strictness axiom can be combined to implement all and improve
some of the internal presheaf operators that we are aware of.

Many presheaf models of type theory do not take into account all types of the
general presheaf model, but only fibrant types. Notions of fibrancy types include:
discrete types (for parametricity), Kan types (for HoTT), Segal and covariant
types (for directed type theory) and clock-irrelevant types (for guarded type
theory). For reasons already mentioned, it is worthwhile to try and internalize
as much of the reasoning about fibrancy as possible. A central concept in
internalizing fibrancy is the fibrant replacement monad acting on types. We
introduce the robustness criterion for notions of fibrancy, which asserts that the
fibrant replacement is stable under substitution, a necessity for internalization.
As a bonus, it also asserts fibrancy of the Π-type if its codomain is fibrant.
We demonstrate how Kan and Segal fibrancy fail to be robust, and how this
can be remedied by considering contextual fibrancy. We introduce the notion
of damped natural weak factorization systems as a categorical foundation for
contextual fibrancy. We axiomatize an internal fibrant replacement operation
and show how it can be used to define and reason about fibrancy internally. In
a few examples, we also discuss how fibrancy can sometimes be defined more
directly internally, sometimes using the transpension type.

Prior to most work in this thesis, we had contributed two type systems
ParamDTT (with Vezzosi and Devriese) and RelDTT. The former features
modalities for parametricity and ad hoc polymorphism, and the latter extends
that to a more general mode theory that provides also irrelevance, shape-
irrelevance and a novel structural modality. These type systems used Glue
and Weld as internal parametricity operators. In this thesis, we give a high-
level discussion of these systems and their semantics and explain how they are
(almost) an instance of MTT. We also explain how the robustness criterion and
the internalization of fibrancy apply to the notion of discreteness that we use
to validate Reynolds’ identity extension lemma.



Abstract (NL)

Inmodale typetheorie worden alle functies en alle variabelen geannoteerd met een
modaliteit die het gedrag van de afhankelijkheid beschrijft. Enkele toepassingen
zijn: modale logica (vandaar de naam), variantie van functoren, parametriciteit
en bewijsirrelevantie. De verzameling van modaliteiten heeft doorgaans de
structuur van een geordende monoïde. Soms hangt het af van de types A en
B welke modaliteiten µ er ter beschikking zijn voor functies (µ p x : A) → B.
Voor functies van N naar Bool hoeven we bv. geen onderscheid te maken tussen
parametrische en niet-parametrische functies. Recent hebben Licata en Shulman
dit fenomeen verklaard door van een geordende monoïde over te gaan op een
2-categorie, waarvan men de objecten modi noemt en waarvan de morfismen
dienen als modaliteiten. In dit geval spreken we van multimodustypetheorie.
Daar kent men aan elk type een modus toe en moet de modaliteit van een
functie overeenkomen met de modi van domein en codomein.

Preschoofmodellen van dependent type theory worden met succes gebruikt om
homotopietypetheorie (HoTT), parametriciteit en directed en guarded type
theory te modelleren. Er gaat de laatste tijd veel aandacht naar het internaliseren
van aspecten van deze preschoofmodellen, hetzij om de resulterende taal
expressiever te maken (bv. door interne parametriciteitsoperatoren aan te
bieden om free theorems te bewijzen), hetzij om verdere argumentatie intern
in typetheorie uit te voeren, wat een grotere abstractie en soms automatische
verificatie toelaat.

Deze thesis levert een aantal bijdragen aan multimodus- en preschooftypetheorie
met het oog op de ontwikkeling van een hoger-dimensionaal directed dependent
typesysteem met interagerende modaliteiten voor functorialiteit en natuur-
lijkheid. In een dergelijk typesysteem zou natuurlijkheid van een constructie
kunnen blijken per constructie, uit het niet-schenden ervan, in plaats van uit
langdradige natuurlijkheidsbewijzen.

xiii
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In samenwerking met Gratzer, Kavvos en Birkedal hebben we een multimodus-
typesysteem MTT ontwikkeld met als parameter een externe 2-categorie naar
keuze, genaamd de modustheorie. We bespreken de semantiek en demonstreren
de goede syntactische eigenschappen van dit systeem in de zin dat we een
canoniciteitsresultaat kunnen bewijzen.

We geven een overzicht van enkele basiscategorie-agnostische preschoofope-
ratoren waaronder het Glue-type uit cubical type theory, zijn duale Weld en
het strictness-axioma. We schetsen een typechecking-algoritme dat niet is
toegespitst op één of ander cubical systeem en dat propositievariabelen toelaat.

Hoewel constructies van preschoofmodellen grotendeels éénzelfde patroon volgen,
geldt dit niet voor methoden om ze te internaliseren. In de literatuur vinden
we allerlei preschoofoperatoren en er is weinig gekend over hun relatieve
expressiviteit. Bovendien vereisen sommige dat variabelen met als type een
shape (een representeerbare preschoof) affien gebruikt worden. Wij stellen een
nieuwe typeconstructor voor, het transpensietype, dat rechts adjunct is aan
universele kwantificatie over een shape. We geven algemene typeringsregels
en een preschoofsemantiek in termen van functoren tussen basiscategorieën
die we multiplicatoren noemen. We demonstreren hoe het transpensietype
en het strictness-axioma samen gebruikt kunnen worden om alle interne
preschoofoperatoren waarvan we weet hebben, te implementeren, en enkele
te verbeteren.

Veel preschoofmodellen van typetheorie beschouwen niet alle types in het
algemene preschoofmodel, maar beperken zich tot fibrante types. Enkele
voorbeelden zijn: discrete types (voor parametriciteit), Kan types (voor HoTT),
Segal en covariante types (voor directed type theory) en klok-irrelevante types
(voor guarded type theory). O.w.v. eerder vermelde redenen loont het de
moeite om zoveel mogelijk van de argumentatie over fibrantie te internaliseren.
Een centraal concept hierbij is de fibrante-vervangingsmonade op types. We
introduceren het robuustheidscriterium voor noties van fibrantie, dat impliceert
dat de fibrante vervanging stabiel is onder substitutie, een vereiste om ze
te internaliseren. Ditzelfde criterium impliceert bovendien dat het Π-type
fibrant is van zodra het codomein fibrant is. We tonen waarom Kan- en
Segal-fibrantie niet robuust zijn en hoe dit verholpen kan worden door in
de plaats contextuele fibrantie te beschouwen. We axiomatiseren een interne
fibrante-vervangingsoperatie en tonen hoe deze kan dienen om fibrantie intern
te definiëren en te gebruiken. A.h.v. enkele voorbeelden bespreken we ook hoe
fibrantie soms rechtstreekser intern kan gedefinieerd worden, al dan niet m.b.v.
het transpensietype.

Voorafgaand aan het meeste werk in deze thesis hebben we twee typesystemen
ontwikkeld: ParamDTT (met Vezzosi en Devriese) en RelDTT. Het eerste biedt
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modaliteiten voor parametriciteit en adhocpolymorfisme, en het tweede breidt
dit uit tot een algemenere modustheorie die ook irrelevantie, shape-irrelevantie
en het nieuwe concept structuraliteit omvat. Deze typesystemen gebruiken Glue
en Weld als interne parametriciteitsoperatoren. In deze thesis bespreken we de
grote lijnen van deze systemen en hun semantiek en leggen we uit hoe ze (bijna)
een instantie van MTT zijn. We tonen ook hoe robuustheid en de internalisering
van fibrantie van toepassing zijn op de notie van discreetheid die we gebruiken
om Reynolds’ identity extension lemma te doen gelden.





Chapter 1

Introduction

Parts of this introduction were taken from a non-public grant renewal
application at the Research Foundation - Flanders (FWO), authored by myself
in collaboration with Dominique Devriese.

The goal we originally set out for this PhD project was to establish higher-
dimensional directed dependent type theories (higher DDTT) by formulating
them, implementing them, proving their consistency and demonstrating their
use. By a DDTT, we mean a dependent type theory which has not only
a built-in notion of equality, but also of transformation. DDTTs would
provide a powerful framework for computer-assisted reasoning about asymmetric
phenomena such as subtyping, syntactic substitution and various kinds of non-
invertible transformations. In particular, we expect to obtain functoriality-for-
free, relieving programmers from the burden of explicitly implementing the ‘map’
operation of functors. Moreover, we aim to generalize the notion of parametricity
in programming languages to one of naturality, interacting smoothly with the
aforementioned functoriality. This would first of all extend the concept of
naturality beyond natural transformations but also relieve mathematicians from
the burden to prove that their operations are natural by giving them a method
that asserts naturality by construction. On top of that, the intention was for
naturality theorems to be provable within dependent type theory.

Unsurprisingly for those who tried, this turned out to be a project for more than
a single PhD. None of the original goals has been fully achieved, but I believe
that with this dissertation and its associated papers and technical reports, my
co-authors and I make several important contributions in mapping out the road
and freeing it from some important obstructions, and each of these contributions
has collateral virtues.

1



2 INTRODUCTION

In this introduction, I first provide some context (section 1.1) and provide
an example to illustrate the use of the (intended) higher directed type theory
(section 1.2). Next, I discuss the rationale behind this PhD project, the research
activities that were undertaken and in what form they can be found in this thesis
(sections 1.3 to 1.7). This is followed by an overview of the thesis, summarizing
the contributions (section 1.8).

1.1 Context

Static type systems provide a way of guaranteeing safety and termination of
computer programs, by preventing at compile-time that variables are assigned
inappropriate values. They are also interesting from a logical perspective, as the
Curry-Howard correspondence associates type operators to logical operators,
so that propositions may be translated into types and vice versa [How80]
(section 3.3). Proving a proposition then corresponds to constructing an element
of the associated type.

Dependent type theories such as Martin-Löf type theory (MLTT) [Mar82;
Mar98] include type theoretic counterparts for universal (∀) and existential (∃)
quantification in logic. As such, all possible propositions can be translated into
dependent types, and they can be proven formally by constructing a program
of the corresponding type and having it type-checked by a computer. This
crucial observation allows the use of dependently typed functional programming
languages as proof assistants for proving either mathematical theorems or
program correctness. Examples are Coq [Coq14], Agda [Nor09] and Idris
[Bra13].

An important ingredient of logical reasoning is the concept of equality. This,
too, has a type theoretic counterpart in MLTT: given values a, b : A, we have an
‘identity type’ a ≡A b of proofs that a and b are equal. The precise definition
of the identity type is subtle, but we have three operators at hand to ensure
that equality is an equivalence relation on the elements of A: a reflexivity
constructor ensuring that everything is equal to itself, a proof-composition
operator (x ≡A y) → (y ≡A z) → (x ≡A z) ensuring transitivity, and an
inversion operator ensuring symmetry. As such, (classical) MLTT equips every
type with a built-in equivalence relation called ‘(propositional) equality’.

Homotopy Type Theory (HoTT [Uni13]) starts from the observation that
two objects can be identified in multiple ways. For example, a boolean is
essentially the same thing as a bit: it takes one out of two values. But if I want
to encode a boolean as a bit, do I encode true as 1 or as 0? I have to pick one
of two ways in which a boolean is the same as a bit. While MLTT is usually



HIGHER DIRECTED TYPE THEORY IN PRACTICE 3

equipped with a ‘uniqueness of identity proofs’ axiom (UIP) [Uni13, §7.2], which
states that all elements (proofs) of a ≡A b are equal and hence that the only
information encoded in an equality proof, is its existence; HoTT abandons this
principle and interprets the type a ≡A b as the type of all isomorphisms between
a and b. This is formalized by Voevodsky’s univalence axiom [KLV12; Uni13],
which essentially states that isomorphic types are propositionally equal.

If MLTT is a type theory with good support for notions of equality and HoTT
is one with good support for notions of isomorphism, then directed type
theories [LH11; Nuy15; RS17; Nor19; WL20] are aimed at supporting various
asymmetric phenomena, such as a subtyping relation on types [Abe08], syntactic
substitutions in programming language formalization [LH11], transformations
between mathematical structures such as vector spaces or monads, functorial
behaviour etc.

The key idea is to abandon the symmetry of the equality relation, leading
to a type a ≤A b of inequality proofs. We can do this in the spirit of
classical MLTT, with a ‘uniqueness of inequality proofs’ axiom, and obtain
a theory that automatically equips any type with a kind of order relation.
Or we can do this in the spirit of HoTT, interpreting a ≤A b as the type of
transformations from a to b. In that case, we are equipping types with a much
richer structure of transformations; what is mathematically called a (higher)
category. An important aspect to consider in directed type theories is variance:
dependencies can be increasing/covariant, decreasing/contravariant, or can
disrespect inequality altogether. Modalities are annotations on function types
and can be used to keep track of the variance of functions.

1.2 Higher Directed Type Theory in Practice

Although no type theory for higher1 categories exists yet, we will demonstrate
with an example what we hope to achieve with such a system.

1.2.1 Example Problem

In purely functional programming languages like Haskell, functions behave the
way they do in mathematics: calling the same function with the same inputs

1In the sense of (n, r)-categories. Type systems for (∞, 1)-categories do exist [RS17;
WL20].
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multiple times, will yield the same output, and no side effects occur in the
process.2

If we do want to allow a function to cause side-effects, then we can give it a
monadic return type [Mog89]. For example, if we want a function with output
type A to be able to log messages of type W , then we give it output type
WriterW A := W ×A. The type W should have the structure of a monoid, with
e : W and an associative binary operation ∗ : W ×W →W for concatenating
messages, and a unit element e : W that serves as the empty message. Then
the functor WriterW is a monad (definition 2.2.46), whose unit (a.k.a. return)
function η : A → WriterW A : a 7→ (e, a) creates programs making no use of
the logging functionality in the sense that they return the empty message, and
whose bind operation (proposition 2.2.47) concatenates programs’ messages:

bind : (A→WriterW B)→ (WriterW A→WriterW B)

bind f (w, a) = let ((w′, b) = f a) in (w ∗ w′, b).

If we want to add logging functionality to an existing monad M , we use the
monad transformer WriterTW , where WriterTW M A := M(W × A). For
example M could be the Maybe monad, where elements of MaybeA are either
nothing or just a where a : A (i.e. MaybeA ∼= A ] Unit). A function of output
type MaybeA is conceptually a function of output type A that has the option
to fail. Then a function of output type WriterTW MaybeA := Maybe(W ×A)
is a function that has the option to fail and, if it doesn’t, will yield an output
of type A and may log messages of type W .

A monad morphism is nothing but a natural transformation that respects the
unit and bind operations. In Moggi’s framework of monadic side effects, a
monad morphism m : M0 →M1 can be thought of as a compiler that compiles
the effectful operations available in M0 to effects in M1.

Recall that the free monoid over S is given by (ListS, [],++). Thus, an
arbitrary function s : S0 → S1 gives rise to a monoid morphism List s :
(ListS0, [],++)→ (ListS1, [],++), which in turn gives rise to a monad morphism
WriterT (List s)M : WriterT (ListS0)M → WriterT (ListS1)M for any monad
M . On the other hand, a monad morphism m : M0 → M1 should give rise
to a monad morphism WriterTW m : WriterTW M0 → WriterTW M1 for any
monoid W .

2Functions in Haskell, unlike functions as usually understood in mathematics, may be
non-terminating. Moreover, functions in Haskell do have the side effect of consuming time,
CPU and memory; this side effect is disregarded.
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The challenge is now to construct the aforementioned monad morphisms and to
prove commutativity of the following diagram:

WriterT (ListS0)M0
WriterT (ListS0)m//

WriterT (List s)M0

��

WriterT (ListS0)M1

WriterT (List s)M1

��
WriterT (ListS1)M0 WriterT (ListS1)m

// WriterT (ListS1)M1

If s = capitalize : String → String and m = just : Id → Maybe, then what this
says is that it doesn’t matter whether we first capitalize all logged messages and
then decide to allow but not use the option to fail, or the other way around.

Existence of the functions underlying the monad morphisms may be needed
already when defining a program. The fact that the functions are monad
morphisms and that the diagram commutes, may be necessary to prove
correctness of a program. However, since all of these results are completely
obvious and dull from a categorical viewpoint, we want to spend minimal time
on implementing and proving them, and in particular we prefer not to bother
with list induction. This is why we want native support for category theory in
our programming language.

1.2.2 In Plain Dependent Type Theory

If we want face the challenge in plain dependent type theory in a somewhat
principled manner, we would do the following:

• Show that List is a functor from types to monoids:
– For every f : A → B, show that there is a monoid morphism

List f : ListA→ ListB:
∗ Define List f , by list recursion,
∗ Show that it respects the empty list (trivial) and list concatena-
tion (by list induction).

– Show that this operation respects identity and composition,3 by list
induction.

• Show that WriterT is a functor from monoids to covariant monad
transformers:
– Show that WriterTW is a covariant monad transformer for every

monoid W :
3This is not actually needed for the challenge at hand, but is a matter of not doing half

work.
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∗ Show that WriterTW M is a monad for every monad M .
∗ Show that, for any monad morphism m : M0 → M1, we
get a monad morphism WriterTW m : WriterTW M0 →
WriterTW M1:
· Define WriterTW mA : WriterTW M0A→WriterTW M1A
for any type A,
· Show that it is natural (remark 2.2.7) in A,
· Show that it respects the monad operations.

∗ Show that this operation respects identity and composition.
– For any monoid morphism w : W0 → W1, show that there

is a morphism of covariant monad transformers WriterTw :
WriterTW0 →WriterTW1:
∗ Define WriterTwM A : WriterTW0M A→WriterTW1M A for
any monad M and type A,
∗ Show that it is natural in M ,
∗ Show that it is natural in A,
∗ Show that it respects the monad transformer operation lift.4

– Show that this operation respects identity and composition.

1.2.3 In Homotopy Type Theory

Let us see how this simplifies in homotopy type theory (HoTT) [Uni13]. Of
course, HoTT only has native support for isomorphisms, so we will assume that
s and m are isomorphisms. We will also assume that Haskell types are sets (in
the HoTT sense) and thus that kinds are 1-groupoids.

We then have to do the following:

• Show that List is a groupoid functor from types to monoids.
– For every f : A ∼= B, the univalence axiom provides an equality

proof (a.k.a. path) ua f : A ≡ B. The function λX.(ListX, [],++,_)
sending the type X to the free monoid5 over X respects equality, so
we get a proof of (ListA, [],++,_) ≡Monoid (ListB, [],++,_), which
by the structure identity principle (SIP) [Uni13, §9.8] is the same as
a monoid isomorphism.

– This operation automatically respects identity and composition,
because all HoTT functions respect identity and composition of
paths.

4https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-
Trans-Class.html

5The underscore stands for the proofs of the monad laws.

https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html
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So it turns out that we can prove this without knowing the implementation
of List and with little knowledge of the definition of a monoid (we merely
need to know that it is a ‘standard notion of structure’). We get this
result essentially for free.

• Show that WriterT is a groupoid functor from monoids to groupoid-
functorial monad transformers:
– Show that WriterTW is a groupoid-functorial monad transformer for

every monoid W :
∗ Show that WriterTW M is a monad for every monad M .
∗ Again, we get groupoid functoriality for free. Indeed, given a
monad isomorphism m : M0 ∼= M1, we get M0 ≡Monad M1 by
the SIP, whence a proof of WriterTW M0 ≡Monad WriterTW M1,
which by the SIP is the same as an isomorphism between the
writer monads.

– By similar reasoning, groupoid functoriality of WriterT is also for
free.

If we use book HoTT [Uni13] to do the above, then we get functions that do not
compute but instead block on the univalence axiom. However, since the arrival
of cubical HoTT [Coh+17], the univalence axiom has computational content
and we can actually apply List s : ListS0 → ListS1 to a concrete list and get an
output.

1.2.4 In Higher Directed Type Theory

In the previous subsection, we saw that we could greatly shorten our todo list
by moving to HoTT, and moreover that we are rid of all list inductions. The
price we paid and which we seek to unpay by moving to higher DDTT, is that
we had to assume that m and s are isomorphisms.

In higher DDTT, we expect that our todo list will look like this:

• Let the type-checker check that List is covariant (i.e. can be annotated
with the covariance modality). In fact, let it check that the function
λX.(ListX, [],++,_) sending the type X to the free monoid over X, is
covariant. This requires that monoids depend on their structure by a
special modality: a directed analogue of the structural modality which we
introduced in Degrees of Relatedness [ND18a] (chapter 9).

• Show that List is a functor from types to monoids.
– For every f : A→ B, the directed univalence axiom [WL20] provides

an inequality proof (a.k.a. morphism or directed path) dua f : A ≤
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B. By covariance, we get a proof of (ListA, [],++,_) ≤Monoid
(ListB, [],++,_), which by an expected directed SIP is the same as
a monoid morphism.

– This operation automatically respects identity and composition,
because all covariant functions respect identity and composition
of morphisms.

Again, we get this result essentially for free.
• Show that WriterT is a functor from monoids to covariant monad
transformers:
– Show that WriterTW is a covariant monad transformer for every

monoid W :
∗ Show that WriterTW M is a monad for every monad M .
∗ Let the type-checker check that WriterTW M satisfies the
covariance modality w.r.t. M .
∗ Again, we get the covariant action and laws for free. Indeed,

given a monad isomorphismm : M0 ∼= M1, we getM0 ≤Monad M1
by the directed SIP, whence a proof of WriterTW M0 ≤Monad
WriterTW M1, which by the directed SIP is the same as a
morphism between the writer monads.

– By similar reasoning, functoriality of WriterT is also for free.

Thus, we expect that higher DDTT can drastically simplify proofs of boring
properties where HoTT can already do so for isomorphisms. This generalization
is necessary because most transformations are not invertible. It is also
complex, because while in HoTT all functions respect equality/isomorphism,
in higher DDTT it is not reasonable to expect that all functions respect
inequality/morphisms. Therefore, we need to keep track of the behaviour
of functions in order to assert covariance, contravariance, naturality etc. of
functions by construction, in a way that can (hopefully) be verified by a type-
checker. This thesis is not concerned with the variance checking aspect, but
with paving the road towards the design of a sound system in the first place.

1.3 ParamDTT: Parametric Quantifiers

In my master thesis [Nuy15], I studied higher DDTT from a purely type theoretic
point of view, trying to set up a system of typing rules that appeal to category-
theoretic intuition and do not obviously introduce contradictions. At the start of
my PhD, I wanted to underpin the work of my master thesis with a denotational
semantics. The most natural setting to formulate these semantics seemed to be
(higher) category theory, but attempts to model the style of directed type theory
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from my master thesis in this setting kept failing.6 For the category theorist, the
problem can be succinctly described by saying that the functor category functor
Catop×Cat→ Cat : (C,D) 7→ DC does not preserve composition of profunctors7,
failing the interpretation of the function type. For the type theorist, this
problem is the reason that Reynolds’ relationally parametric interpretation of
System F [Rey83] features an identity extension lemma but no composition
extension lemma as it would be violated by the function type, and that later
models of parametricity [AM13; AGJ14] are formulated in reflexive graphs,
which are exactly categories without composition.

The second most natural setting to work in, are presheaf categories. It is known
[Hof97] (chapter 4) that every presheaf category is a model of dependent type
theory. Presheaf categories appear naturally as models of parametricity in
dependent type theory [AGJ14; BCM15; Mou16] but are also used as models of
higher category theory (e.g. via the notion of quasi-categories [nLa20g]) and
homotopy type theory [Coh+17; Hub16; BCH14; KLV12].

The idea arose in discussion with Andrea Vezzosi and Andreas Abel to model
the undirected part of the intended DDTT, i.e. a type system with a naturality
modality, but no modalities for functoriality. Naturality is then more typically
called parametricity. This simplification of the ideas in my master thesis lead
to a dependently typed system ParamDTT in which function types could be
annotated as parametric or non-parametric, i.e. a system featuring a parametric
∀ alongside the non-parametric Π [NVD17a] (section 9.2). The idea that
functions of a given domain and codomain may or may not be parametric, and
hence that we should keep track of whether they are if we want to rely on
free theorems [Wad89], turned out to be an answer to an open question in the
literature. Indeed, parametricity results about simpler type systems such as
System F (the polymorphic λ-calculus) and System Fω had not been properly
carried over to dependent type theory where large types are involved.

The original paper on ParamDTT [NVD17a] is not subsumed in this thesis, but
in section 9.2 of the chapter on Degrees of Relatedness, we give a high-level
discussion of the system and its model, and explain how the system can be
constructed more cleanly and efficiently with the tools that are available today.

The parametricity modality is modelled as a CwF morphism [Dyb96], which
prompted a study of the internalization of CwF morphisms into type
theory [Nuy17], which is found in section 5.1 of the chapter on multimode
type theory.

6Licata and Harper [LH11] do provide a model in category theory, but this work has a
coupling of variance of types and terms (covariant terms live in covariant types) that we seek
to relax.

7it does laxly, but this can be broken by exponentiating again (example 8.1.27)



10 INTRODUCTION

Following Bernardy, Coquand, and Moulin [BCM15] and Moulin [Mou16]
(henceforth: Moulin et al.), ParamDTT was modelled in cubical sets whose
edges we annotated as expressing either equality (paths) or relatedness (bridges)
[Nuy17]. Following Atkey, Ghani, and Johann [AGJ14], Reynolds’ identity
extension lemma [Rey83] was modelled by restricting to discrete types. Well-
behavedness of discreteness was originally proven ad hoc [Nuy17], but now
follows more straightforwardly from the results on robust notions of fibrancy in
chapter 8 on fibrancy, see further.

We also wanted free parametricity theorems to be provable internally in
ParamDTT. We could not rely on the internal parametricity operators by
Moulin et al. [BCM15; Mou16], because these require an affine cubical model
whereas discreteness of bridge and path types requires a cartesian cubical model.
Instead, we used the Glue type from cubical HoTT [Coh+17] (stripped of its
Kan fibrancy requirements) and introduced a dual type Weld. We showed that
these types can be modelled in arbitrary presheaf models [Nuy17] and discuss
them in chapter 6 on presheaf type theory. We refer to the paper [NVD17a]
for examples on how to apply these operators.

1.4 RelDTT: Degrees of Relatedness

In follow-up work, we abandon the idea that types and kinds should be the same
thing, inspired via directed type theory by the fact that in category theory, the
collection of n-categories is of course an n-category but, much more interestingly,
is an (n+ 1)-category. This solves technical inconveniences in ParamDTT, such
as the fact that small types contain unnecessary relational structure, whereas
universes seemed to lack structure.

Following [LS16], we move from a modal type theory where function types are
annotated by a modality (e.g. parametric or not) to a multimode type theory.
In a multimode type theory, every judgement is annotated by a mode, which is
of course just a syntactic feature but conceptually tells you in what category
the judgement should be interpreted. Modalities then have a domain and a
codomain and are modelled by CwF morphisms between the corresponding
categories.

Concretely, we move to a setting where types are modelled as cubical sets whose
edges are annotated with a degree of relatedness, generalizing the notion of
bridges and paths from ParamDTT. The mode of a judgement then says how
many degrees of relatedness are available in the type of that judgement. This
way, universes can have more structure than the types they contain, whereas
small types can be rid of meaningless relational structure.
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We exhibit parametricity as just one out of many interesting and less interesting
modalities, including ad hoc polymorphism, irrelevance (at type-checking type)
[Pfe01; MS08; BB08; AS12], shape-irrelevance [AVW17], as well as a novel
structural modality which explains how algebras (living in a kind) depend on
their structure (a lower-level object living in a type).

The original paper on this type system RelDTT [ND18a] is not subsumed in
this thesis, but again a high-level discussion that also relates it to today’s state
of the art is given in a dedicated chapter 9. Other aspects of the system are
handled the same way as for ParamDTT, see the previous section.

1.5 Transpension: The Right Adjoint to the Π-type

The observation by Dominique Devriese that it seemed impossible to prove
parametricity of System F in ParamDTT, sparked an investigation of the
comparative expressivity of internal parametricity operators [ND18b]. The
crux, it turned out, is that the operators by Moulin et al. [BCM15; Mou16]
do something that Glue and Weld do not: promote cells of a cubical set to a
higher dimension. Of course abstraction over a dimension does the opposite,
e.g. a square in Π(i : I).A where i ranges over the interval (i.e. a line), is a cube
in A. In chapter 7 and its associated technical report [Nuy20], we introduce
the transpension type former G i.A which is right adjoint to the function type,
and we explain how this operation can be used to derive Moulin et al.’s internal
parametricity operators, as well as other internal presheaf operators such as the
amazing right adjoint

√
[Lic+18].

The semantics of the transpension type and its associated operators are
parametrized by an almost arbitrary functor which we call a multiplier and
which interprets context extension with a shape variable u : U. We introduce a
series of criteria (including ‘affine’ and ‘cartesian’) for classifying multipliers
and deduce internal properties depending on those criteria.

1.6 Robust Notions of Fibrancy

Many type systems modelled in presheaf categories interpret the type judgement
not in the standard way (section 4.1.2), but have to restrict to a subset of
all presheaf types. As mentioned, in order to validate Reynolds’ identity
extension lemma, in models of parametricity we need to restrict to discrete
types [AGJ14; NVD17a; ND18a; CH19]. In models of HoTT [e.g. KLV12;
Coh+17], one restricts to Kan fibrant types, which are types equipped with
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appropriate composition operations for (higher) paths. In presheaf models of
directed type theory [RS17; WL20], one is interested in Segal fibrant types (with
composition operations for (higher) morphisms), covariant types (essentially
Haskell’s functors), and other notions.8 In models of guarded type theory
[BM18], one restricts to clock-irrelevant types.

All of these conditions are notions of fibrancy, which means that the types
satisfying the condition are those types Γ ` T type such that the weakening
substitution (Γ, x : T ) → Γ is a fibration, i.e. belongs to the right class of a
factorization system on the presheaf CwF.

Because the most obvious interpretation for the parametric quantifier ∃ in
ParamDTT does not automatically preserve discreteness, we instead have to use
its ‘discrete replacement’ to actively force it to be discrete. Hence, we want this
discrete replacement operation to be stable under substitution. The technical
report on ParamDTT [Nuy17] contains a proof that this is the case, which
was an unpleasant experience to write and is an unpleasant experience to read.
When moving to RelDTT, I was less than excited about the prospect of having
to redo it, especially with the long-term goal of higher DDTT in mind.

So I developed a more principled approach and formulated the robustness
criterion [Nuy18b] (section 8.4). A notion of fibrancy that is generated in a
robust way, as is the case for discreteness (example 8.4.7), automatically comes
with a fibrant replacement operation that is stable under substitution.

Excitingly, robust notions of fibrancy also have the property that the Π-type is
fibrant as soon as its codomain is. Although Segal-fibrancy (example 8.1.8) is
not robust, we can follow Boulier and Tabareau [BT17] in moving to contextual
fibrancy, in which case we can satisfy the robustness criterion and thus model
the directed Π-type under restricted circumstances (proposition 8.6.2) for some
notion of Segal fibrancy.

The observation that notions of fibrancy such as discreteness and clock-
irrelevance [BM18] which are robust can be defined internally (section 8.7)
whereas non-robust notions of fibrancy such as Kan fibrancy and Segal fibrancy9

cannot [Lic+18], prompted the question whether robustness was somehow
related to being definable internally.

This question is partially answered in section 8.6: robust notions of fibrancy
come with a fibrant replacement monad that can at least be axiomatized

8Restricting to those types is in general not feasible, as they are not closed under important
type formers.

9Riehl and Shulman’s notion of Segal-fibrancy [RS17] is more restrictive than ours in the
sense that it only allows for composition of homogeneous arrows. In Boulier and Tabareau’s
terminology [BT17] we would call this degenerate Segal fibrancy.
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internally. Then we can internally define the type of algebras for this monad,
which are the fibrant types. I proved no results on the internal definability of
the fibrant replacement monad, but in the case of discreteness it would clearly
have to be a quotient inductive type (QIT) [Uni13].

The essential theory of factorization systems is presented in section 2.4. This
presentation is succinct, but does contain quite a few examples. My own
contributions regarding factorization systems are all in chapter 8.

1.7 MTT: Well-Behaved Multimode Type Theory

Following Pfenning [Pfe01] and Abel [Abe06; Abe08], we had formulated
ParamDTT and RelDTT with a left division operation on contexts: whenever
the type-checker moves into a modal subterm, its left Galois connection (left
adjoint) is applied to all modality annotations in the context.

While trying to implement a proof-assistant for these type systems [Nuy19;
ND19b], I noticed that computation of the left division could be postponed until
usage of a variable subject to the division. Moreover, to type-check such usage,
it is checked that the variable’s modality is less than the identity modality. But
by the Galois connection, the ‘denominator’ modality could again be brought
to the right, so that the division in fact never needs to be computed. As such, I
was able to turn the division from a context operation into a context constructor,
inadvertently creating a hybrid with the Fitch-style approach of modal type
theory [BGM17; Bir+20; GSB19a].

This hybrid multimode type system subsequently underwent the scrutiny of my
co-authors Daniel Gratzer, G. A. Kavvos and Lars Birkedal – who praised it
for having a cleaner substitution calculus than other modal type systems,
be they Fitch-style or based on left division – which resulted in a paper
[Gra+20b] subsumed in section 5.3 of this thesis, and an extensive technical
report [Gra+20a].

1.8 Overview

There are two main ways to structure a mathematical text. One way is to
present the mathematics as it was developed; this is more or less how this
chapter has been structured. The advantage is that the motivation always
comes before the problem, and the problem before the solution. A disadvantage
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is that we are constantly bumping into obstacles and having to redo earlier
work. This makes a text longer and more cluttered on later reference.

For this reason, I wilfully apply the anti-didactic inversion, putting definitions
and lemmas before the theorems that need them, so that we only ever have to
refer upwards.

Prerequisites

Chapter 2 contains the mathematical prerequisites of this thesis: category
theory, presheaves and factorization systems. It is not meant to be read front-to-
back. We do recommend readers to have a glance to learn about some peculiar
notations.

Chapter 3 on formal systems and dependent type theory (DTT) introduces
the notion of generalized algebraic theories (GATs) which we can use as a
formal definition of what a type theory is. Next, it introduces DTT and the
Curry-Howard correspondence.

Chapter 4 summarizes the general presheaf model of DTT [Hof97; HS97].

Contributions

Chapter 5 is about multimode type theory. It starts with the study of the
internalization of CwF morphisms underpinning the semantics of ParamDTT
and RelDTT (section 5.1), continues by discussing Birkedal et al.’s independently
developed notion of dependent right adjoints (DRAs) [Bir+20] for comparison
and completeness (section 5.2), and finally subsumes our MTT paper (section 5.3)
[Gra+20b].

Chapter 6 on presheaf type theory is a mix of existing work and contributions,
but none that I am especially excited about. It contains a number of extensions
to DTT that are meaningful in every presheaf category. We also sketch a
type-checking algorithm for the sort of propositions that Glue- and Weld-types
are annotated with. The main reason for this content is to give some relatively
precise description of these operators when used in an arbitrary presheaf category.
The chapter finishes with a brief discussion of interactions with modal type
theory.

Chapter 7 presents a type system featuring the transpension type. The type
system is obtained by instantiating MTT on a specific mode theory that provides
modes such as ‘fresh for i’, ‘for all i’ and ‘transpend over i’ where i is a shape
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variable external to MTT. We investigate the structure of the transpension type
and explain how to recover known presheaf operators.

Chapter 8 on fibrancy starts by extending factorization systems to damped
factorization systems in order to reason about contextual fibrancy. Next, we
define how to generate robust notions of fibrancy and we prove the good
properties that it entails: stability of the fibrant replacement, and fibrancy
of the Π-type inherited from the codomain alone. We give typing rules to
internalize a stable fibrant replacement monad and then use these to internally
define fibrant types as the algebras for that monad. Finally, we briefly discuss
by example how even without an internal fibrant replacement, we can define
some notions of fibrancy internally, if necessary using the transpension type.

Chapter 9 on Degrees of Relatedness, of which all but the last section
come from the technical report on MTT [Gra+20a], explains how Reynolds’
relationally parametric model of System F [Rey83] evolved into a parametric
model of DTT, and how we further extended it to the systems ParamDTT and
RelDTT. We explain how improved versions of these systems can be obtained
by extending certain instantiations of MTT, and we say a word on how much
of the construction of the semantics of RelDTT could be internalized into a
different instance of MTT. In the final section 9.5, we discuss when one does
and does not need a parametric modality in DTT.

Chapter 10 concludes the thesis.
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Prerequisites
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Chapter 2

Mathematical Prerequisites

In this chapter, we recall some well-known mathematical concepts, with the
purpose of being self-contained and establishing our notations and conventions.

In section 2.1, we establish our default metatheory. In section 2.2, we review
important categorical concepts. In section 2.3, we review important concepts
related to presheaves and establish our fairly unusual presheaf notations. In
section 2.4, we discuss a small fragment of the theory of factorization systems –
a categorical notion underpinning the concept of fibrancy in type theory – which
we will make use of in chapter 8.

This chapter is mostly intended for reference, rather than for a front-to-
back lecture, with the exception of section 2.4 on factorization systems. We
recommend readers to check section 2.1 as well as our unusual but in my personal
opinion extremely enlightening presheaf notation 2.3.2 (as well as the notations
used for working with presheaf models of DTT in chapter 4).

Nearly all concepts in this chapter are standard. Further information about
them can be found in the many reference works on category theory. Since there
is little use in my referring the reader to a reference work that I am barely
acquainted with, I shall refer instead to my favorite one, which is the nLab
[nLab]. The nLab contains basic information about many concepts, and when
the information one finds there is insufficient or incomprehensible, then there
are often valuable references to other works. The few non-standard exceptions
are:

• A definition of ends and co-ends via the twisted arrow category
(section 2.2.6). This is unusual but equivalent to the standard definition.

19
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• Dependent ends and co-ends (section 2.2.7), with associated dependent
(co)-Yoneda lemmas (section 2.3.4). These are only used on a few occasions,
although they are omnipresent in the technical report associated to
chapter 7 [Nuy20].

• In the same spirit, a definition of the category of elements (definition 2.2.37)
that is more general than usual.

• Base pullbacks (section 2.3.7), but these are entirely shrugworthy.
• A distinction between NWFSs and Grandis-Tholen NWFSs, although we
prove that these notions are equivalent (section 2.4.5).

Notation 2.0.1. The language Haskell contains a feature called newtypes.
These are types A having a single constructor a : B → A and are internally
represented as B. The advantage is that if both A and B are endowed with a
different structure of the same kind (e.g. both are monoids but with a different
operation), then the use of a and a−1 tells us whether we are dealing with
elements of A or B and hence, what monoid operation we should use.

We find it useful to adopt a similar convention in mathematical texts. We will
occasionally define a set A := {a(b) | b ∈ B}. This essentially means that we
define A := B but will strive for maximal notational hygiene in the use of the
label a and its inverse, which are really just idB under the hood. In order to
signal that something is a label, we will typeset it in gray.

2.1 Set Theory

Unless otherwise mentioned, all metatheory in this thesis takes place in Zermelo-
Fraenkel set theory with the axiom of choice (ZFC) [Kun13]. We intend to be
explicit about invocations of the axiom of choice. We also assume Grothendieck’s
axiom of universes [nLa20c]:

Definition 2.1.1. A Grothendieck universe is a set in ZFC that is itself a
model of ZFC.

Axiom 2.1.2 (Axiom of universes). Every set is an element of a Grothendieck
universe.

Definition 2.1.3. For any ordinal number α, let Gα be the smallest
Grothendieck universe such that Gβ ∈ Gα for all β < α. The size of an
object x is the least α such that x ∈ Gα. An object is small if it has size 0, and
large if it is (potentially) not small.
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2.2 Category Theory

2.2.1 Categories, Functors and Natural Transformations

Definition 2.2.1. A category C consists of:

• A set of objects Obj(C),
• For every two objects x, y ∈ Obj(C), a set of morphisms Hom(x, y),
• At every object x, an identity morphism idx ∈ Hom(x, x),
• For every three objects x, y, z ∈ Obj(C), a composition operation ◦ :

Hom(y, z)×Hom(x, y)→ Hom(x, z), such that

ϕ ◦ id = ϕ, id ◦ ϕ = ϕ, (ϕ ◦ χ) ◦ ψ = ϕ ◦ (χ ◦ ψ). (2.1)

Notation 2.2.2. We will also write C for Obj(C), ϕ : x→ y for ϕ ∈ Hom(x, y)
and id for idx.

Example 2.2.3. Examples of categories are:

• The category Set of small sets and functions,
• The category Grp of groups and group homomorphisms,
• The category VectK of vector spaces and linear maps over the field K,
• The category Cat of small categories and functors.
• The category DC of functors C → D and natural transformations.

Definition 2.2.4. A (covariant) functor F : C → D consists of:

• an action on objects F : Obj(C)→ Obj(D),
• for every x, y ∈ Obj(C), an action on morphisms F : HomC(x, y) →

HomD(Fx, Fy), such that

F idx = idFx, F (χ ◦ ϕ) = Fχ ◦ Fϕ. (2.2)

Definition 2.2.5. The opposite Cop of a category C is defined by Obj(Cop) =
Obj(C) and HomCop (x, y) = HomC(y, x), with obvious identity and composition.
The opposite F op : Cop → Dop of a functor F : C → D is defined the obvious
way. A contravariant functor from C to D is a functor Cop → D.

Every statement about a category C can be expressed in terms of Cop, and often
this saves proving work. This phenomenon is referred to as duality.
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Definition 2.2.6. A natural transformation α : F → G : C → D consists of
a morphism αx : Fx→ Gx for every x ∈ C such that for any ϕ : x→ y, we have
αy ◦Fϕ = Gϕ ◦αx =: α?ϕ : Fx→ Gy. A natural isomorphism is a natural
transformation that has an inverse. The composite β◦α : F → H of α : F → G
and β : G → H is defined by objectwise composition. The whiskering
α′ ? α : F ′F → G′G of α : F → G : C → D and α′ : F ′ → G′ : D → E is defined
by (α′ ? α)x := α′ ? αx. We also write α′F for α′ ? idF and F ′α for idF ′ ? α.

Remark 2.2.7. More generally and more informally, an operation on categories
is called natural w.r.t. an object argument if it satisfies all equations that can
be cooked up from a morphism between objects inserted at that argument.

Definition 2.2.8. The functor category DC has as objects the functors
C → D and as morphisms natural transformations.

2.2.2 Mono- and Epimorphisms

Definition 2.2.9. A morphism ϕ ∈ Hom(x, y) is called:

• a monomorphism or just mono if ϕ ◦ xy : Hom(w, x) → Hom(w, y) is
injective,

• an epimorphism or just epi if xy◦ϕ : Hom(y, z)→ Hom(x, z) is injective,
• split mono if xy ◦ ϕ : Hom(y, z)→ Hom(x, z) is surjective,
• split epi if ϕ ◦ xy : Hom(w, x)→ Hom(w, y) is surjective.

Proposition 2.2.10. A split monomorphism is a morphism ϕ : x → y that
has a retraction ρ : y → x such that ρ ◦ ϕ = idx. Dually, a split epimorphism
is a morphism ϕ : x→ y that has a section σ : y → x such that ϕ ◦ σ = idy.

Proof. We only prove the latter statement. Let ϕ : x→ y be split epi. Then, by
split surjectivity, idy : y → y is of the form ϕ◦σ for some σ : y → x. Conversely,
let ϕ : x→ y have a section σ, and pick χ : w → y. Then χ = ϕ ◦ (σ ◦ χ).

Corollary 2.2.11. Split monomorphisms are mono. Dually, split epimorphisms
are epi.

2.2.3 Full and Faithful

Definition 2.2.12. A functor F : C → D is:

• full if it is surjective on Hom-sets,
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• faithful if it is injective on Hom-sets,
• fully faithful if it is bijective on Hom-sets.

Definition 2.2.13. A subcategory D ⊆ C of a category C is a category D
such that Obj(D) ⊆ Obj(C) and, for all x, y ∈ Obj(D), we have HomD(x, y) ⊆
HomC(x, y). This means the inclusion functor D → C is necessarily faithful.

A full subcategory is a subcategory D ⊆ C such that for all x, y ∈ Obj(D), we
have HomD(x, y) = HomC(x, y). This is the case if and only if the inclusion
functor is fully faithful.

2.2.4 Arrow Categories

Definition 2.2.14. The walking arrow ↑ is the category with two objects 0
and 1 and a single non-identity morphism 0→ 1.
Definition 2.2.15. The arrow category of C is defined to be the functor
category C↑. It has as objects triples (x, y, ϕ), also denoted (x ϕ−→ y) where
x, y ∈ C and ϕ : x→ y, and as morphisms (x ϕ−→ y)→ (x′ ϕ

′

−→ y′) commutative
squares (ξ, ψ):

x

ϕ

��

ξ // x′

ϕ′

��
y

ψ
// y′.

It is equipped with obvious functors Dom : C↑ → C and Cod : C↑ → C and an
obvious morphism mor : Dom→ Cod.
Definition 2.2.16. The twisted arrow category Tw(C) of C has the same
objects as the arrow category, and as morphisms (x ϕ−→ y) → (x′ ϕ′−→ y′)
commutative squares (ξ, ψ):

x

ϕ

��

x′

ϕ′

��

ξoo

y
ψ
// y′.

It is equipped with obvious functors Dom : Tw(C)→ Cop and Cod : Tw(C)→ C.

Notation 2.2.17. We will sometimes write ~x = (x0
x↑−→ x1) for elements of

the (twisted) arrow category, and ~ϕ = (ϕ0, ϕ1) for morphisms.
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2.2.5 Limits and Colimits

Definition 2.2.18. A diagram in a category C is a functor F : I → C from
some other category I.

The idea is that I is the shape of the diagram, determining the number of nodes
(as the cardinality of Obj(I)), where the arrows go, and which arrows should
compose to which other arrows. Meanwhile, the functor F sends nodes to their
label (an object in C), arrows to their label (a morphism in C) and functoriality
requires that the required composition laws hold.

Definition 2.2.19. A limit of a diagram F : I → C is an object limF =
limi Fi ∈ C such that there is a 1-1 correspondence, natural in x, between
morphisms x→ limF and collections, natural in i, of morphisms x→ Fi.

Dually, a colimit of a diagram F : I → C is an object colimF = colimi Fi ∈ C
such that there is a 1-1 correspondence, natural in y, between morphisms
colimF → y and collections, natural in i, of morphisms Fi→ y.

Limits and colimits do not always exist, but are always unique up to
isomorphism.

In Setα, the category of sets of size α, we can construct (co)limits over diagrams
of size α explicitly:

Proposition 2.2.20. For I of size α, a limit of F : I → Setα is given by the set
of dependent functions f : (i ∈ I)→ Fi such that, for any morphism ϕ : i→ j,
we have (Fϕ)(f i) = f j.

Proposition 2.2.21. For I of size α, a colimit of F : I → Setα is given by the
set of dependent pairs (i ∈ I) × Fi divided by the least equivalence relation
that relates (i, x) and (j, (Fϕ)(x)) for every ϕ : i→ j.

Remark 2.2.22. Using limits in set, the (co)limit of F : I → C may be defined
more succinctly using natural isomorphisms:

HomC(xy, lim
i
Fi) ∼= lim

i
HomC(xy, F i) : C → Set,

HomC(colim
i

Fi, xy) ∼= lim
i

HomC(Fi, xy) : C → Set.

Example 2.2.23. Some limits and colimits get special names and/or notations:

• A binary (cartesian) product A×B is a limit of the discrete diagram
A B (which is a diagram whose shape is the category with two objects
and only identity morphisms). We have Hom(X,A×B) ∼= Hom(X,A)×
Hom(X,B).
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• A binary coproduct A ]B is a colimit of the discrete diagram A B.
We have Hom(A ]B, Y ) ∼= Hom(A, Y )×Hom(B, Y ).
• For any set I, a (cartesian) product

∏
i∈I Ai is a limit of the discrete

diagram given by the functor i 7→ Ai over the discrete category (with only
identity arrows) on I. We have Hom(X,

∏
i∈I Ai) ∼=

∏
i∈I Hom(X,Ai).

• For any set I, a coproduct
∐
i∈I Ai is a colimit of the discrete diagram

i 7→ Ai over the discrete category on I. We have Hom(
∐
i∈I Ai, Y ) ∼=∏

i∈I Hom(Ai, Y ).
• A pullback A×B C is a limit of a diagram A→ B ← C.
• A pushout A ]B C is a colimit of a diagram A← B → C.
• A final or terminal object > is a limit of the empty diagram. We have

Hom(X,>) ∼= >, a singleton.
• An initial object ⊥ is a colimit of the empty diagram. We have

Hom(⊥, Y ) ∼= >, a singleton.
• An equalizer E of ϕ, χ : A→ B is a limit of the diagram A⇒ϕ

χ B. The
canonical morphism E → A is also referred to as the equalizer. In Set, we
have E ∼= {x ∈ A |ϕ(x) = χ(x)}.

• A coequalizer E of ϕ, χ : A → B is a colimit of the diagram A ⇒ϕ
χ B.

The canonical morphism B → E is also referred to as the coequalizer.
In Set, E is B divided by the least equivalence relation that relates ϕ(x)
with χ(x) for all x ∈ A.

Definition 2.2.24. A natural transformation ν : F → G is called cartesian
(or equifibred) if for every ϕ : x→ y, the diagram

Fx
νx //

Fϕ

��

Gx

Fϕ

��
Fy

νy
// Gy

is a pullback square, i.e. Fx is the pullback of the rest of the square.

2.2.6 Ends and Co-ends

Proposition 2.2.25. We have a covariant invertible functor Tw(C) ∼= Tw(Cop) :
(x ϕ−→ y) 7→ (y ϕ−→ x).

Definition 2.2.26. The end ∀i.F (i, i) of a functor F : Iop × I → C is the
limit of F ◦ (Dom,Cod) : Tw(I)→ C.
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Dually, the co-end ∃i.F (i, i) of a functor F : Iop × I → C is the colimit of
F ◦ (Codop,Domop) : Tw(I)op → C.

The general construction of (co)limits in Setα would have us consider dependent
functions/pairs with a component from Tw(I). However, we can simplify:

Proposition 2.2.27. For I of size α, an end of F : Iop×I → Setα is given by
the set of dependent functions f : (i ∈ I)→ F (i, i) such that, for any morphism
ϕ : i→ j, we have F (id, ϕ)(f i) = F (ϕ, id)(f j).

Proposition 2.2.28. For I of size α, a co-end of F : Iop × I → Setα is given
by the set of dependent pairs (i ∈ I)× F (i, i) divided by the least equivalence
relation that relates (i, F (ϕ, id)(z)) and (j, F (id, ϕ)(z)) for every ϕ : i→ j and
z ∈ F (j, i).

Unless otherwise mentioned, we will assume ends and co-ends of sets to be
constructed as above.

Lemma 2.2.29. Given two functors F : Iop → Set and G : I → Set, construct
the co-end ∃i.F i × Gi as in proposition 2.2.28. Then if two elements (i, x, y)
and (i′, x′, y′) are equal, there exists a zigzag ζ from i to i′, i.e. a diagram

i→ i1 ← i2 → . . .← it−1 → it ← i′ (2.3)

abbreviated to
i

ζ
i′ (2.4)

as well as elements xr ∈ Fir and yr ∈ Gir for every node ir of the zigzag
such that for every arrow ϕ : ir → is in the zigzag, we have xr = Fϕ(xs) and
Gϕ(yr) = ys.

Proposition 2.2.30. For any functor F : I → C, we have limi Fi ∼= ∀i.F i and
colimi Fi ∼= ∃i.F i.

Proof. Note that our notation implies we are precomposing F with Iop×I → I.
By remark 2.2.22, it is sufficient to prove limi Fi ∼= ∀i.F i for F : I → Set, and
that follows immediately from propositions 2.2.20 and 2.2.27.

2.2.7 Dependent Ends and Co-ends

The definitions in this section are non-standard. In the previous section, we
defined ends and co-ends of functors from Iop × I by restricting them to Tw(I)
or Tw(I)op. In this section, we allow the functor to actually use not only domain
and codomain of the twisted arrow, but also the arrow itself.
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Definition 2.2.31. A dependent end of a functor F : Tw(I)→ C, somewhat
ambiguously denoted ∀i.F (i id−→ i), is a limit of F .

Definition 2.2.32. A dependent co-end of a functor F : Tw(I)op → C,
somewhat ambiguously denoted ∃i.F (i id−→ i), is a colimit of F .

Proposition 2.2.33. For I of size α, a dependent end of F : Tw(I)→ Setα is
given by the set of dependent functions f : (i ∈ I)→ F (i id−→ i) such that, for
any morphism ϕ : i→ j, we have F (id, ϕ)(f i) = F (ϕ, id)(f j).

Proposition 2.2.34. For I of size α, a dependent co-end of F : Tw(I)op → Setα
is given by the set of dependent pairs (i ∈ I)× F (i id−→ i) divided by the least
equivalence relation that relates (i, F (ϕ, id)(z)) and (j, F (id, ϕ)(z)) for every
ϕ : i→ j and z ∈ F (i ϕ−→ j).

Unless otherwise mentioned, we will assume dependent ends and co-ends of sets
to be constructed as above.

Example 2.2.35. Assume a functor G : C → D. One way to denote the set of
natural transformations IdC → IdC which map to the identity under G, is as

A := ∀(c ∈ C).{χ : c→ c |Gχ = idGc}.

In order to read the above as a dependent end, we must find a functor G :
Tw(C) → Set such that G(c id−→ c) = {χ : c→ c |Gχ = idGc}. Clearly every
covariant occurrence of c refers to the codomain of (c id−→ c), whereas every
contravariant occurrence refers to the domain. So when we apply G to a general
object (x ϕ−→ y) of Tw(C), we should substitute x for every contravariant c and
y for every covariant c. We can then throw in ϕ wherever this is necessary
to keep things well-typed, as ϕ disappears anyway when (x ϕ−→ y) = (c id−→ c).
Thus, we get

G(x ϕ−→ y) = {χ : x→ y |Gχ = Gϕ}.

So we see that using a dependent end was necessary in order to mention idc, as
this generalizes to ϕ : x→ y to which we do not have access in a non-dependent
end.

An element of ν ∈ A is then a function

ν : (c ∈ C)→ {χ : c→ c |Gχ = idGc}

such that, whenever ϕ : x→ y, we have ϕ ◦ νx = νy ◦ ϕ.
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2.2.8 Slices and Elements

Definition 2.2.36. Given U ∈ W, the slice category1 W/U has objects
(W,ψ) with ψ : W → U and as morphisms (V, ϕ) → (W,ψ) all morphisms
χ : V → W such that ψ = ϕ ◦ χ. It is equipped with a functor ΣU : W/U →
W : (W,ψ) 7→ W , and for every morphism υ : U → U ′, we get a functor
Σ/υ :W/U →W/U ′ : (W,ψ)→ (W,υ ◦ ψ).

The coslice category2 U/W is defined dually.

Definition 2.2.37. Given a functor F : Tw(C) → Set, the category of
elements ∫

c∈C
F (c idc−−→ c)

has objects (c, f) where c ∈ Obj(C) and f ∈ F (c idc−−→ c) and morphisms
ϕ : (c, f)→ (d, g) where ϕ : c→ d and F (idc, ϕ) f = F (ϕ, idd) g ∈ F (c ϕ−→ d).

The category of elements of G ◦ Dom (or H ◦ Cod), where G : Cop → Set (or
H : C → Set) is also called the category of elements of G (or H) and denoted as∫
c∈C Gc (or

∫
c∈C Hc) which is in fact not an exception to the above notation.

Example 2.2.38 (Algebras for an endofunctor). Assume an endofunctor G :
C → C. The category of G-algebras is defined as∫

c∈C
Hom(Gc, c).

Inspecting the variance of the ‘integrand’, reveals that we are taking the category
of elements of the functor F : Tw(C)→ Set : (x ϕ−→ y) 7→ Hom(Gx, y). Thus, an
object is a pair (c, χ) where χ : Gc→ c and a morphism ϕ : (c, χ)→ (d, δ) is a
morphism ϕ : c→ d such that ϕ ◦ χ = χ ◦Gϕ.

Example 2.2.39 (Algebras for a pointed endofunctor). Assume a pointed
endofunctor G : C → C with pointing η : Id → G. The category of (G, η)-
algebras is defined as ∫

c∈C
{χ : Gc→ c |χ ◦ ηc = idc}.

Clearly, we are then taking the category of elements of the functor

F : Tw(C)→ Set : (x ϕ−→ y) 7→ {χ : Gx→ y |χ ◦ ηx = ϕ}.

Thus, an object is a pair (c, χ) where χ : Gc→ c such that χ ◦ ηc = idc, and a
morphism ϕ : (c, χ)→ (d, δ) is a morphism ϕ : c→ d such that ϕ ◦ χ = χ ◦Gϕ.

1also called ‘over category’
2also called ‘under category’
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Example 2.2.40 (Eilenberg-Moore algebras for a monad). Assume a monad
(M,η, µ) (definition 2.2.46). The following attempt at defining the category of
Eilenberg-Moore algebras for M (definition 2.2.49) is ill-formed:∫

c∈C
{χ : Mc→ c |χ ◦ ηc = id andχ ◦ µc = χ ◦Mχ}.

Indeed, the ‘integrand’ is not an instance of a functor

F : Tw(C)→ Set :

(x ϕ−→ y) 7→ {χ : Mx→ y |χ ◦ ηx = ϕ andχ ◦ µx = χ ◦ xy ◦Mχ}.

since there is no morphism My →Mx available which we can insert in the gap.

2.2.9 Adjunctions

Definition 2.2.41. Two functors L : D → C and R : C → D are adjoint,
denoted L a R with L being the left adjoint and R the right adjoint, if the are
equipped with either of the following equally informative structures:

• a natural transformation A : HomC(Lxy, xy) ∼= HomD(xy, Rxy) : Dop×C →
Set (called transposition),

• natural transformations η : IdD → RL (the unit) and ε : LR→ IdC (the
co-unit) such that εL ◦Lη = idL and Rε ◦ ηR = idR (the adjunction laws).

Lemma 2.2.42. The above structures are indeed equally informative.

Proof. Given A, we define ηd := A(idLd) and εc := A−1(idRc). These
transformations are natural:

RLϕ ◦ η = RLϕ ◦A(id) = A(Lϕ) = A(id) ◦ ϕ = η ◦ ϕ,

ε ◦ LRψ = A−1(id) ◦ LRψ = A−1(Rψ) = ψ ◦A−1(id) = ψ ◦ ε.

The adjunction laws hold:

εL ◦ Lη = A−1(idRLd) ◦ LA(idLd) = A−1(idRLd ◦A(idLd)) = idLd,

Rε ◦ ηR = RA−1(idRc) ◦A(idLRc) = A(A−1(idRc) ◦ idLRc) = idRc.

Conversely, given ε and η we define A(ψ) = Rψ ◦η and A−1(ϕ) = ε◦Lϕ, which
are mutually inverse by the adjunction laws and naturality of the unit/co-unit.
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It is straightforward to verify that going to and fro yields the original A or
unit/co-unit.

Lemma 2.2.43. Let L a R.

• Natural transformations LF → G correspond to natural transformations
F → RG, naturally in F and G.

• Natural transformations FR→ G correspond to natural transformations
F → GL, naturally in F and G.

Proof. The first statement is trivial.

To see the second statement, we send ζ : FR→ G to ζL ◦ Fη : F → GL, and
conversely θ : F → GL to Gε ◦ θR : FR→ G. Naturality is clear. Mapping ζ
to and fro, we get

Gε ◦ ζLR ◦ FηR = ζ ◦ FRε ◦ FηR = ζ. (2.5)

Mapping θ to and fro, we get

GεL ◦ θRL ◦ Fη = GεL ◦GLη ◦ θ = θ.

Proposition 2.2.44. If a functor has two left/right adjoints, then these
are naturally isomorphic in a manner compatible with the unit, co-unit and
transposition.

Proof. We prove this for left adjoints. Assume L1, L2 a R where L1, L2 : D → C
and R : C → D. Then by lemma 2.2.43 we have, naturally in F : D → C:

(L1 → F ) ∼=A1 (IdD → RF ) ∼=A−1
2

(L2 → F ).

Entering idL1 on the left yields λ2,1 : L2 → L1 on the right.

Entering idL2 on the right yields λ1,2 : L1 → L2 on the left.

Entering λ1,2 on the left should again yield idL2 , but it also yields (A−1
2 ◦

A1)(λ1,2 ◦ idL1) = λ1,2 ◦ (A−1
2 ◦A1)(idL1) = λ1,2 ◦ λ2,1. Adding a symmetric

observation, we find that λ2,1 = λ−1
1,2. We shall now write λ = λ1,2 : L1 ∼= L2.

To show compatibility:

A We should show for any ν : L2 → F , that A1(ν ◦ λ) = A2(ν) : Id→ RF ,
and we have

A1(ν ◦ λ) = Rν ◦A1(λ), A2(ν ◦ id) = Rν ◦A2(id),

and A1(λ) = A2(id) by definition of λ.
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η We should show that Rλ ◦ η1 = η2 : Id→ RL2. We have

Rλ ◦ η1 = Rλ ◦A1(idL1) = A1(λ) = A2(idL2) = η2.

ε We should show that ε1 = ε2 ◦ λR : L1R→ Id. We have

A1(ε2 ◦ λR) = A2(ε2) = idR = A1(ε1),

so applying A−1
1 completes the proof.

2.2.10 Algebras and Coalgebras

Definition 2.2.45. An algebra for an endofunctor F is an object a equipped
with a morphism α : Fa→ a. An algebra morphism ϕ : (a, α)→ (b, β) is a
morphism ϕ : a→ b such that ϕ ◦ α = β ◦ Fϕ.

Dually, a coalgebra for an endofunctor F is an object a equipped with a
morphism α : a → Fa. A coalgebra morphism ϕ : (a, α) → (b, β) is a
morphism ϕ : a→ b such that β ◦ ϕ = Fϕ ◦ α.

2.2.11 Monads and Comonads

The content of this section is entirely standard; Voutas has an exquisite brief
note that goes a bit more in depth [Vou12].

Definition 2.2.46. A monad is an endofunctor M : C → C equipped with
natural transformations η : Id→M (the unit) and µ : MM →M (the monadic
multiplication) such that µ ◦ ηM = µ ◦Mη = id : M → M (unit laws) and
µ ◦ µM = µ ◦Mµ : M3 →M (associativity).

A comonad is an endofunctorK : C → C equipped with natural transformations
ε : K → Id (the co-unit) and δ : K → KK (the comonadic duplication) such
that εK ◦ δ = Kε ◦ δ = id : K → K and εK ◦ ε = Kε ◦ ε : K → K3.

Endofunctors equipped with just a unit η (co-unit ε) but without multiplication
µ (duplication δ) are also called pointed (copointed) endofunctors.

Bind and Extend

Proposition 2.2.47. A monad is equivalently characterized as a functor M :
C → C equipped with natural transformations η : Id→M (the unit) and bind :
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∀x, y.Hom(x,My)→ Hom(Mx,My) such that bind(ηx) = idMx, bind(ϕ)◦η = ϕ
(unit laws) and bind(χ) ◦ bind(ϕ) = bind(bind(χ) ◦ ϕ) (associativity).

A comonad is equivalently characterized as a functor K : C → C equipped
with natural transformations ε : K → Id (the co-unit) and extend :
∀x, y.Hom(Kx, y) → Hom(Kx,Ky) such that extend(εx) = idKx, ε ◦
extend(ϕ) = ϕ (co-unit laws) and extend(ϕ) ◦ extend(χ) = extend(ϕ ◦ extend(χ)).

Proof. We prove this for monads.

We can define µx = bind(idMx) : MMx→Mx. Then we have

µ ◦ η = bind(id) ◦ η = id,

µ ◦Mη = bind(id) ◦Mη = bind(id ◦ η) = bind(η) = id,

µ ◦Mµ = bind(id) ◦Mµ = bind(id ◦ µ)

= bind(bind(id) ◦ id) = bind(id) ◦ bind(id) = µ ◦ µM.

Conversely, we can define bind(ϕ) = µ ◦Mϕ. Then we have

bind(η) = µ ◦Mη = id,

bind(ϕ) ◦ η = µ ◦Mϕ ◦ η = µ ◦ ηM ◦ ϕ = ϕ,

bind(bind(χ) ◦ ϕ) = µ ◦M(µ ◦Mχ) ◦Mϕ

= (µ ◦Mµ) ◦MMχ ◦Mϕ = (µ ◦ µM) ◦MMχ ◦Mϕ

= µ ◦Mχ ◦ µ ◦Mϕ = bind(χ) ◦ bind(ϕ).

Finally, these definitions are mutually inverse:

µ ◦M idMx = µ, bind(id) ◦Mϕ = bind(ϕ).

Adjunctions and (Co)algebras

Proposition 2.2.48. Any two adjoint functors L a R give rise to a monad
RL with unit η : Id → RL and multiplication RεL : RLRL → RL, and to a
comonad LR with unit LηR : LR→ LRLR and co-unit ε : LR→ Id.

Definition 2.2.49. An Eilenberg-Moore algebra or monad algebra for
a monad M is an object a equipped with a morphism α : Ma → a such that
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α ◦ ηa = ida : a → a and α ◦Mα = α ◦ µa : MMa → a. A morphism of
Eilenberg-Moore algebras ϕ : (a, α)→ (b, β) is a morphism ϕ : a→ b such that
ϕ ◦ α = β ◦Mϕ.

Dually, one defines an Eilenberg-Moore coalgebra or comonad coalgebra
for a comonad K, and a morphism of such coalgebras.

We write EM(M) or EM(K) for the Eilenberg-Moore category of a
(co)monad, which is the category of Eilenberg-Moore (co)algebras for that
(co)monad.

One similarly defines (co)algebras for (co)pointed endofunctors which satisfy
only the law α ◦ η = id or ε ◦ α = id.

Proposition 2.2.50. Every monad M : C → C gives rise to functors FM :
C → EM(M) : x 7→ (Mx,µx) and UM : EM(M)→ C : (a, α) 7→ a and we have
FM a UM giving rise again to the monad M = UMFM .

Dually, every comonad K gives rise to UK a CK over EM(K).

Proof. Functoriality is clear. To see adjointness, we have unit η : Id → M
and co-unit ε(a,α) = α : (Ma,µ)→ (a, α), which is a morphism thanks to one
algebra law. We have

UMε(a,α) ◦ ηUM (a,α) = α ◦ ηa = ida : a→ a

εFMx ◦ FMηx = µx ◦ ηx = idx : (Mx,µ)→ (Mx,µ).

These functors clearly compose toM with the same unit. For the multiplication,
we find UMεFmx = µx.

Proposition 2.2.51. For any monad M , the factorization M = UMFM with
co-unit εM over the Eilenberg-Moore category EM(M) is the final adjoint
factorization: any other adjoint factorization M = UF with co-unit ε over a
category D yields a unique commutative diagram:

D H //

U
""

EM(M)

UM

��
C

F

OO

FM

<<

M
// C

such that Hε = εMH : FMU → H.
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Proof. We first show existence. Let Hd = (Ud,Uεd). This is an Eilenberg-
Moore algebra, because Uεd ◦ ηUd = id and

Uεd ◦MUεd = Uεd ◦ UFUεd = Uεd ◦ UεFUd = Uεd ◦ µUd,

where in the second step we swapped the operands using naturality. Then
UMHd = Ud and HFd = (UFd,UεFd) = (Md,µd) = FMd as required. We
have (εM )Hd = (εM )(Ud,Uεd) = Uεd = Hεd, so the co-unit law is also satisfied.

To see uniqueness, note that the carrier of Hd is predetermined since UMH = U ,
and that the structure of Hd can be obtained by taking UM (εM )Hd = UMHεd =
Uεd.

Example 2.2.52. The functor List : Set→ Set which maps a set X to the set
ListX of finite lists of elements of X, is a monad with unit η : X → ListX :
x 7→ [x] and concatenation as multiplication. The category EM(List) is exactly
the category of monoids, since on an Eilenberg-Moore algebra (X, ξ) we can
define

e := ξ([]), x ∗ y := ξ([x, y]).

Then we have

e ∗ x = ξ([e, x]) = (ξ ◦ List ξ)([[], [x]]) = (ξ ◦ µ)([[], [x]]) = ξ([x]) = x,

x ∗ (y ∗ z) = ξ([x, y ∗ z]) = (ξ ◦ List ξ)([[x], [y, z]]) = (ξ ◦ µ)([[x], [y, z]])

= ξ([x, y, z]) = . . . = (x ∗ y) ∗ z.

The former proves one unit law for the monoid (the other is proven similarly)
and the latter proves associativity.

The functor FList sends a set X to the free monoid (ListX,µX) over X.

Free Monads

Proposition 2.2.53. [nLa20h] Assume the category C has small colimits.
Let (F, η) be a pointed endofunctor on C. Then there exists a free monad
(F∞, η∞, µ∞) over (F, η) where F∞x is obtained as the colimit of the following
commutative diagram:

x
η1 //

η

��

F (1)x
η2 //

η

��

F (2)x
η3 //

η

��

F (3)x
η4 //

η

��

. . .

Fx
Fη1 //

τ1

;;

FF (1)x
Fη2 //

τ2

::

FF (2)x
Fη3 //

τ3

::

FF (3)x
Fη4 //

τ4

;;

. . .
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where ηi = τi ◦ η and τ1 is the identity and each further τi+1 is defined as the
equalizer of Fηi and τi ◦ η.

The idea is that F (i) is a quotient of F i which identifies ηF i, FηF i−1, . . . , F iη
into a single morphism ηi+1 : F (i) → F (i+1).

Proof. Write αi : F (i) → F∞ and βi : FF (i) → F∞. Clearly, the canonical
natural transformation F → F∞ will be given by β0 and the unit is η∞ = α0.
It is not hard to see that there will be a general morphism F (i)F (j) → F (i+j)

and this way, we can define µ∞ by unfolding the double colimit, coercing
the obtained diagram into the one above and refolding. The effect is that
µ∞ ◦ (α1 ? α1) = α2.

Let (M,η′, µ′) be a monad and ν : F →M a morphism of pointed functors, i.e.
a natural transformation such that η′ ◦ ν = ν ◦ η. We need to prove that there
is a unique monad morphism ν∞ : F∞ →M such that ν∞ ◦ β0 = ν.

By the monad laws, there is a canonical natural transformation µ′i : M i →M .
If ν∞ is to be a monad morphism, we require

ν∞ ◦ αi = ν∞ ◦ µ∞i ◦ α?i1 = µ′ ◦ (ν∞ ◦ α1)?i = µ′ ◦ ν?i,

which uniquely determines the transformation ν∞ by the universal property of
the colimit.

Idempotent (Co)monads

Definition 2.2.54. A monad is called idempotent if µ is invertible. A comonad
is called idempotent if δ is invertible.

Proposition 2.2.55. The following conditions are equivalent: M is idempotent,
µ is invertible, ηM is invertible, Mη is invertible. For an idempotent monad,
Mη = ηM . The dual also holds.

Proof. The left/right inverse to an isomorphism is automatically the unique
inverse. So µ ◦ ηM = µ ◦Mη = id imply that all or none are inverse and if all
are inverse, then Mη = ηM = µ−1.

Proposition 2.2.56. An Eilenberg-Moore algebra for an idempotent monad
M is an object x so that η : x→Mx is invertible. An algebra morphism is any
morphism between algebras. The dual also holds.
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Proof. If x is an Eilenberg-Moore algebra, then we have ξ : Mx → x which
satisfies ξ ◦ η = id. Conversely, we have η ◦ ξ = Mξ ◦ ηM = Mξ ◦Mη = id,
so ξ = η−1. Then naturality of η implies that any morphism is an algebra
morphism.

If η : x→Mx is invertible, then (x, η−1) satisfies the monad laws.

2.2.12 Subobject Classifier

Definition 2.2.57. A subobject of an object c ∈ C is an object b paired with
a monomorphism b ↪→ c.

A subobject classifier of a category C is an object Prop ∈ C (often denoted
Ω) for which there exists a correspondence between morphisms c→ Prop and
subobjects of c. Thinking of objects as some sort of collections, the idea is that
Prop is the collection of truth values, and the morphism c→ Prop sends those
elements to ‘true’ that are in the image of the corresponding subobject b ↪→ c.

Definition 2.2.58. A subobject classifier [Law70] of a category C with finite
limits, is an object Prop ∈ C equipped with a morphism > : > → Prop from the
terminal object (and therefore mono), such that any subobject ι : b ↪→ c of any
c ∈ C is a pullback of > along a unique morphism (∈ b) : c→ Prop.3 Clearly, b
can be retrieved from (∈ b) up to isomorphism by actually taking the pullback.

b �
� ι //

��

c

(∈b)
��

> �
�

>
// Prop.

2.2.13 Higher Category Theory

As this thesis contains barely any formal higher categorical content, we also
keep the concepts informal.

Definition 2.2.59. A 2-category is a category in which the Hom-sets are not
sets but categories, and where composition is a functor. The objects of the Hom-
categories are called 1-arrows, 1-cells, 1-morphisms or just morphisms,

3We are assuming that ι is obvious from the context.
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and the morphisms of the Hom-categories are called 2-arrows, 2-cells or 2-
morphisms. A strict 2-category satisfies unit and composition laws on the
nose, whereas a weak 2-category satisfies them up to coherent isomorphism.

Example 2.2.60. An example is the strict 2-category Cat whose objects are
categories, and whose Hom-categories are functor categories. Hence, its 1-cells
are functors and its 2-cells are natural transformations.

Example 2.2.61. A profunctor P : C 9 D is a functor P : Cop × D → Set.
A morphism of profunctors is just a natural transformation.

We have a weak 2-category Prof whose objects are categories, whose 1-cells are
profunctors, and whose 2-cells are morphisms of profunctors. The identity is
given by Hom : C 9 C, and composition is given by a co-end: (Q ◦ P)(x, z) =
∃y.P(x, y)×Q(y, z). The co-Yoneda lemma asserts that unit laws are respected
up to isomorphism, whereas associativity is straightforwardly proven. Coherence
of the isomorphisms involved is daunting to even state, let alone prove.

Definition 2.2.62. A 2-functor F : C → D between 2-categories is like a
functor but acts functorially on Hom-categories. A strict 2-functor preserves
identity and composition on the nose, whereas a weak 2-functor (also called
pseudofunctor) preserves them up to coherent isomorphism.

Definition 2.2.63. A pseudonatural transformation is a natural transfor-
mation between 2-functors that satisfies naturality up to coherent isomorphism.

Definition 2.2.64. The 2-category Cop is the 2-category C with 1-cells reversed:
HomCop(x, y) = HomC(y, x).

The 2-category Cco is the 2-category C with 2-cells reversed: HomCco(x, y) =
HomC(x, y)op.

2.3 Presheaves

2.3.1 Definition and Yoneda-embedding

Definition 2.3.1. A presheaf with base category W is a functor Wop → Set.
The category of presheaves Psh(W) is the functor category SetW

op
.

Notation 2.3.2. We use the presheaf notations from earlier work [Nuy18a],
concretely:

• The application of a presheaf Γ ∈ Psh(W) to an object W ∈ W is denoted
W ⇒ Γ. An element γ : W ⇒ Γ is called a cell of Γ of shape W .



38 MATHEMATICAL PREREQUISITES

• The restriction of γ : W ⇒ Γ by ϕ : V → W , i.e. the action of Γ on ϕ
applied to γ, is denoted γ ◦ ϕ or γϕ : V ⇒ Γ.

• The application of a presheaf morphism σ : Γ → ∆ to γ : W ⇒ Γ is
denoted σ ◦ γ or σγ. By naturality of σ, we have σ ◦ (γ ◦ ϕ) = (σ ◦ γ) ◦ ϕ.

If W has a terminal object, then we call a cell > ⇒ Γ a point.
Definition 2.3.3. The Yoneda-embedding y : W → Psh(W) is defined
by (V ⇒ yW ) = (V → W ), i.e. yW = Hom(xy,W ). A presheaf is called
representable if it is, up to isomorphism, in the image of the Yoneda-
embedding.
Notation 2.3.4. Given a presheaf Γ ∈ Psh(W), we denote the category of
elements as W/Γ :=

∫
W∈W(W ⇒ Γ).

Proposition 2.3.5. The slice category W/W is the category of elements
W/yW .
Proposition 2.3.6. All limits and colimits of presheaves of size α over diagrams
of size α exist and can be taken componentwise.

Proof. For limits, let Γ be the componentwise limit of Γi, i.e. (W ⇒ Γ) :=
limi∈I(W ⇒ Γi). Then we have:

(∆→ Γ) = ∀W.(W ⇒ ∆)→ (W ⇒ Γ)

∼= ∀W.(W ⇒ ∆)→ lim
i

(W ⇒ Γi)

∼= lim
i
∀W.(W ⇒ ∆)→ (W ⇒ Γi)

= lim
i

(∆→ Γi),

so that Γ = limi Γi by remark 2.2.22. The move of limi is justified by the
explicit construction in Set (proposition 2.2.20).

For colimits, let Γ be the componentwise colimit of Γi, i.e. (W ⇒ Γ) :=
colimi∈I(W ⇒ Γi). Then we have:

(Γ→ ∆) = ∀W.(W ⇒ Γ)→ (W ⇒ ∆)

∼= ∀W.(colim
i

W ⇒ Γi)→ lim
i

(W ⇒ ∆)

∼= lim
i
∀W.(W ⇒ Γi)→ (W ⇒ ∆)

= lim
i

(Γi → ∆),

so that Γ = colimi Γi by remark 2.2.22.
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2.3.2 Examples of Base and Presheaf Categories

Example 2.3.7 (Sets). Let Point be the category with a single object ∗ and
only the identity morphism. Then Psh(Point) ∼= Set, and y∗ is the singleton.

Reflexive Graphs

Example 2.3.8 (Reflexive graphs). A reflexive graph Γ consists of a set ΓN of
nodes and a set ΓI of edges, with two functions s, t : ΓI → ΓN assigning to each
edge a source and target node (we say that e is an edge from s(e) to t(e)), and
a function r : ΓN → ΓI such that s(r(x)) = t(r(x)) = x assigning to each node
x a reflexive edge from x to x.

Reflexive graphs can be organized as presheaves over the category RG generated
by the following diagram and equations:

N
s
&&

t
88 Iroo r ◦ s = 1N,

r ◦ t = 1N.

The idea is that N⇒ Γ is the set of nodes, I⇒ Γ is the set of edges, and that
(xy ◦ s), (xy ◦ t) : (I⇒ Γ)→ (N⇒ Γ) extract the source and target of an edge,
whereas (xy ◦ r) : (N ⇒ Γ) → (I ⇒ Γ) produces the reflexive edge on a node.
The equations assert that the edge γ ◦ r really goes from γ to γ.

A reflexive graph morphism σ : Γ→ ∆ is then a natural transformation, sending
nodes γ : N ⇒ Γ to nodes σ ◦ γ : N ⇒ ∆ and edges γ : I ⇒ Γ to edges
σ ◦ γ : I⇒ ∆ such that the image of the source σ ◦ (γ ◦ s) is the source of the
image (σ ◦ γ) ◦ s, and similar for target and reflexivity.

The graph yN contains a single node idN : N⇒ yN and a single reflexive edge
r : I⇒ yN. The graph yI contains a single non-trivial edge idI, its source s, its
target t and the reflexive edges s ◦ r and t ◦ r:

idN

r

ss◦r
idI t t◦r

A straightforward generalization of RG, is the category aRG, which has a different
arrows N → I, so that 2RG ∼= RG. Presheaves over aRG are a-ary reflexive
graphs, where every edge has not 2 but a endpoints.

Another possible modification is the addition of an involution ¬ : I → I such
that s◦¬ = t and (hence) t◦¬ = s, yielding RG¬. Presheaves over this category
are undirected reflexive graphs.
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Atkey, Ghani, and Johann [AGJ14] use reflexive graphs to model dependently
typed parametricity.

Simplicial Sets

Example 2.3.9 (Simplicial sets). A simplicial set Γ is like a reflexive graph,
containing nodes, edges with a source and a target, and a reflexive edge on
every node. However, on top of that, simplicial sets contain higher dimensional
structure. This begins with triangles, which have 3 vertices and three sides (and
the vertices are the sources/targets of the sides), and conversely there are 2 flat
triangles on every edge. Next, we have tetrahedra, which have 4 faces (these are
triangles), 6 sides, and 4 nodes. In general, a simplicial set Γ comes with a set
Γn of n-simplices (these are n-dimensional triangles/tetrahedra) for every n, as
well as operations for extracting lower-dimensional faces of higher-dimensional
simplices (these operations are called face maps), as well as for extracting flat
higher-dimensional simplices from lower-dimensional ones (called degeneracy
maps).

Simplicial sets can be organized as presheaves over the simplex category
Simplex, which is essentially the skeleton of the category of non-empty finite
linear orders. Concretely:

• Its objects are natural numbers (including 0), we write Obj(Simplex) =
{[n] |n ∈ N},

• Morphisms ϕ : Hom([m], [n]) are non-decreasing functions

ϕ : {0 ≤ 1 ≤ . . . ≤ m} → {0 ≤ 1 ≤ . . . ≤ n}.

The idea is that [n]⇒ Γ is the set of n-dimensional simplices in Γ. In particular,
[0] ⇒ Γ is the set of nodes and [1] ⇒ Γ is the set of edges. Restriction by a
map 0 7→ i : [0]→ [n] extracts the ith node of an n-simplex. Restriction by a
map {0 7→ i, 1 7→ j} : [1]→ [n] extracts the edge from the ith node to the jth
node of an n-simplex. Similarly, we extract the faces of an n-simplex with maps
[2]→ [n]. In general, injective maps are face maps.

On the other hand, surjective maps provide flat simplices. For example, there
are two flat triangles on every edge, given by the maps

{0 7→ 0, 1 7→ 0, 2 7→ 1} : [2]→ [1], {0 7→ 0, 1 7→ 1, 2 7→ 1} : [2]→ [1].

We remark that there is a fully faithful functor RG→ Simplex, i.e. a reflexive
graph is really the 1-dimensional truncation of a simplicial set.

The presheaf y[n] contains a non-trivial n-simplex id[n] as well as all of its faces
and all degenerate simplices on all those faces.
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Simplicial sets are used as a model for (higher dimensional) categories; see any
reference on the subject. Kapulkin, Lumsdaine, and Voevodsky [KLV12] use
simplicial sets to model homotopy type theory (HoTT) [Uni13].

Cubical Sets

Example 2.3.10 (Cartesian cubical sets). Cubical sets are another general-
ization of reflexive graphs. A cubical set Γ comes with, for every n, a set Γn,
not of n-dimensional simplices but of n-dimensional cubes. There is a great
deal of different notions of cubical sets, depending on the available restriction
maps. For example, we may or may not allow extracting diagonals, or obtaining
squares from edges by folding them open like a fan (i.e. connections).

In this first example, we consider cartesian cubical sets, which have diagonals
but no connections. These can be organized as presheaves over the category of
cartesian cubes Cube, which is the free cartesian monoidal category with same
terminal object over RG. Concretely:

• Its objects take the form (i1 : I, . . . , in : I) (the names are desugared to
de Bruijn indices, i.e. the objects are really just natural numbers),

• Its morphisms (i1 : I, . . . , in : I) → (j1 : I, . . . , jm : I) are arbitrary
functions ϕ : {j1, . . . , jm} → {i1, . . . , in} ∪ {0, 1} : j 7→ j〈ϕ〉. We also
write ϕ = (j1〈ϕ〉/j1, . . . , jm〈ϕ〉/jm). If a variable i is not used, we may
write i/� to emphasize this.

Again there is a fully faithful functor F : RG→ Cube:

FN = (), F I = (i : I), F s = (0/i), F t = (1/i), Fr = (i/�).

In general, substitutions 0/i and 1/i extract faces of cubes, weakening i/�
extracts flat (n + 1)-cubes from n-cubes and contraction (i/j, i/k) : (i : I) →
(j : I, k : I) extracts diagonals.

A straightforward generalization is the category of a-ary cartesian cubes aCube,
where morphisms ϕ send a variable j to j〈ϕ〉 ∈ {i1, . . . , in} ∪ {0, . . . , a− 1}.

In the binary case, we may additionally throw in an involution ¬ : I → I
satisfying ¬0 = 1 and ¬1 = 0, yielding the category Cube¬.

Example 2.3.11 (Affine cubical sets). If we rule out diagonals, then we obtain
affine cubical sets, which are presheaves over the category of a-ary affine cubes
aCube2, which is the free monoidal category with (same) terminal unit over
aRG. Concretely:

• Objects are as in aCube,
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• Morphisms are as in aCube such that if j〈ϕ〉 = k〈ϕ〉 6∈ {0, . . . , a− 1},
then j = k. This rules out diagonal maps.

Bezem, Coquand, and Huber [BCH14] use binary affine cubical sets to model
cubical HoTT. Bernardy, Coquand, and Moulin [BCM15] and Moulin [Mou16]
use unary ones to model internal unary parametricity.

Again, in the binary case, we can throw in an involution, yielding Cube2,¬.

Example 2.3.12 (CCHM cubical sets). Cohen, Coquand, Huber, and Mörtberg
[Coh+17] define the category CCHM of CCHM cubes, whose objects are as in
Cube, and where morphisms (i1 : I, . . . , in : I)→ (j1 : I, . . . , jm : I) are functions
from {j1, . . . , jm} to the free de Morgan algebra over {i1, . . . , in}. This means
in particular that there is an involution ¬ : I → I as well as two operations
∧,∨ : I2 → I, called connections, such that

0 ∨ i = i ∨ 0 = i, 0 ∧ i = i ∧ 0 = 0,

1 ∨ i = i ∨ 1 = 1, 1 ∧ i = i ∧ 1 = i.

Restriction by a connection folds open an edge e : (i : I)⇒ Γ from x = e(0/i)
to y = e(1/i) like a fan, yielding a square:

y
y(k/�)

e(j/i) e(j∨k/i)

y

y(j/�)

x
e(k/i)

x(j/�) e(j∧k/i)

y

e(j/i)j

OO

k
// x

e(k/i)
y x

x(k/�)
x

Example 2.3.13 (Depth d cubical sets). Let DCubed with d ≥ −1 be the
category of depth d cubes, used as a base category in degrees of relatedness
[ND18a; Nuy18a] (chapter 9). This is a generalization of the category of
binary cartesian cubes Cube, where instead of typing every dimension with
the interval I, we type them with the k-interval LkM, where k ∈ {0, . . . , d}
is called the degree of relatedness of the edge. Its objects take the form
(i1 : Lk1M, . . . , in : LknM). Conceptually, we have a map LkM→ L`M if k ≥ `. Thus,
morphisms ϕ : (i1 : Lk1M, . . . , in : LknM) → (j1 : L`1M, . . . , jm : L`mM) send every
variable j : L`M of the codomain to j〈ϕ〉, which is either 0, 1 or a variable i : LkM
of the domain such that k ≥ `.

• If d = −1, then there is only one object () and only the identity morphism,
i.e. we have the point category.

• If d = 0, we just get Cube.
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• If d = 1, we obtain the category of bridge/path cubes BPCube := DCube1.
We write P for L0M (the path interval) and B for L1M (the bridge interval).
Bridge/path cubical sets are used as a model for parametric quantifiers
[NVD17a; Nuy17] (chapter 9).

Indices, Trees and Clocks

Example 2.3.14 (Topos of trees). The ordinal number ω can be seen as a
category:

0→ 1→ 2→ 3→ 4→ . . .

When i ≤ j, we write �ji for the unique morphism �ji : i → j. The category
Psh(ω) is called the topos of trees and is used, among other things, as a model
of guarded type theory [Bir+12]. The name ‘topos of trees’ is derived from a
visual representation of a presheaf Γ ∈ Psh(ω): if one lists on the ith row of a
sheet of paper, counting bottom-up, the elements of i⇒ Γ, and then connects
every γ : i+ 1⇒ Γ to its unique restriction in i⇒ Γ, zero or more trees form.

The presheaf yk contains a single i-cell i⇒ yk if i ≤ k, and no i-cells otherwise.

Example 2.3.15 (Sierpiński topos). Of course we can also consider presheaf
categories over other ordinals. In particular, the Sierpiński topos is the
presheaf category Psh(2) over 2 = {0→ 1}. It is, essentially, the arrow category
of Set.
Example 2.3.16 (Clocks). Let Clock be the category of clocks, used as a base
category in guarded type theory [BM18]. It is the free cartesian category over
ω. Concretely:

• Its objects take the form (i1 : �k1 , . . . , in : �kn) where all kj ≥ 0. We
can think of a variable of type �k as representing a clock (i.e. a time
dimension) paired up with a certificate that we do not care what happens
after the time on this clock exceeds k.

• Correspondingly, we should have a map �k → �` if k ≤ `. So the
morphisms ϕ : (i1 : �k1 , . . . , in : �kn) → (j1 : �`1 , . . . , jm : �`m) are
functions that send (de Bruijn) variables j : �` of the codomain to a
variable j〈ϕ〉 : �k of the domain such that k ≤ `.

2.3.3 The Yoneda and Co-Yoneda Lemmas

Theorem 2.3.17 (Yoneda lemma). For any presheaf Γ ∈ Psh(W), we have

∀W.(HomW(W,W0)→ (W ⇒ Γ)) ∼= (W0 ⇒ Γ),
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naturally in W0. We remark that the end on the left (constructed as in
proposition 2.2.27) is exactly the set of presheaf morphisms yW0 → Γ. Hence
(yW0 → Γ) ∼= (W0 ⇒ Γ).

Notation 2.3.18. We will omit applications of this isomorphism (yW → Γ) ∼=
(W ⇒ Γ), i.e. if γ : W ⇒ Γ, then we also use γ : yW → Γ.

Proof. Pick σ : yW0 → Γ. We claim that σ is entirely determined by σ ◦ idW0 :
W0 ⇒ Γ. Indeed:

σ ◦ ψ = σ ◦ (idW0 ◦ ψ) = (σ ◦ idW0) ◦ ψ,

i.e. σ ◦ ψ (the application of σ to ψ) is found by restricting σ ◦ idW0 (the
application of σ to idW0) by ψ. Hence, the assignment σ 7→ σ ◦ idW0 is
invertible.

It is also natural in W0. Indeed, pick χ : W0 →W1. Then σ ◦ yχ is sent to

(σ ◦ yχ) ◦ idW1 = σ ◦ (χ ◦ idW1) = σ ◦ (idW0 ◦ χ) = (σ ◦ idW0) ◦ χ.

Theorem 2.3.19 (Co-Yoneda lemma). For any presheaf Γ ∈ Psh(W), we have

∃W.(HomI(W0,W )× (W ⇒ Γ)) ∼= (W0 ⇒ Γ),

naturally in W0.

Proof. Construct the co-end as in proposition 2.2.28. In one direction, we send
(W,ψ, γ) to γ ◦ ψ (which is clearly natural in W0); in the other, we send γ0 to
(W0, id, γ0). One side of the isomorphism is trivial. For the other, we have to
show that (W,ψ, γ) = (W0, id, γ ◦ψ), but this follows from the equality relation
on the co-end.

2.3.4 Dependent Yoneda and Co-Yoneda Lemmas

The following theorems are neither standard nor very surprising.

Theorem 2.3.20 (Dependent Yoneda lemma). For any presheaves Γ ∈ Psh(W)
and T ∈ Psh(W/Γ), we have

∀W.((ψ : W →W0)→ ((W,γ0 ◦ ψ)⇒ T )) ∼= ((W0, γ0)⇒ T ),

naturally in (W0, γ0) ∈ W/Γ.
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Proof. We have

∀W.((ψ : W →W0)→ ((W,γ0 ◦ ψ)⇒ T ))

∼= ∀(W,γ).(ψ : HomW/Γ((W,γ), (W0, γ0))→ ((W,γ)⇒ T ))

∼= ∀W.(γ : W ⇒ Γ)→ (ψ : HomW/Γ((W,γ), (W0, γ0))→ ((W,γ)⇒ T ))

∼= ((W0, γ0)⇒ T ).

In the first step, we add an additional argument γ but constrain it to be
γ = γ0 ◦ ψ by asking that ψ be a morphism of slices. The second step is a
matter of reorganizing the naturality condition. The third step is the Yoneda
lemma.

Notation 2.3.21. For any logical formula P , when we write P as a set, we
mean the subsingleton {? |P}.

Theorem 2.3.22 (Dependent co-Yoneda lemma). For any presheaves Γ ∈
Psh(W) and T ∈ Psh(W/Γ), we have

∃W.(ψ : W0 →W )× (γ : W ⇒ Γ)× ((W,γ)⇒ T )× (γ ◦ ψ = γ0)

∼= ((W0, γ0)⇒ T )

naturally in (W0, γ0) ∈ W/Γ.

Proof. We have

∃W.(ψ : W0 →W )× (γ : W ⇒ Γ)× ((W,γ)⇒ T )× (γ ◦ ψ = γ0)

∼= ∃(W,γ).(ψ : W0 →W )× ((W,γ)⇒ T )× (γ ◦ ψ = γ0)

∼= ∃(W,γ).(ψ : (W0, γ0)→ (W,γ))× ((W,γ)⇒ T )

∼= ((W0, γ0)⇒ T ).

The first step is a matter of comparing equivalence relations. In the second
step, we use the equality proof to reframe ψ as a morphism of slices. The last
step is the co-Yoneda lemma.

2.3.5 Injective and Surjective Morphisms

Proposition 2.3.23. A morphism of presheaves σ : Γ→ ∆ is:
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• mono if and only if every component is injective, in which case we call σ
injective,

• epi if and only if every component is surjective, in which case we call σ
surjective.

Proof. For mono-/epimorphisms σ : Γ → ∆, the following function is
injective/surjective:

(W ⇒ Γ) ∼= (yW → Γ)→ (yW → ∆) ∼= (W ⇒ ∆),

which shows that σ is injective/surjective.

Next, we show that if σ is surjective, then it is epi. Pick τ1, τ2 : ∆→ Θ such
that τ1 ◦ σ = τ2 ◦ σ. We show that τ1 = τ2. Pick δ : W ⇒ ∆. By surjectivity,
there is some γ : W ⇒ Γ such that δ = σ ◦ γ. Then τ1 ◦ δ = τ2 ◦ δ.

Finally, we show that if σ is injective, then it is mono. Pick ρ1, ρ2 : Θ → Γ
such that σ ◦ ρ1 = σ ◦ ρ2. We show that ρ1 = ρ2. Pick θ : W ⇒ Θ. Then
σ ◦ ρ1 ◦ θ = σ ◦ ρ2 ◦ θ, so by injectivity ρ1 ◦ θ = ρ2 ◦ θ.

Corollary 2.3.24. Given ϕ : V →W , the morphism yϕ : yV → yW is

• mono if and only if ϕ is mono,
• epi if and only if ϕ is split epi.

2.3.6 Subobject Classifier

Proposition 2.3.25. All presheaf categories have a subobject classifier
(definition 2.2.58).

Proof. In order to define Prop ∈ Psh(W), we need to define W ⇒ Prop for
all W ∈ W. But by the Yoneda-lemma, this is isomorphic to (yW → Prop),
which should be the set of isomorphism classes of subobjects of yW . Now,
since on presheaves we actually have a notion of subpresheaf ∆ ⊆ Γ (meaning
that (W ⇒ ∆) ⊆ (W ⇒ Γ) naturally in W ), we can use these subpresheaves
as canonical representants of their isomorphism class, and we can just define
(notation 2.0.1)

(W ⇒ Prop) := {(∈Υ) |Υ ⊆ yW}. (2.6)

Note that Υ is obtained from (∈Υ) by taking the pullback of > : > → Prop
along (∈Υ).
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Restriction by ϕ : V → W yields a morphism (∈Υ) ◦ ϕ : yV → Prop which
classifies a similar pullback, which is also the pullback (preimage) (yϕ)−1(Υ) of
Υ along yϕ:

(yϕ)−1(Υ)

⊆
��

// Υ

⊆
��

yV yϕ
// yW.

Hence, we must define restriction by (∈Υ) ◦ ϕ := (∈ (yϕ)−1(Υ)).

The morphism > : > → Prop sends any () : W ⇒ > to > ◦ () := yW ⊆ yW .

Next, given a subobject (without loss of generality, a subpresheaf) Γ′ ⊆ Γ,
we need to define the corresponding morphism (∈ Γ′) : Γ → Prop, i.e. given
γ : W ⇒ Γ, we need to define (∈ Γ′) ◦ γ : W ⇒ Prop. This is again a map
(∈ Γ′) ◦ γ : yW → Prop, and it classifies the pullback of > along (∈ Γ′) ◦ γ,
which is the pullback of Γ′ along γ : yW → Γ, i.e. the preimage γ−1(Γ′). Thus,
we must define (∈ Γ′) ◦ γ := (∈ γ−1(Γ′)). This clearly respects restriction.

The pullback Γ′′ ⊆ Γ of > : > → Prop along (∈ Γ′) : Γ → Prop is now the
subpresheaf of cells γ : W ⇒ Γ such that (∈ Γ′) ◦ γ = (∈ γ−1(Γ′)) : W ⇒ Prop
is the total presheaf (∈yW ), i.e. such that the image of γ : yW → Γ is entirely
in Γ′, i.e. such that γ is a cell of Γ′. In summary, Γ′′ = Γ′.

Most authors instead define W ⇒ Prop to be the set of sieves on W , but a
sieve could be defined to be any full subcategory of W/W ∼=W/yW that is the
category of elements of a subpresheaf of yW .

Example 2.3.26 (Sets). Continuing example 2.3.7, the subobject classifier in
the category of sets Psh(Point) is the set of subsets of y∗, the singleton. Hence,
it contains two elements: (∈y∗) (truth) and the empty presheaf (falsehood).
Example 2.3.27 (Reflexive graphs). Continuing example 2.3.8, the subobject
classifier of Psh(RG) has as its nodes N⇒ Prop the subgraphs of yN, namely
(∈yN) (truth >) and the empty presheaf (falsehood ⊥). The edges I⇒ Prop
are all 5 subpresheaves of yI:

s

s◦r

idI

s

s◦r

s

s◦r

∅

t

t◦r

t

t◦r

t

t◦r
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The first is truth >, the reflexive edge from > to >; the last is falsehood ⊥, the
reflexive edge from ⊥ to ⊥. The other three are non-reflexive edges from > to
>, > to ⊥ and ⊥ to > (resp.).

Example 2.3.28 (Topos of trees). Continuing example 2.3.14, the subobject
classifier of the topos of trees Psh(ω) has as its k-cells k ⇒ Prop all subpresheaves
of yk, which are the empty presheaf and all (∈yi) for i ≤ k. The restriction of
(∈yi) : k ⇒ Prop to j ⇒ Prop is (∈y min(i, j)).

2.3.7 Base Pullbacks and Representable Morphisms

The following notion is neither standard nor very remarkable:

Definition 2.3.29. Given presheaves σ : ∆→ Γ : Psh(W) and γ : W ⇒ Γ, a
base pullback ∆×ΓW is a final object making the following diagram commute:

∆×Γ W //

��

W

γ

��
∆

σ
// Γ.

In other words, we have a natural isomorphism of sets

(V → ∆×Γ W ) ∼= (V ⇒ ∆)×(V⇒Γ) (V →W ). (2.7)

Proposition 2.3.30. The Yoneda-embedding of a base pullback is a pullback:
y(∆×Γ W ) ∼= ∆×Γ yW .

Proof. We have

(V ⇒ y(∆×Γ W )) ∼= (V ⇒ ∆)×(V⇒Γ) ×(V ⇒ yW )

= (V ⇒ ∆)×(V⇒Γ) Hom(V,W )

∼= (V → ∆×Γ W ).

Definition 2.3.31. A morphism of presheaves σ : ∆→ Γ is representable if
all base pullbacks along σ exist. [Sta23]
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2.3.8 Lifting Functors

Theorem 2.3.32. Any functor F : V → W gives rise to functors F! a F ∗ a F∗,
with a natural isomorphism F! ◦ y ∼= y ◦ F : V → Ŵ. We will call F! : V̂ → Ŵ
the left lifting of F to presheaves, F ∗ : Ŵ → V̂ the central and F∗ : V̂ → Ŵ
the right lifting.4 [StaVC]

The operation xy∗ : Catcoop → Cat sending F : V → W to F ∗ : Psh(W)→ Psh(V)
is a strict 2-functor. Hence xy!, xy∗ : Cat→ Cat are pseudofunctors.

Proof. Using quantifier symbols for ends and co-ends, we can define:

W ⇒ F!Γ := ∃V.(W → FV )× (V ⇒ Γ),

V ⇒ F ∗∆ := FV ⇒ ∆

W ⇒ F∗Γ := ∀V.(FV →W )→ (V ⇒ Γ) = (F ∗yW → Γ).

By the co-Yoneda lemma, we have, naturally in W :

W ⇒ F!yV = ∃V ′.(W → FV ′)× (V ′ → V )

∼= (W → FV ) = (W ⇒ yFV ),

i.e. F!yV ∼= yFV .

Adjointness also follows from applications of the Yoneda and co-Yoneda lemmas.
[StaVC]

It is evident from the definition of xy∗ that it preserves identity and composition
on the nose, and easy to check that it turns around natural transformations.
By uniqueness of the left/right adjoint (proposition 2.2.44), xy! and xy∗ are then
pseudofunctors.

Notation 2.3.33. • We denote the cell (V, ϕ, γ) : W ⇒ F!Γ as F!γ ◦ ϕ. If
we rename F!, then we will also do so in this notation. We will further
abbreviate F!γ ◦ id = F!γ and, if Γ = yV , also F!id ◦ ϕ = ϕ.

• We denote the transpositions AF : F! a F ∗ and BF : F ∗ a F∗.
• If δ : FV ⇒ ∆, then we write AF (δ) : V ⇒ F ∗∆.
• If γ : F ∗yW ⇒ Γ, then we write BF (γ) : W ⇒ F∗Γ.

4The central and right liftings are also sometimes called the inverse image and direct image
of F , but these are actually more general concepts and as such could perhaps cause confusion
or unwanted connotations in some circumstances. The left-central-right terminology is very
no-nonsense.
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Remark 2.3.34. We have noted that xy!, xy∗ and xy∗ are at least pseudofunctors
on Cat. Hence, they have an action on natural transformations. The actions of
the images of a natural transformation ν : F → G : V → W are given by

ν! ◦ F!(γV⇒Γ) ◦ ψW→FV = G!γ ◦ ν ◦ ψ : W ⇒ G!Γ,

ν∗ ◦AG(δGV⇒∆) = AF (δ ◦ ν) : V ⇒ F ∗∆,

ν∗ ◦BF (σF
∗yW→Γ) = BG(σ ◦ ν∗) : W ⇒ G∗Γ.

Remark 2.3.35. An adjunction L a R between base categories, leads to a
chain

L! a R! ∼= L∗ a R∗ ∼= L∗ a R∗.

The three adjunctions have units

η! : Id→ R!L!, ε∗ : Id→ R∗L∗, η∗ : Id→ R∗L∗,

and co-units

ε! : L!R! → Id, η∗ : L∗R∗ → Id, ε∗ : L∗R∗ → Id.

This involves a small abuse of notation for the left and right liftings in the sense
that e.g. η! : Id! → (RL)! has a (co)domain that is isomorphic but generally
not equal to the ones given above.

The isomorphisms follow from uniqueness of adjoints.

Example 2.3.36 (Sets and reflexive graphs). Continuing examples 2.3.7
and 2.3.8, there is a pair of adjoint functors u a M:

u : RG→ Point : _ 7→ ∗,

M : Point→ RG : ∗ 7→ N.

We have uM = IdPoint.

Lifting these yields an adjoint quadruple u a M a t a O of functors between
Psh(Point) and Psh(RG):

• u := u! maps a graph to its set of connected components,
• M := u∗ ∼= M! maps a set to a discrete graph with only identity edges,
• t := u∗ ∼= M∗ maps a graph to its set of nodes,
• O := M∗ maps a set to a codiscrete graph which has a unique edge between
any two nodes.
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Moreover, we have uM ∼= tM ∼= tO ∼= Id : Psh(Point)→ Psh(Point), so that we
obtain idempotent (co)monads + a [ a ] on the category of reflexive graphs.

Similar adjoint quadruples feature in cohesive type theory [see e.g. LS16] and
in the model of ParamDTT (section 9.2) [Nuy17].

2.4 Factorization Systems

In this section, we study factorization systems, which is necessary background
for chapter 8 on fibrancy. This section uses a lecture note by Riehl [Rie08] and
work by Grandis and Tholen [GT06] as primary sources, but we only extract the
bare necessities and some definitions and proofs are expanded and reorganized
with the intention of increasing accessibility while still keeping it brief.

How to read Factorization systems are the categorical foundation of notions
of fibrancy in type theory, of which many examples can be found here. We
recommend the reader to review section 1.6 in order to understand the motivation
for studying fibrancy, and perhaps to skim the introductory section 8.1 before,
after or in parallel with the current section in order to see some examples of
fibrancy in action in type theory. It should be absolutely feasible to omit all
proofs in the current section.

2.4.1 Introduction

A factorization system on a category C provides two classes of morphisms
called left maps and right maps, and a factorization of any morphism ϕ as the
composite ϕ = ρ ◦ λ of a right map ρ and a left map λ. A type T will be called
fibrant if the weakening substitution (Γ, x : T )→ Γ is a right map.

In section 2.4.2, we introduce orthogonal factorization systems (OFSs), which
are factorization systems where the factorization of a morphism is unique up to
isomorphism. A consequence of this is that the operations L and R sending ϕ
to its left/right factor, are closure operators, sending left/right morphisms to
themselves. Another consequence is that any square from a left morphism to a
right morphism (called a lifting problem) has a unique diagonal (the solution or
lifting).

In section 2.4.3, we move to weak factorization systems (WFS), which drop the
condition that the factorization must be unique. Then the existence of solutions
to lifting problems can no longer be proven, so it is required in the definition of
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a WFS, again non-uniquely. This means that L and R are not really operators
at all: a WFS merely asserts the existence of some factorization, but doesn’t
pick one. If we have choice, we can pick one ourselves, but this operation will
of course be completely arbitrary.

Functorial WFSs (FWFSs) (section 2.4.4) address this issue by asking a
functorial factorization operation. However, FWFSs are still ill-behaved as the
solutions to lifting problems are not an operation.

Natural WFSs (NWFSs) (section 2.4.5) are finally the appropriate algebraization
of WFSs. An NWFS is an FWFS in which lifting problems are required to be
in some sense unique. As is not unusual in category theory when we change a
uniqueness condition into an algebraic operation, the operators L and R that
send a morphism ϕ to its left/right factors λ and ϕ are now no longer closure
operators, but a comonad and a monad. The right (left) morphisms are then
the (co)algebras for this (co)monad.

In section 2.4.6, we discuss a procedure for creating NWFSs (including OFSs).
We can pick a class of generating left maps, define the right maps to be those
that lift the generating left maps, and the left maps to be those that lift the
right maps. This turns out to be an NWFS. All notions of fibrancy of interest
in this thesis can be generated in this way5 and the robustness condition on
NWFSs in chapter 8 is a condition about the way the NWFS is generated from
the left.

2.4.2 Orthogonal Factorization Systems (OFSs)

We remind the reader of notation 2.2.17.

Definition 2.4.1. Two morphisms `↑ : `0 → `1 and r↑ : r0 → r1 are
orthogonal (denoted ~̀ ⊥ ~r) if, for every ~ϕ : HomC↑(~̀, ~r) (called a lifting
problem), there exists a unique lifting (a.k.a. filler or solution) σ : `1 → r0:

`0
ϕ0 //

`↑

��

r0

r↑

��
`1 ϕ1

//

σ

>>

r1.

(2.8)

5In fact, that statement is vacuous, as any NWFS is generated in this way if in hindsight
we let the generating left maps be all left maps. So of course we mean non-trivially generated.
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Definition 2.4.2. [nLa20f] An orthogonal factorization system (OFS)
(L,R) on a category C consists of two classes of morphisms L and R (called
left and right maps resp.)

• which both contain all isomorphisms and are both closed under compo-
sition,

• such that every morphism ϕ factors as ϕ = r↑ ◦ `↑ with ~̀ ∈ L and ~r ∈ R
in a unique way up to unique isomorphism.

Example 2.4.3 (Injective presheaf morphisms). In presheaf categories, we can
take surjective morphisms as left maps and injective morphisms as right maps.
The factorization is over the image of the morphism.

Example 2.4.4 (Fully faithful functors). [nLa20f] In Cat, we can take functors
bijective on objects as left maps, and fully faithful functors as right maps. The
factorization of F : C → D is over the category E whose objects are those of C
but where HomE(x, y) = HomD(Fx, Fy).

Example 2.4.5 (Codiscrete graphs). Similarly, in the category of reflexive
graphs Psh(RG), we call a morphism σ : Γ→ ∆ a codiscrete fibration if, for
any two nodes γ0, γ1 : N⇒ Γ and every edge δ : I⇒ ∆ from σ ◦ γ0 to σ ◦ γ1 (i.e.
δ ◦ s = σ ◦ γ0 and δ ◦ t = σ ◦ γ1), there is a unique edge γ : I⇒ Γ from γ0 to γ1
(i.e. γ ◦ s = γ0 and γ ◦ t = γ1) such that σ ◦ γ = δ. This is the analogue of a
fully faithful functor for reflexive graphs. We call a graph Γ codiscrete if Γ→ >
is a codiscrete fibration. This means that there is a unique edge between any
two nodes.

Then the codiscrete fibrations are the right class of an OFS whose left class
consists of graph morphisms that are bijective on nodes. The factorization of
σ : Γ→ ∆ is over the graph Θ whose nodes are those of Γ and whose edges are
triples (γ0, γ1, δ) where γ0 and γ1 are nodes of Γ and δ is an edge of ∆ from
σ ◦ γ0 to σ ◦ γ1.

Example 2.4.6 (Discrete graphs). In the category of reflexive graphs Psh(RG),
we call a morphism σ : Γ→ ∆ a discrete fibration if every edge in Γ that is
sent to a reflexive edge in ∆, is itself reflexive. Here, we call an edge δ : I⇒ ∆
reflexive if it is of the form δ0 ◦ r for some node δ0 : N ⇒ ∆. Of course, this
node is then δ0 = δ ◦ s, since r ◦ s = idN. So an edge δ is reflexive if and only if
δ = δ ◦ s ◦ r, i.e. if it is the reflexive edge at its own source. So we can express
the discreteness condition as:

∀(γ : I⇒ Γ).(σ ◦ γ = σ ◦ γ ◦ s ◦ r)⇒ (γ = γ ◦ s ◦ r).

We call a graph Γ discrete if Γ → > is a discrete fibration. This means that
there are only reflexive edges.
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Given σ : Γ → ∆, a discrete fibration Facσ → ∆ is obtained by simply
identifying the necessary cells in Γ. Then we obtain an OFS where the right
maps are the discrete fibrations, and where the left maps are the maps σ : Γ→ ∆
for which Facσ → ∆ is an isomorphism.

Example 2.4.7 (0-discrete depth cubical sets). In the models of ParamDTT
and RelDTT (chapter 9) [NVD17a; ND18a; Nuy18a], one is interested in 0-
discrete fibrations (discrete fibrations for short), which are morphisms σ : Γ→ ∆
in Psh(DCubed) such that every cube in Γ is reflexive in every L0M-dimension in
which it becomes reflexive in ∆. This condition can be expressed as:

∀(γ : (W, i : L0M)⇒ Γ).(σ ◦ γ = σ ◦ γ ◦ (0/i, i/�))⇒ (γ = γ ◦ (0/i, i/�)).

This gives rise to an OFS, whose factorization is obtained in a manner similar to
the previous example. An object Γ is called 0-discrete if Γ→ > is a 0-discrete
fibration.

In the category DCube−1, the concept of a L0M-edge is unavailable. There, we
interpret the trivially satisfied relation as the L0M-edge relation. The requirement
that reflexivity is reflected, then becomes the requirement that equality is
reflected. Note that DCube−1 ∼= Point, so depth −1 cubical sets are just sets,
and discreteness then means injectivity.

Proposition 2.4.8. In an OFS, the left maps are precisely those orthogonal
to all right maps, and vice versa.

Proof. We only prove the former statement, the latter follows by duality.

First, let ~̀ ∈ L and ~r ∈ R. We show that ~̀⊥ ~r. Pick a lifting problem ~ϕ : ~̀→ ~r.
Then we can factor ϕ0 = ρ0 ◦ λ0 and ϕ1 = ρ1 ◦ λ1 and by uniqueness of the
factorization of r↑ ◦ ϕ0 = ϕ1 ◦ `↑, we get a unique isomorphism:

`0
λ0

//

ϕ0

**

`↑

��

c0 ρ0
//

∼= c↑

��

r0

r↑

��
`1

λ1 //

ϕ1

44c1
ρ1 // r1.

Thus, we get a diagonal ρ0 ◦ c−1
↑ ◦λ1 : `1 → r0. This diagonal is unique, because

every other such diagonal σ must factor as σ = ρσ ◦ λσ, and ρσ is essentially ρ0
by uniqueness of the factorization of ϕ0 = σ ◦ `↑, and λσ is essentially λ1 by
uniqueness of the factorization of ϕ1 = r↑ ◦ σ. Thus, ~̀⊥ ~r.
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Now assume that ~x is orthogonal to all right maps. We factor it as x↑ = ρ ◦ λ
and get unique solutions to the following lifting problems:

x0
λ //

x↑

��

c

ρ

��
x1 id

//

σ

==

x1,

x0
λ //

λ

��

c

ρ

��
c

ρ
//

==

x1.

However, the second diagram has two solutions: idc and σ ◦ ρ : c → c. Thus,
these must be equal, so that ρ is an isomorphism and therefore a left map and
then x↑ = ρ ◦ λ is also a left map.

2.4.3 Weak Factorization Systems (WFSs)

While there are quite some interesting examples of orthogonal factorization
systems, it is sometimes not reasonable to ask that the factorization and the
solution to the lifting problem be unique. If it is not, then there are multiple
ways to generalize the definition:

• We can merely ask that there exist some solution. The appropriate
generalization is called a weak factorization system (WFS).

• We can ask for a factorization operation that selects a designated
factorization for every morphism. It is then typically desirable that
this operation be functorial: it should also factor commuting squares.
This is called a functorial weak factorization system (FWFS).6

• It turns out that the structure of an FWFS can be organized so that
it reveals two functors: a pointed one and a copointed one. We saw in
example 2.2.52 that if we want algebraic structures which satisfy some
interesting laws expressed as general equations, then we really need the
multiplication operation. A generalization of an FWFSs is a natural
weak factorization system (NWFS) [GT06], in which both functors
are upgraded to monads.

Definition 2.4.9. Two morphisms ~̀ and ~r have the left/right lifting
property w.r.t. each other (denoted ~̀ t ~r) if, for every lifting problem ~ϕ : ~̀→ ~r,
there exists some solution σ : `1 → r0.

Definition 2.4.10. A weak factorization system (WFS) (L,R) on a
category C consists of two classes of morphisms L and R (called left and
right maps resp.)

6Some authors use the term algebraic weak factorization system (AWFS) but there seems
to be disagreement as to the precise meaning.
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• such that the left maps are precisely those that have the left lifting property
w.r.t. all right maps and vice versa,
• such that every morphism ϕ factors as ϕ = r↑ ◦ `↑ with ~̀ ∈ L and ~r ∈ R.

Note that for OFSs we proved proposition 2.4.8 from uniqueness of the
factorization. Here, we do not have that property, so we put its implication
in the definition. Then it is immediately clear that both classes contain
all isomorphisms and are closed under composition, which we stated in
definition 2.4.2 but can omit now.

Example 2.4.11 (Surjective functions). [Rie08] In Set, we can take as the
left class the injective functions and as the right class the surjective functions.
So we have swapped classes when comparing to example 2.4.3. Lifting problems
are solved using the axiom of choice. A factorization of f : A→ B is possible
over A ]B or A×B. This is a WFS but not an OFS.

Remark 2.4.12. A model structure on a category C consists of three
classes of morphisms (L,W,R), called the classes of cofibrations, weak
equivalences and fibrations, such that (L,W∩R) and (W∩L,R) are WFSs
and a few other properties are satisfied. Elements of W∩L or W∩R are called
trivial/acyclic (co)fibrations. [nLa20e]

Every WFS gives rise to a model structure by taking W to be the class of all
maps [Rie08]. In this sense, it is justified to speak of fibrations instead of right
maps, and of (acyclic) cofibrations instead of left maps. We will refrain from
this in the current chapter, but will speak of fibrations in chapter 8 so that we
can also speak of fibrant types. We will refrain from using the word cofibration
altogether, because we are never actually using an interesting model structure.

2.4.4 Functorial Weak Factorization Systems (FWFSs)

Definition 2.4.13. A functorial weak factorization system (FWFS) is
a WFS equipped with:

• A functor Fac : C↑ → C,
• Natural transformations ` : Dom→ Fac (landing in L) and r : Fac→ Cod
(landing in R) such that r~x ◦ `~x = x↑ : x0 → x1.

These give rise to:

• A copointed left coreplacement endofunctor L : C↑ → C↑ : ~x 7→ (x0
`~x−−→

Fac ~x) with co-unit ~εL
~x = (idx0 , r~x),
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• A pointed right replacement endofunctor R : C↑ → C↑ : ~x 7→ (Fac ~x r~x−→
x1) with unit ~ηR

~x = (`~x, idx1).

The following theorem shows that Fac, ` and r fully determine the FWFS,
provided that it is known they are part of some FWFS:

Theorem 2.4.14. We have:

L =
{
~x ∈ C↑

∣∣ ~x admits a coalgebra structure for (L, ~εL)
}
,

R =
{
~x ∈ C↑

∣∣ ~x admits an algebra structure for (R, ~ηR)
}
.

Proof. We only prove the second statement, the first one is dual.

Take ~r ∈ R. We get a solution χ0 for the following lifting problem:

r0

`~r
��

id // r0

r↑

��
Fac~r r~r

//

χ0

==

r1

Then we have ~χ := (χ0, idr1) : R~r → ~r and ~χ ◦ ~ηR
~r = id~r, so ~χ is an (R, ~ηR)-

algebra structure for ~r.

Conversely, let (~x, ~χ) be an (R, ~ηR)-algebra. Note that, necessarily, χ1 = id,
i.e. ~χ is of the form (χ0, id). We show that ~x is a right map by showing
~̀ t ~x for all left maps ~̀. We solve the lifting problem ~ϕ : ~̀→ ~x by solving
R~ϕ ◦ ~ηR

~̀ = (Fac ~ϕ ◦ `~̀, ϕ1 ◦ id) : ~̀ → R ~x and then postcomposing with
~χ : R ~x→ ~x:

`0

`↑

��

id // `0
ϕ0 //

`~̀
��

x0
id //

`~x
��

x0

x↑

��

Fac ~̀ Fac ~ϕ //

r~̀

}}

Fac ~x
r~x

!!

χ0

==

`1 ϕ1
//

σ

44

x1

This completes the proof.
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Example 2.4.15 (Surjective functions). Continuing example 2.4.11, the
factorization of f : A→ B over A ]B is functorial. Then we have

L(A f−→ B) = (A inl−→ A ]B), R(A f−→ B) = (A ]B [f,id]−−−→ B).

According to theorem 2.4.14, a function (A f−→ B) is surjective if and only if it
admits an (R, ~ηR)-algebra structure. This is easily seen to mean that f has a
section, which can indeed be obtained using the axiom of choice.

Dually, according to theorem 2.4.14, a function (A f−→ B) is injective if and only
if it admits an (L, ~εL)-algebra structure. Such an algebra sturcture is essentially
a map g : B → A ]B which sends f(a) to inl a (which can only be done if f is
injective) and b 6∈ f(A) to g(b) = inr(b).

Dual reasoning applies to the factorization of f : A→ B over A×B.

2.4.5 Natural Weak Factorization Systems (NWFSs)

Above theorem 2.4.14, we emphasized that the functorial factorization (Fac, `, r)
only determines the underlying WFS provided that there is an underlying WFS.
The reason is that otherwise, we cannot prove that ` and r produce (co)algebras.

Indeed, if we want r to produce for any ~x ∈ C↑ an algebra (R ~x, ~µR
~x ), then

we need to postulate for any ~x a morphism ~µR
~x : R R ~x → R ~x, such that

~µR
~x ◦ ~ηR

R ~x = idR ~x. If we want to do this naturally, then we need a natural
transformation ~µR : R R → R such that ~µR ◦ ~ηRR = idR : R → R. This
starts to look a lot like a monadic multiplication for R.

And there is more. In FWFSs, we have guaranteed that the factorization is
functorial, but the solution to the lifting problem is still only asserted by an
existential quantifier. We would like to move to an algebraic operation. And
then one would expect that this is operation is natural. Concretely, write
~̀ t ~r for the set of operators proving that ~̀ ∈ C↑ and ~r ∈ C↑ satisfy the lifting
property. We can spell it out as

~̀ t ~r := (~ϕ : ~̀→ ~r)→ {σ : `1 → r0 |σ ◦ `↑ = ϕ0 and r↑ ◦ σ = ϕ1}.

Then we would, naïvely, want a natural solution for all left and right maps, i.e.
an element of the dependent end

∀(~̀ ∈ L).∀(~r ∈ R).(~̀ t ~r).

Originally, L and R were defined as sets, but in order to take ends, we can
regard them as full subcategories of C↑.
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However, in the light of the results of section 2.4.4, we should know better.
Indeed, there we have seen that L and R are the arrows that admit a (co)algebra
structure, and we have exploited this (co)algebra structure to reconstruct the
liftings. So if we want algebraic liftings, then we need algebraic structures, i.e.
we need the right maps to be not just maps that admit an algebra structure, but
maps equipped with an algebra structure. Thus, we shall generalize from subsets
L,R ⊆ Obj

(
C↑
)
to functors UL : L → C↑ and UR : R → C↑, and the two sides

of the factorization will factor over these as CL : C↑ → L and FR : C↑ → R. The
(co)pointings will be typed ~εL : L = ULCL → Id and ~ηR : Id→ R = URFR.

In section 2.4.4, we derived the (co)algebra structure from the lifts and vice
versa. Now that both will be algebraic operations, we have to show moreover
that these derivations are mutually inverse. This will require that if ~r is a
right map, then the ~χ obtained in section 2.4.4 is a morphism of right maps,
i.e. in the image of UR. Thus, for any right map r̀ ∈ R, which manifests as
URr̀ ∈ C↑, we require a morphism of right maps FRURr̀ → r̀. So we want a
natural transformation ὲR : FRUR → IdR. In short, we require that UR a FR
and dually CL a UL, turning L into a comonad and R into a monad.

This yields Grandis and Tholen’s notion of a natural weak factorization system
(NWFS) [GT06]. We give a different definition that better suits the current
narrative, but then prove that it is essentially the same thing.

Definition 2.4.16. A natural weak factorization system (NWFS) on a
category C consists of the following data:

• A functor Fac : C↑ → C.
• Categories L and R of left/right maps.
• Two adjoint functors CL a UL where UL : L → C↑.
We write L = ULCL for the composite left coreplacement comonad,
ήL : IdL → CLUL for the unit, and ~εL : L = ULCL → IdC↑ for the co-unit.
We require

Dom L = Dom, Cod L = Fac, Dom ~εL = id, DomULή
L = id.

If ´̀∈ L, then we write ~̀= (`0
`↑−→ `1) := UL ´̀.

• Two adjoint functors UR a FR where UR : R → C↑.
We write R = URFR for the composite right replacement monad,
~ηR : IdC↑ → URFR = R for the unit, and ὲR : FRUR → IdL for the
co-unit.
We require

Dom R = Fac, Cod R = Cod, Cod ~ηR = id, CodURὲ
R = id.
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If r̀ ∈ R, then we write ~r = (r0
r↑−→ r1) := UR r̀.

These must satisfy the following conditions:

• mor L = Dom ~ηR =: ` : Dom→ Fac.
• mor R = Cod ~εL =: r : Fac→ Cod.
• Left maps are precisely maps equipped with a natural lifting operation
w.r.t. all right maps and vice versa, in the following sense:7

L ∼=
∫
~x∈C↑

∀(r̀ ∈ R).(~x t ~r),

R ∼=
∫
~x∈C↑

∀(´̀∈ L).(~̀ t ~x),

and in such a way that the operators associated to ´̀ and r̀ yield the same
element of ~̀ t ~r. Of course the carriers in the right-hand categories should
be obtained via UL and UR.

• For any ´̀∈ L, the canonical solution to the lifting problem ~ηR
UL ´̀ : UL ´̀→

RUL ´̀ is ηL
´̀ := Cod(UL ή

L
´̀ ) : `1 → Fac ~̀.

• For any r̀ ∈ R, the canonical solution to the lifting problem ~εL
URr̀

:
LURr̀ → UR r̀ is εR

r̀ := Dom(UR ὲR
r̀ ) : Fac~r → r0.

`0

`↑

��

`~̀ // Fac ~̀

r~̀
��

r0
id //

`~r
��

r0

r↑

��
`1 id

//

ηL
´̀

>>

`1 Fac~r r~r
//

εR
r̀

==

r1

Proposition 2.4.17. The above implies that r ◦ ` = mor : Dom→ Cod.

Proof. Since r ◦ ` = mor R ◦ Dom ~ηR = Cod ~ηR ◦ mor Id = mor. (The middle
step uses naturality of mor : Dom→ Cod.)

Lemma 2.4.18. The adjoint factorization R = URFR is isomorphic to the
adjoint factorization over the Eilenberg-Moore category EM(R). The dual result
holds for L.

7Recall that we take categories of elements over functors from the twisted arrow category
(definition 2.2.37).



FACTORIZATION SYSTEMS 61

Proof. We only prove the theorem for R. Without loss of generality, we assume
that the isomorphism forR in the definition, is an equality. By proposition 2.2.51,
we get a unique morphism of adjoint factorizations H : R → EM(R) : (τ, h) 7→
(τ, UR~η

R
(τ,h)). We need to provide an inverse G : EM(R) → R, which is then

automatically also a morphism of adjoint factorizations.

We first explain intuitively why this is going to work. Notice that a general
lifting problem ~ϕ : UL ´̀→ URr̀ factors as ~ϕ = ~εL

URr̀
◦ (L ~ϕ ◦ ULή

L
´̀ ) over LURr̀:

`0

`↑

��

id //

ϕ0

((
`0

ϕ0 //

`~̀
��

r0
id //

`~r
��

r0

r↑

��
`1

ηL
´̀ //

ϕ1

66Fac ~̀
Fac ~ϕ

// Fac~r r~r
//

h(L~r,~εL
~r )

==

r1

(2.9)

So by naturality, h is entirely determined by h(L~r, ~εL
~r ), which according to

the definition of an NWFS is εR
r̀ , the domain of URὲ

R
r̀ , which is the algebra

structure! In other words, H is lossless.

It is then clear how to define G:

G(~x, ~χ) := (~x, h~χ), h~χ(´̀, ~ϕ) = χ0 ◦ Fac ~ϕ ◦ ηL
´̀ .

From the above, it is clear that h~χ provides appropriate liftings and that
G = H−1.

Lemma 2.4.19. In an NWFS, the solution to a lifting problem ~ϕ : UL ´̀→ URr̀
is given by εR

r̀ ◦ Fac ~ϕ ◦ ηL
´̀ .

Proof. Clear from eq. (2.9).

We will now prove equivalence to to Grandis and Tholen’s original definition of
an NWFS:

Definition 2.4.20. A Grandis-Tholen NWFS [GT06] consists of:

• A right replacement monad (R, ~ηR, ~µR) on C↑ which is trivial at the
codomain,

• A left coreplacement comonad (L, ~εL, ~δL) on C↑ which is trivial at the
domain,
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such that

• DomR = CodL =: Fac,
• mor L = Dom ~ηR =: ` : Dom→ Fac,
• mor R = Cod ~εL =: r : Fac→ Cod.

Theorem 2.4.21. A Grandis-Tholen NWFS determines a unique NWFS (up
to isomorphism).

Proof. Uniqueness is immediate from lemmas 2.4.18 and 2.4.19.

For existence, of course we pick L = EM(L) and R = EM(R). We need to show
the last three properties in the definition, but we already have all the objects
and can use the notations from definition 2.4.16. Of course, we solve lifting
problems in the way prescribed by lemma 2.4.19. This gives us a functor

G : EM(R)→
∫
~x∈C↑

∀(´̀∈ L).(~̀ t ~x).

Before we define the inverse, we show that for any r̀ = (~r, ~χ) ∈ R, the canonical
solution to the lifting problem ~εL

~r : L~r → ~r is εR
r̀ = DomUR ὲR

r̀ , which equals
DomUR ~χ = χ0 because as we saw in the proof of proposition 2.2.50, the co-unit
in EM(R) is just the algebra structure. This is actually trivial, because for
~ϕ = ~εL

~r the left two squares in eq. (2.9) disappear thanks to the monad laws, so
we are left with just the dotted diagonal εR

r̀ .

We define the inverse H to G by H(~r, h) = (~r, (h(`~r, ~εL
~r ), id)). Then we get, for

r̀ = (~r, ~χ):

HGr̀ = (~r, (εR
r̀ , id)) = (~r, URὲ

R
r̀ ) = (~r, URὲ

R
(~r,~χ)) = (~r, UR~χ) = (~r, ~χ) = r̀.

We prove that GH = Id as in the proof of lemma 2.4.18.

The dual requirements are proven dually.

Example 2.4.22 (Surjective functions). Continuing examples 2.4.11 and 2.4.15,
we can build a Grandis-Tholen NWFS which factors (A f−→ B) over A ] B.
Right maps are then functions equipped with an R-algebra structure, which
is essentially a section. Morphisms of right maps are commutative squares
compatible with the section. Left maps will be functions equipped with an
L-coalgebra structure (which uniquely exists if the function is injective), but
morphisms (h, k) : (A f−→ B)→ (C g−→ D) will be coalgebra morphisms, which
requires that k(b) ∈ g(C) if and only if b ∈ f(A).
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Solutions s to lifting problems (h, k) : (A f−→ B) → (C g−→ D) are given by
case distinction: if b = f(a), then s(b) = h(a). Otherwise, i.e. if b 6∈ f(A),
then we use the section of g. Thus, these solutions are natural, but only w.r.t.
morphisms of left/right maps that respect the above criteria.

OFSs as NWFSs

Proposition 2.4.23. An OFS can be equivalently defined as an NWFS for
which L and R are idempotent. The classes of the NWFS are then automatically
full subcategories of C↑.

Proof. Given an OFS, let r~x ◦ `~x be the unique factorization of x↑ : x0 → x1.
This creates a monad and a comonad.8 Uniqueness implies that `R ~x (and hence
~ηR R) and rL ~x (and hence ~εL L) are invertible, i.e. that L and R are idempotent.
Then we know that EM(L) and EM(R) are fully faithful subcategories. The
objects of EM(L) are precisely those whose factorization yields an invertible
right morphism, i.e. exactly the left morphisms of the OFS, and similarly on
the right.

Conversely, assume we have an NWFS with idempotent L and R. We first
show that solutions to lifting problems are unique. We already know that any
lifting problem ~ϕ : ~̀→ ~r factors over the square

r0
id
∼=
//

`~r ∼=
��

r0

r↑

��
Fac~r r~r

//
µR
~r

∼=
<<

r1.

Now since this square is full of isomorphisms, there is really only one way to
solve problems that factor through it.

Next, we show that factorizations are unique. Suppose ϕ = ρ′ ◦λ = ρ◦λ′. Then
we can do:

• λ //

λ′

��

•

ρ′

��
•

ρ
// •

8The functorial action of the factorization on ~ϕ : ~x→ ~y is given by the unique lifting of `~x
against r~y .
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Now this square is both horizontally and vertically a lifting problem that has
precisely one solution. This shows that the category of factorizations of ϕ has
singleton Hom-sets. Hence, all factorizations are isomorphic.

Example 2.4.24. The factorizations for the examples in section 2.4.2 are all
easily seen to yield idempotent (co)monads.

2.4.6 Left Generation in Presheaf Categories

We prove the small object argument specialized to presheaf categories. An
in-depth treatment is given by Garner [Gar07; Gar09]. Note that the algebraic
version of the small object argument does not actually involve an argument
about a small object.

Theorem 2.4.25 (Small object argument). Write C = Psh(W). Assume given
a category G of generating left maps equipped with a functor UG : G → C↑.
If g̈ ∈ G, we write ~g := UG g̈.

Then there exists a left generated NWFS on C such that

R =
∫
~x∈C↑

∀g̈ ∈ G.~g t ~x,

L =
∫
~x∈C↑

∀r̀ ∈ R.~x t ~r.

We write IG for the canonical functor G → L and ǵ := IG g̈. We have UL◦IG = UG .

Remark 2.4.26. Note that uncurrying reveals that Psh(W)↑ = (SetW
op

)↑ ∼=
SetW

op×↑ = Psh(W × ↑op) is itself a presheaf category. Thus, it satisfies all
properties of presheaf categories, e.g. we can take (co)limits pointwise.

Proof. We first construct a Grandis-Tholen NWFS.

R We define a functor ~R : C↑ → C↑ as follows. Pick ~x ∈ C↑. Then define
~̀(~x) as follows:

~̀(~x) = colim
(g̈,~ϕ:~g→~x)

~g,

in other words:

(W ⇒ `i(~x)) ∼= ∃(g̈ ∈ G).(~g → ~x)× (W ⇒ xi).
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Then clearly any lifting problem of a generating left map against ~x factors
canonically over ~ϕ(~x) : ~̀(~x)→ ~x, and this factorization is natural.
We now define R0~x to be the following pushout:

`0(~x)
ϕ0(~x) //

x↑

��

x0

��
`1(~x) // R0~x.

This way, the lifting problem ϕ(~x) : ~̀(~x) → ~x gets a wannabe solution
`1(~x)→ R0~x:

g0 //

g↑

��

`0(~x)
ϕ0(~x) //

x↑

��

x0

��
R0~x

R↑~x

��
g1 // `1(~x)

<<

ϕ1(~x)
// x1,

and with that so does every lifting problem ~g → ~x for g̈ ∈ G.

One might hope that this puts ~R~x = (R0~x
R↑~x−−−→ x1) in R, but this is

not the case, as the set of lifting problems for ~R~x is larger than that
of ~x. Instead, we define (R, ~ηR, ~µR) to be the free monad over the
pointed functor ~R, which exists and can be constructed as a colimit
(proposition 2.2.53).
Now R ~x lifts generating left maps. Indeed, pick a lifting problem ~ϕ : ~g →
R ~x where g̈ ∈ G. Then ~ϕ has a wannabe solution in ~RR ~x and we can
absorb ~RR → R yielding an actual solution.

L The definition of R immediately produces a copointed endofunctor (L, ~εL).
We still need to define the comonadic duplication ~δL and prove the
comonad laws. In order to define it, we argue that the lifting problem
~ηR

L ~x : L ~x→ R L ~x has a solution, naturally in ~x:

x0
`L ~x //

`~x
��

Fac L ~x

rL ~x

��
Fac ~x

id
//

δL
~x

::

Fac ~x.
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Indeed, the lower left corner Fac ~x was defined via a procédé that only
involved colimits. In order to provide a lifting, it is sufficient to provide
a natural lifting for all the constituents of the colimits, and a careful
analysis reveals that these are all generating left maps, which are indeed
lifted by R L ~x. This defines ~δL

~x := (idx0 , δ
L
~x ) : L ~x→ L L ~x.

Note that the upper right triangle of the above square is ~εL
L ~x : L L ~x→ L ~x,

revealing that ~εL
L ~x ◦ ~δL

~x = idL ~x.
To prove the other co-unit law, consider the following diagram, above
expanded in C↑, below in C, which commutes by naturality of ~ηR:

Fac ~x

r~x

��

x0

`~x

��

`L ~x

//

`~x

44

Fac L ~x

rL ~x

��

Fac ~εL
~x

dd

x1

Fac ~x
id

//

r~x

44
δL
~x

66

id

??

Fac ~x

r~x
dd

R ~x

L ~x
~ηR

L ~x

//

~ηR
~x ◦~ε

L
~x

44

R L ~x

R ~εL
~x

dd

Here, in front, we see the lifting problem that we solved to define ~δL. In
the back, we get another lifting problem, which has a solution by the same
reasoning that we applied above. Recall how we constructed the lifting:
we disassembled Fac ~x on the left, finding out that it is basically x0 with
liftings of generating left maps added explicitly via colimits, and the arrow
on the right lifts generating left maps, so we can deal with those added
liftings. If we then recall why Fac ~x lifts generating left maps, it’s because
we explicitly added them! Basically, this is a laborious construction of the
identity function. By naturality of the reasoning (disassembling the left
arrow) that lead to the liftings, we find that Fac ~εL

~x ◦ δL
~x = idFac ~x. If we

write this equation in the arrow category with constant x0 at the domain,
we get L ~εL ◦ ~δL = idL, the other co-unit law.
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To prove associativity, we pull off a similar trick. Consider the following
diagram, above expanded in C↑, below in C, which commutes by naturality
of ~ηR:

x0

`L ~x
��

`L2 ~x // Fac L2 ~x

rL2 ~x

��

x0

`~x

��

`L ~x //

id
;;

Fac L ~x

rL ~x

��

Fac~δL
~x

ee

Fac L~x
id //

δL
L ~x

==

Fac L~x

Fac ~x
id

//

δL
~x

::

δL
~x

55

Fac ~x

δL
~x

ee

L2 ~x
~ηR

L2 ~x // R L2 ~x

L ~x
~ηR

L ~x

//

~δL
~x

::

R L ~x

R ~δL
~x

ee

In front, once more, we see the lifting problem that we solved to define
~δL
~x . In the back, we see another instance of the same problem, yielding
~δL

L ~x. The liftings are compatible by naturality of the construction of the
factorization. This means that Fac~δL

~x ◦ δL
~x = δL

L ~x ◦ δL
~x . If we state this in

the arrow category with x0 at the domain, we get L~δL ◦ ~δL = ~δL L ◦ ~δL,
the associativity law.

Thus, we gave a Grandis-Tholen NWFS. By the proof of theorem 2.4.21, this
yields an NWFS whose left and right classes are the Eilenberg-Moore categories
of L and R. For the left class, our work is done. For the right class, it remains
to be shown that EM(R) ∼=

∫
~x∈C↑ ∀(g̈ ∈ G).(~g t ~x), i.e. that an R-algebra

structure is essentially the same thing as a lifting operation for all generating
left maps.

We already know that an R-algebra structure is essentially the same thing as
a lifting operation for all left maps (including the generating ones), since the
structure is the solution to a universal lifting problem. Conversely, this universal
lifting problem given by the algebra structure on r̀ is against `~r : r0 → Fac~r,



68 MATHEMATICAL PREREQUISITES

which is (by construction of R) a colimit of generating left maps, so it is also
uniquely determined by the action on generating left maps.

Remark 2.4.27 (Generating OFSs). An easy way to make sure that the
NWFS you are generating, is an OFS, is by including generating left maps that
enforce the uniqueness of the liftings of other generating left maps. First of
all, notice that if we intend to generate an OFS, then the morphism part of
G is unimportant, so let us assume it will be a full subcategory of C↑. If we
have ~g ∈ G, then by also adding the map ~h = (g1 ]g0 g1

[id,id]−−−→ g1), we ensure
uniqueness of liftings of the former. Indeed, if ~ϕ : ~g → ~r has two liftings σ, τ ,
then from these two liftings we can create a lifting problem ([σ, τ ], ϕ1)~h→ ~r,
the lifting of which witnesses that σ = τ .

Examples

Example 2.4.28 (Surjective functions). Continuing examples 2.4.11, 2.4.15
and 2.4.22, the NWFS on Set that factorizes f : A → B over A ] B can
easily be generated from the left. Indeed, let G be the point category, and
UG∗ = (∅ −→ {•}). Then a lifting structure against this single generating left
map is exactly a section. Moreover, the monad R that explicitly adds all liftings
of generating left maps is exactly (isomorphic to) R(A f−→ B) = (A]B [f,id]−−−→ B).

Example 2.4.29 (Injective presheaf morphisms). Continuing example 2.4.3, the
OFS on any presheaf category whose right maps are injective presheaf morphisms
can be left generated by letting G contain an arrow ~gW = (yW ]yW [id,id]−−−→ yW )
for every base category objectW . Indeed, if x↑ maps γ, γ′ : W ⇒ x0 to the same
cell δ : W ⇒ x1, then the solution to the lifting problem ([γ, γ′], δ) : ~gW → ~x
witnesses that γ = γ′.

Example 2.4.30 (Fully faithful functors). Continuing example 2.4.4, the OFS
on Cat whose right maps are fully faithful functors, can be left generated by
asking unique liftings of the functor {• •} → {• → •}.

Example 2.4.31 (Codiscrete graphs). Similarly, continuing example 2.4.5,
the OFS on Psh(RG) whose right maps are codiscrete fibrations, can be left
generated by asking unique liftings of the graph morphism (yN]yN [ys,yt]−−−−→ yI).

Example 2.4.32 (Discrete graph morphisms). Continuing example 2.4.6, the
OFS on Psh(RG) whose right maps are discrete fibrations, can be left generated
by asking (automatically unique) liftings of (yI yr−→ yN).
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Example 2.4.33 (0-discreteness). Continuing example 2.4.7, the OFS on
Psh(DCubed) (for d > 0) whose right maps are 0-discrete fibrations, can be left
generated by asking (automatically unique) liftings of (y(W, i : L0M) y(i/�)−−−−→ yW ).

For d = −1, we are back at example example 2.4.29.

Example 2.4.34 (Clock-irrelevance). In guarded type theory, one is interested
in clock-irrelevant presheaves over Clock [BM18]. The clock object � is
obtained as � = colimk y(i : �k). It is internalized as a closed type and the
intention is that non-dependent functions �→ A are all constant. In order to
model this property, one restricts to clock-irrelevant types.

The OFS whose right maps are clock-irrelevant fibrations, is defined by asking
unique liftings against morphisms yW × � → yW .9 We call an object Γ
clock-irrelevant if Γ→ > is a clock-irrelevant fibration.

Example 2.4.35 (Segal fibrations). [From Nuy18b] A category can be defined
as a simplicial set that satisfies the Segal condition (due to Grothendieck) [Seg68],
which states that any chain of n consecutive 1-simplices, can be extended to an
n-simplex in a unique way. The 0-simplices then serve as objects, the 1-simplices
as morphisms, and higher simplices as commutative diagrams. The underlying
simplicial set is called the category’s nerve.

It is possible to define an OFS on the category Psh(Simplex) of simplicial sets
such that a simplicial set Γ satisfies the Segal condition if and only if Γ→ >
is a right map, which we will call a Segal fibration10. Indeed, we simply ask
that Segal fibrations uniquely lift inclusions Λn → ∆n where ∆n = y[n] and Λn
is a chain of n consecutive lines, i.e.

Λn := y[1] ]y[0] y[1] ]y[0] . . . ]y[0] y[1].

Example 2.4.36 (Kan fibrations). In cubical approaches to HoTT [AHH18;
BCH14; CMS20; Coh+17; Hub16; Ort18; OP18], one is interested in Kan
fibrations of cubical sets. There are already multiple notions of cubical sets to
begin with section 2.3.2, and each notion of cubical set may inspire multiple
notions of Kan fibrancy, so we will give a high-level discussion.

Kan fibrations are the right maps of an NWFS left generated by maps
y(W, i : I).(ϕ ∨ (i .= ε))→ y(W, i : I) where ε ∈ {0, 1} in some treatments and
ε = 0 in others, and where ϕ is a predicate on yW (i.e. yW.ϕ is a subpresheaf

9In fact, Bizjak and Møgelberg [BM18] impose a stronger condition in their model, namely
that there be unique liftings against y(W, i : �k) → yW for all k; however, as the authors
acknowledge, this is stronger than what is necessary to model the type system.

10This seems to be semi-standard terminology at best.
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of yW , and y(W, i : I).ϕ is the pullback of that along y(i/�); see section 6.1.1)
which must belong to a designated class of predicates (called cofibrations). Note
that this is an inclusion of an open box into a cube: ε defines whether the top or
the bottom is open, and ϕ defines the subpresheaf of the intersection W where
the walls of the box are located. Importantly, the category of generating left
maps G also gets a morphism part: a morphism in G consists of a morphism
between the W ’s such that the ϕ’s match up; specific treatments impose further
requirements.

In cubical models with connections [Coh+17], it is sufficient to lift against

y(W, i : I).(ϕ ∨ (i .= ε))→ y(W, i : I).(ϕ ∨ (i .= 0) ∨ (i .= 1))

which includes an open box into a closed box, rather than a full cube. The
lifting from the full cube is implied thanks to the connections.

A cubical set Γ is called Kan fibrant or just Kan if Γ→ > is a Kan fibration.
Kan fibrant objects behave like ∞-groupoids, where the points are the objects,
the lines are the isomorphisms (a.k.a. paths), and higher cubes are higher paths.
For example, in order to compose three paths p, q, r : (k : I)⇒ Γ (of which one
can be the identity), we create a morphism τ : y(j : I, i : I).((j .= 0) ∨ (j .=
1) ∨ (i .= 0))→ Γ:

•

p

•

r

•
q
•

This lifts to a morphism σ : y(j : I, i : I)→ Γ which has the same sides p, q, r,
but also has a top line and a square witnessing that the top line is the composite
of the sides.



Chapter 3

Formal Systems and
Dependent Type Theory

In section 3.1, we use generalized algebraic theories (GATs) to define what a
type theory is. In section 3.2, we proceed to define dependent type theory (DTT)
as a GAT. Finally, in section 3.3, we review the Curry-Howard correspondence
between propositions and types.

3.1 Formal Systems, Syntax and Models

Before defining the syntax of a specific type system, it is worthwhile to define the
very concept of a formal system, its syntax and its models. To this end, we use
Cartmell’s notion of generalized algebraic theories (GATs) [Car86; Car78], which
is general enough to encompass dependently typed systems. We will introduce
it gently, starting with simple algebraic theories, subsequently considering
multisorted algebraic theories and finally generalized algebraic theories. We
will not consider notions of equivalence of different (multisorted/generalized)
algebraic theories.

3.1.1 Motivation

Traditionally, one views type theoretic judgements as predicates. For example,
the type judgement Γ ` T type which states that T is a type in context Γ, or

71
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rather its derivability, is regarded as a binary relation relating contexts and
types. Derivability of these judgements is then defined by mutual induction,
and the constructors of these inductive predicates are then called inference rules,
e.g. the rule

Γ ctx
Γ ` Bool type

asserts that if Γ ctx is derivable (Γ is a context), then Γ ` Bool type must be
derivable (Bool is a well-formed type in context Γ).

This approach to type theory has a few drawbacks:

• In order to view judgements as predicates, we need something for them to
be predicates over. That is, we need prior notions of precontexts, pretypes,
preterms etc. before we can speak about derivability. But these pre-
objects are meaningless and when modelling a type system we take care
to avoid them completely and instead define an interpretation function
on derivations as these pre-objects have no semantics. Worse, the fact
that we need these prior notions, creates the impression that we have any
choice in defining them. Conversely, if we do not have any choice, then
we should not be burdened with defining them.
In a GAT, every inference rule defines its own operator and this operator
takes all of its prerequisites as arguments. Thus, there is only well-typed
syntax, and this syntax is defined by the typing rules, and judgements
only speak about well-typed syntax.

• If we regard Γ ` T type as a binary relation, then that puts Γ and T on
equal footing. However, the meaning of the judgement (T is a type in
context Γ) clearly states that T is a type and already takes for granted
that Γ is a context. It does not assume that Γ is a context (i.e. it does
not say: if Γ is a context, then T is a type) and it does not assert it (Γ is
a context and T is a type in context Γ). Rather, it is nonsense if Γ is not
a context.
In a GAT, every judgement speaks about exactly one object:
– The context judgement Γ ctx expresses that Γ is an element of the

set of contexts Ctx.
– The type judgement Γ ` T type expresses that T is an element of the

set Ty(Γ) of types in context Γ. It takes as input a context Γ ∈ Ctx,
which is well-formed because it exists.

– The term judgement Γ ` t : T expresses that t is an element of the
set Tm(Γ, T ) of terms of type T in context Γ. It takes as input a
context Γ ∈ Ctx and a type T ∈ Ty(Γ).
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• Traditionally, dependently typed systems come with equality judgements
for types and terms and sometimes also for contexts. There are inference
rules asserting that judgemental equality is an equivalence relation, and
every other inference rule is accompanied by a congruence rule that
expresses that it respects equality. These congruence rules are rarely ever
spelled out because they are completely uninteresting.
When we formulate type theory as a GAT, an equality judgement is not
just another judgement. Rather, it can be seen as the equality relation on
syntax. For example, if Γ ` t : T means t ∈ Tm(Γ, T ), then Γ ` s = t : T
just means s = t ∈ Tm(Γ, T ).

• Finally, specifying something as a GAT has the advantage that it
automatically comes with a category of models. Soundness and
completeness results can then be stated w.r.t. that category, and
categorical gluing [KHS19] can take place in this category.

3.1.2 Simple Algebraic Theories

Examples of simple algebraic theories are group theory, linear algebra and the
untyped λ-calculus.

Definition 3.1.1. A simple algebraic theory A consists of

• a set of operators, each equipped with an arity which is a natural,
• a set of axioms, which are pairs (t1, t2) of n-ary terms (n ∈ N), denoted
as t1 = t2.

An n-ary term of A (n ∈ N) is either a metavariable mi (i < n) or an expression
of the form o(t1, . . . , tk) where o is an operator of arity k and all ti are also
n-ary terms.

An algebra or model A of A is a set A equipped with a function JoK :
Ak → A for every k-ary operator o, satisfying all the axioms. Given
~a = (a1, . . . , an) ∈ An, the interpretation of an n-ary term t is defined recursively
by Jo(t1, . . . , tk)K~a = JoK(Jt1K~a, . . . , JtkK~a) and JmiK~a = ai. We say that A
satisfies the axiom t1 = t2 if Jt1K~a = Jt2K~a for all ~a ∈ An.

A morphism of algebras/models is a function f : A→ B such that f ◦JoK =
JoK ◦ f×k : Ak → B for every k-ary operator o.

The syntax of A is the initial object of the category of A-algebras. It is the
set of nullary terms of A, divided by the equivalence relation generated by the
axioms.
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Remark 3.1.2. A simple algebraic theory can be reorganized into a category,
whose objects are natural numbers, and where Hom(n,m) is the set of m-tuples
of n-ary terms, up to the axioms. This yields a more obscure definition of an
algebraic theory, also called Lawvere theory [nLa20d; Law63]. An advantage
of Lawvere theories is that they have no ‘hair’: fundamentally, we care about
terms and the equality relation on terms, and not about which operators and
axioms generate them. Lawvere theories put all terms and equalities on equal
footing.

Example 3.1.3. Group theory has operators e (nullary), xy−1 (unary) and ∗
(binary), and a bunch of axioms, such as x−1 ∗ x = e. An algebra for group
theory is just a group. The syntax is the trivial group {e}.

Example 3.1.4. Fix a set S. If we add to group theory a nullary operator for
every s ∈ S, then we get a new theory whose syntax is the free group over S.

Example 3.1.5. The untyped λ-calculus has operators:

• abstraction λ (unary),
• application (binary; denoted as juxtaposition),
• for every n ∈ N:

– a variable vn (nullary),
– shift ↑n (unary),
– substitution xy[xy/vn] (binary),

and axioms such as (λt1)t2 = t2[t1/v0] and (λt1)[t2/vn] = λ(t1[↑0 t2/vn+1]).
Its syntax is the set of untyped λ-terms up to computation rules.

3.1.3 Multisorted Algebraic Theories

The concept of a simple algebraic theory is not strong enough to capture, e.g.,
category theory. For this reason, we will incrementally enrich our notion of
algebraic theories.

Definition 3.1.6. A multisorted algebraic theory A consists of:

• a set of sorts,
• a set of operators, each equipped with an arity, which is a list of sorts,

and an output sort,
• a set of axioms t1 = t2 where t1 and t2 are terms of the same arity and
output sort.



FORMAL SYSTEMS, SYNTAX AND MODELS 75

An ~s-ary term of output sort s is either a metavariable mi where si = s, or an
expression of the form o(t1, . . . , tk), where o has arity ~r of length k and output
sort s and every ti is an ~s-ary term of output sort ri.

An algebra or model A of A consists of a set As for every sort s, and functions
JoK : (

∏
iAri)→ Ar for every ~r-ary operator o of output sort r, satisfying the

axioms. The interpretation of terms and the concept of satisfying an axiom are
defined similarly as in definition 3.1.1.

Again, we define the syntax as the initial A-algebra.

Remark 3.1.7. A remark analogous to remark 3.1.2 applies.

We could now attempt to define category theory as a multisorted algebraic
theory. As sorts, we would have Obj and Hom, and there would be operators
id : Obj→ Hom, dom, cod : Hom→ Obj and ◦ : Hom×Hom→ Hom. However,
this does not allow us to exclude ill-typed compositions. To this end, we need
to move to generalized algebraic theories.

3.1.4 Generalized Algebraic Theories (GATs)

We give only a brief and somewhat handwaving definition, and refer to Cartmell’s
original work for details [Car86; Car78].

Definition 3.1.8. A generalized algebraic theory (GAT) [Car86; Car78]
A consists of:

• a set of sort operators, each equipped with a metacontext,
• a set of operators, each equipped with

– a metacontext,
– an output sort, which is a well-formed sort application,

• a set of axioms t1 = t2 where t1 and t2 are terms of the same sort in the
same metacontext.

Equality of metacontexts and sorts is always considered up to the congruence
generated by the axioms.

A metacontext1 is either the empty metacontext (), or of the form (Σ, x : S),
where Σ is another metacontext, x is a metavariable (possibly implemented via
de Bruijn indices) and S is a sort in metacontext Σ.

1Cartmell calls this just a context, but that becomes confusing when we start defining
type systems as GATs.



76 FORMAL SYSTEMS AND DEPENDENT TYPE THEORY

A sort Σ′ 
 S sort in metacontext Σ is of the form S = O[σ] where O is a sort
operator in metacontext Σ′ and σ : Σ→ Σ′ is a substitution.

A substitution σ : Σ → Σ′ is either () : Σ → () or (σ, t/x) : Σ → (Σ′, x : S)
where σ : Σ→ Σ′ and Σ 
 t : S[σ] is a term.

A term Σ 
 t : S is either a metavariable or an operator application o[σ] where
o is an operator in metacontext Σ′ of sort S′, σ : Σ→ Σ′ and S = S′[σ].

Sorts and terms are substituted (written S[σ] and t[σ] respectively) by
substituting variables as prescribed.

An algebra or model of A consists of:

• for every sort operator O in metacontext Σ a family of sets JOK : JΣK→ Set,
• for every operator o in metacontext Σ of output sort S, a dependent
function JoK : (s : JΣK)→ JSK(s), satisfying the axioms.

Metacontexts, sorts, substitutions and terms are interpreted the obvious way.

The syntax is again the initial object of the category of models.

Notation 3.1.9. We will often omit the interpretation brackets J. . .K and
directly use the syntax of the GAT as operators on the model.

Example 3.1.10. We can now define category theory as a GAT with sort
operators

• 
 Obj sort,
• x : Obj, y : Obj 
 Hom(x, y) sort,

and operators

• x : Obj 
 idx : Hom(x, x),
• x, y, z : Obj, ϕ : Hom(x, y), χ : Hom(y, z) 
 χ ◦ ϕ : Hom(x, z),

and axioms such as id ◦ ϕ = ϕ.

Example 3.1.11. We can define the simply typed λ-calculus (STLC) as a
GAT with sort operators

• 
 Ty sort,
• 
 Ctx sort,
• Γ,∆ : Ctx 
 Sub(Γ,∆) sort,
• Γ : Ctx, T : Ty 
 Tm(Γ, T ) sort,

and operators such as
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• 
 Base : Ty,
• A,B : Ty 
 A→ B : Ty,
• 
 () : Ctx,
• Γ : Ctx, A : Ty 
 Γ.A : Ctx,
• Γ : Ctx 
 () : Sub(Γ, ()),
• Γ,∆ : Ctx, A : Ty, σ : Sub(Γ,∆), a : Tm(Γ, A) 
 (σ, a) : Sub(Γ,∆.A)
• Γ : Ctx 
 idΓ : Sub(Γ,Γ),
• Γ,∆,Θ : Ctx, σ : Sub(Γ,∆), τ : Sub(∆,Θ) 
 τ ◦ σ : Sub(Γ,Θ)
• Γ : Ctx, A,B : Ty, b : Tm(Γ.A,B) 
 λb : Tm(Γ, A→ B),
• Γ : Ctx, A,B : Ty, f : Tm(Γ, A→ B), a : Tm(Γ, A) 
 f a : Tm(Γ, B),
• . . .

with axioms such as (σ, a) ◦ ρ = (σ ◦ ρ, a[ρ]).

3.1.5 Judgements and Typing Rules

Typically, when dealing with type systems such as the STLC, we will use slightly
different notations and terminology:

• The metacontext will be written above a line; the assumptions in it are
called premises,

• Instead of sort operators, we will speak of judgement forms. Sort
ascriptions will be called judgements, and for every judgement form we
will introduce a special notation, e.g.

– A type instead of A : Ty,
– A ctx instead of A : Ctx,
– σ : Γ→ ∆ instead of σ : Sub(Γ,∆),
– Γ ` a : A instead of a : Tm(Γ, A).

• When two GAT-terms are equal up to the axioms, we will denote this as
an equality judgement.

• When our algebraic theory contains an encoding of variables using de
Bruijn indices, we will take the liberty to use variable names.

Hence, operators become typing rules such as

Γ ctx ∆ ctx A type
σ : Γ→ ∆ Γ ` a : A
(σ, a/x) : Γ→ (∆, x : A)

(3.1)
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(where x should be desugared using de Bruijn indices) and axioms become rules
for deriving equality judgements such as

Θ ctx Γ ctx ∆ ctx A type
ρ : Θ→ Γ σ : Γ→ ∆ Γ ` a : A
(σ, a/x) ◦ ρ = (σ ◦ ρ, a[ρ]/x) : Θ→ (∆, x : A)

. (3.2)

Somewhat unusually, we will introduce judgement forms with their presupposi-
tions like so:

Γ ctx A type
(Γ ` a : A) jud

. (3.3)

Sometimes, we will omit premises that are required by well-formedness of other
judgements, e.g.

σ : Γ→ ∆ Γ ` a : A
(σ, a/x) : Γ→ (∆, x : A)

. (3.4)

One thing that is not yet possible, is having equalities in the metacontext,
i.e. equality judgements above the line. We can solve this by modifying
definition 3.1.8, or by extending the specific GAT. Indeed, we can add to a
GAT for every sort operator Σ 
 O sort an equality sort operator Σ, x : O, y :
O 
 x =O y sort, with an operator Σ, x : O 
 reflx : x =O x as well as axioms
Σ, x : O, y : O, e : x =O y 
 x = y : O and Σ, x, y : O, e1, e2 : x =O y 
 e1 = e2 :
x =O y. Then the equality sort is fully specified in models as being a singleton
if and only if the equated terms are equal, and internally in the GAT we can
make equality assumptions using the equality sort. For the rest of the text, it
does not matter which approach we take. In any case, we take the liberty to
put equality judgements in the premises of an inference rule.

Notation 3.1.12. In the spirit of notation 3.1.9, we will often populate
judgements not with terms but with elements of the model, and use their
notation to make claims about the model.

If the judgement’s subject is not present, e.g. if we write (Γ ` T ) rather
than (Γ ` t : T ), then we are talking about the set of elements of the model
interpreting the sort Tm(Γ, T ).

3.2 Dependent Type Theory: Syntax and Models

In this section, we define dependent type theory (DTT) [Mar84; CH88] as a GAT.
We introduce it in different parts, so that we can also discuss the complexity
of models step by step, and so that we can enable and disable extensions of
dependent type theory at will.
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3.2.1 Contexts and Substitutions

Judgement forms:

jud:ctx

(Γ ctx) jud

jud:sub
Γ ctx ∆ ctx
(σ : Γ→ ∆) jud

Substitutions:

sub:id
Γ ctx
id : Γ→ Γ

sub:comp
σ : Γ→ ∆ τ : ∆→ Θ
τ ◦ σ : Γ→ Θ
where id ◦ σ = σ (sub:lunit)

τ ◦ id = τ (sub:runit)
υ ◦ (τ ◦ σ) = (υ ◦ τ) ◦ σ (sub:assoc)

Figure 3.1: Typing rules for contexts and substitutions in DTT.

Figure 3.1 defines a GAT. It has judgement forms for contexts and substitutions,
which we give the structure of a category. The equations listed below the
composition rule should in principle be spelled out, each with their own premises,
e.g.:

σ : Γ→ ∆
id ◦ σ = σ : Γ→ ∆

Proposition 3.2.1. A model of the GAT defined in fig. 3.1 is exactly a category,
with the contexts serving as objects and the substitutions as morphisms. More
precisely, the category of models of the GAT is isomorphic to Cat.

3.2.2 Structural Rules, Categories with Families (CwFs) and
Natural Models

In fig. 3.2 we extend fig. 3.1 with judgement forms for types and terms. Types
and terms can be substituted, yielding types and terms in a different context. We
postulate that there is an empty context, to which there is a unique substitution.
We also postulate that contexts can be extended with a variable of any type
depending on the preceding variables. Substitutions to the extended context,
correspond to pairs of a substitution to the smaller context and a term of the
added type. The components constituting id : (Γ, x : T )→ (Γ, x : T ) are called
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Judgement forms:

jud:ty
Γ ctx
(Γ ` T type) jud

jud:tm
Γ ctx Γ ` T type
(Γ ` t : T ) jud

Type and term substitution:

ty:sub
Γ ` T type σ : ∆→ Γ
∆ ` T [σ] type
where T [id] = T

T [σ ◦ ρ] = T [σ][ρ]

tm:sub
Γ ` t : T σ : ∆→ Γ
∆ ` t[σ] : T [σ]
where t[id] = t

t[σ ◦ ρ] = t[σ][ρ]

Empty context:

empty-ctx

() ctx

empty-ctx:intro
Γ ctx
() : Γ→ ()
where σ = () (empty-ctx:eta)

Context extension:

ctx-ext
Γ ctx
Γ ` T type
(Γ, x : T ) ctx

ctx-ext:intro
σ : ∆→ Γ
∆ ` t : T [σ]
(σ, t/x) : ∆→ (Γ, x : T )
where (σ, t/x) ◦ ρ = (σ ◦ ρ, t[ρ]/x)

τ = (πx ◦ τ, x[τ ]/x) (ctx-ext:eta)

ctx-ext:wkn
Γ ctx
Γ ` T type
πx : (Γ, x : T )→ Γ
where πx ◦ (σ, t/x) = σ

(ctx-ext:wkn:beta)

ctx-ext:var
Γ ctx
Γ ` T type
Γ, x : T ` x : T
where x[σ, t/x] = t

(ctx-ext:var:beta)

Figure 3.2: Structural rules of DTT.
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πx (also called weakening) and x (a variable). Using these, we can extract the
components of a general substitution σ : ∆→ (Γ, x : T ) as πx ◦ σ and x[σ].

Notation 3.2.2. We will often omit applications of, and compositions with πx
(e.g. the rule ctx-ext:var should type the term x as T [πx]). The substitution
(idΓ, t/x) (as well as e.g. (πx, t/x)) is written more briefly as (t/x). We do not
write the round parentheses around substitutions when we extend them further,
or when we apply them using square brackets.

Models: Categories with Families (CwFs)

Models of figs. 3.1 and 3.2 combined can be structured as categories with
families:

Definition 3.2.3. [From Nuy18a] A category with families (CwF) [Dyb96]
consists of:

1. A category Ctx whose objects we call contexts, and whose morphisms
we call substitutions. We also write Γ ctx to say that Γ is a context.

2. A contravariant functor Ty : Ctxop → Set. The elements T ∈ Ty(Γ)
are called types over Γ (also denoted Γ ` T type). The action Ty(σ) :
Ty(Γ) → Ty(∆) of a substitution σ : ∆ → Γ is denoted xy[σ], i.e. if
Γ ` T type then ∆ ` T [σ] type.

3. A contravariant functor Tm : (Ty/Ctx)op → Set from the category of
elements of Ty to Set. The elements t ∈ Tm(Γ, T ) are called terms of T
(also denoted Γ ` t : T ). The action Tm(σ) : Tm(Γ, T ) → Tm(∆, T [σ])
of σ : (∆, T [σ])→ (Γ, T ) is denoted xy[σ], i.e. if Γ ` t : T , then ∆ ` t[σ] :
T [σ].

4. A terminal object () of Ctx called the empty context.
5. A context extension operation: if Γ ctx and Γ ` T type, then there is a

context Γ.T , a substitution π : Γ.T → Γ and a term Γ.T ` ξ : T [π], such
that for all ∆, the map

Hom(∆,Γ.T )→ Σ(σ : Hom(∆,Γ)).Tm(∆, T [σ]) : τ 7→ (πτ, ξ[τ ])

is invertible. We call the inverse (xy, xy). Note that for more precision and
less readability, we could write πΓ,T , ξΓ,T and (xy, xy)Γ,T .
If σ : ∆→ Γ, then we will write σ+ = (σπ, ξ) : ∆.T [σ]→ Γ.T .
Sometimes, for clarity, we will use variable names: we write Γ, x : T
instead of Γ.T , and πx : (Γ, x : T )→ Γ and Γ, x : T ` x : T [πx] for π and
ξ. Their joint inverse will be called (xy, xy/x).



82 FORMAL SYSTEMS AND DEPENDENT TYPE THEORY

Lemma 3.2.4. In a CwF, given T ∈ Ty(Γ) and σ : ∆→ Γ, the set Tm(∆, T [σ])
is naturally isomorphic to the set of morphisms τ : ∆ → Γ.T such that
π ◦ τ = σ : ∆→ Γ.

∆ τ //

σ
!!

Γ.T

π

��
Γ

Proof. Such τ is necessarily of the form (σ, t), with t ∈ Tm(∆, T [σ]).

Definition 3.2.5. [From Nuy18a] A (weak) morphism of CwFs2 F : C →
D consists of:

1. A functor FCtx : C → D (also denoted F ),
2. A natural transformation FTy : TyC → TyD ◦ FCtx (also denoted F ),
3. A natural transformation FTm : TmC → TmD ◦ F∫ (also denoted F ),

where F∫ :
∫
C TyC →

∫
D TyD is easily constructed from FCtx and FTy,

4. such that FCtx() is terminal,
5. such that (FCtxπ, FTmξ) : FCtx(Γ.T ) → (FCtxΓ).(FTyT ) is an isomor-

phism.

The images of a context Γ, a substitution σ, a type T and a term t are also
denoted FΓ, Fσ, FT and Ft respectively.

Given σ : ∆→ FΓ and ∆ ` t : (FT )[σ], we write (σ, t)F := (Fπ, Fξ)−1(σ, t) :
∆→ F (Γ.T ). In particular, (π, ξ)F = (Fπ, Fξ)−1. In variable notation, we will
write (σ, t/Fx)F : ∆→ F (Γ, x : T ). Similarly, we will write ()F for the unique
substitution to the terminal object F ().

A morphism of CwFs is called strict if

4. F () = (),
5. F (Γ.T ) = (FΓ).(FT ), Fπ = π and Fξ = ξ.

In variable notation, we write F (Γ, x : T ) = (FΓ, Fx : FT ). The law Fξ = ξ
implies that the choice of variable name in the latter context is sensible.

Proposition 3.2.6. [From Nuy18a] If G is a weak CwF morphism, and we
have a natural isomorphism ζ : F ∼= G, then F is a weak CwF morphism.

2Strict CwF morphisms are due to Dybjer [Dyb96].
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Proof. Given a type Γ ` T type, we define FΓ ` FT type by FT = (GT )[ζ].

Given a term Γ ` t : T , we define FΓ ` Ft : FT by Ft = (Gt)[ζ].

Clearly, F () is terminal as F () ∼= G().

The substitution (Fπ, Fξ) = (Fπ, (Gξ)[ζ]) : F (Γ.T )→ FΓ.FT = FΓ.(GT )[ζ]
is an isomorphism, because the following diagram commutes and the other
trajectory consists of isomorphisms:

F (Γ.T )
(Fπ,Fξ)

//

(Fπ,(Gξ)[ζ])

))

ζ

��

FΓ.FT FΓ.(GT )[ζ]

ζ+
��

G(Γ.T )
(Gπ,Gξ)

// GΓ.GT

It will be a corollary of the results of chapter 5, that a functor is a morphism of
CwFs in at most one way up to isomorphism (corollary 5.1.8).

Proposition 3.2.7. A model of the GAT defined in figs. 3.1 and 3.2 is exactly
a CwF. More precisely, the category of models of the GAT is isomorphic to the
category of CwFs and strict CwF morphisms.

Definition 3.2.8. A CwF is democratic if contexts can be promoted to closed
types: for every context Γ there should be a closed type Γ ∈ Ty(()) (denoted
by the same symbol) such that Γ ∼= ().Γ. [CD11]

A CwF C is locally democratic if slices can be promoted to open types: for
every context Γ, every slice (∆, σ) ∈ C/Γ is isomorphic to a slice of the form
(Γ.T, π).

Natural Models

CwFs can be structured even more succinctly using Awodey’s notion of natural
models [Awo18]. These have a higher level of abstraction, which makes them
more obscure. The advantage is that constructions and proofs in natural models
can also be given at a higher abstraction level, whereas in CwFs we typically first
prove that something exists, and then prove that it is stable under substitution.
Proofs of the latter are generally tedious and left to the reader, but can be more
easily included in the same argument when using natural models.
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Definition 3.2.9. A natural model [Awo18] consists of a category Ctx
equipped with presheaves T̃y,Ty : Ctxop → Set and a representable natural
transformation τ : T̃y→ Ty. We denote the base pullback of T ∈ Ty(Γ) as Γ.T .

Once more, the objects and morphisms of Ctx serve as contexts and substitutions.
Again, Ty(Γ) is the set of types in context Γ (so it is the exact same functor
as in the CwF modelling the same type system). The functor T̃y sends Γ to
the set of typed terms T̃y(Γ), and τΓ : T̃y(Γ) → Ty(Γ) forgets the term. As
suggested by the notation, context extension is given by the base pullbacks
along the representable morphism τ :

Γ.T π //

(ξ,T [π])
��

Γ

T

��
T̃y

τ
// Ty.

The fact that Γ.T is a base pullback exactly says that substitutions σ : ∆→ Γ.T
consist of a substitution π ◦σ : ∆→ Γ paired up with a term ∆ ` ξ[σ] : T [π ◦σ].
The existence of a terminal object modelling the empty context is not part of
the definition of a natural model.

Definition 3.2.10. A (weak) morphism of natural models consists of a
functor FCtx : C → D, natural transformations FT̃y : T̃yC → T̃yD ◦ FCtx and
FTy : TyC → TyD ◦ FCtx such that (τDFCtx) ◦ FT̃y = FTy ◦ τC . It is strict if it
preserves the choice of base pullbacks on the nose.

Proposition 3.2.11. The category of CwFs and weak/strict CwF morphisms
is equivalent to the category of natural models with a terminal object and
weak/strict terminal object preserving morphisms of natural models.

Proof. When sending a CwF to a natural model, we define T̃y(Γ) = (T ∈
Ty(Γ)) × Tm(Γ, T ). When sending a natural model to a CwF, we define
Tm(Γ, T ) =

{
t ∈ T̃y(Γ)

∣∣∣ τ(t) = T
}
.

3.2.3 Universe Levels for Size Stratification

In many models, the concept of a type, i.e. an element of Ty(Γ), has a size-
agnostic definition. Hence, for any ordinal number `, we can consider types
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T ∈ Ty(Γ) of size `. If the sets of such types again constitute a functor
Ty : Ctxop → Set, we shall denote this functor as Ty`. Clearly, if k ≤ `, then
Tyk is a subpresheaf of Ty`. We get corresponding judgement forms Γ ` T type`
for every size ` with a typing rule

Γ ` T typek k ≤ `
Γ ` T type`

. (3.5)

This typing rule violates the definition of a GAT, as we are not applying an
operator to T . From a syntactical point of view, we shall understand this
rule as silently applying a coercion operator ⇑`k which satisfies ⇑`` T = T
and ⇑`k⇑kj T =⇑`j T , as well as other equalities that can be expected from an
operator that semantically does nothing. Semantically, we will just make sure
that Tyk ⊆ Ty` if k ≤ ` and that size-polymorphic operators semantically do
not depend on the size. For types, we will usually speak of levels or universe
levels rather than sizes.

3.2.4 Type Formers

In this section, we introduce typing rules for various important type formers in
dependent type theory. Each of these type formers may be seen as an extension
to the structural rules of DTT (section 3.2.2). Occasionally, we will discuss how
the automatic semantics of these extensions can be simplified in the context of
CwF models. For more abstract formulations in the context of natural models,
we refer to Awodey’s work [Awo18].

General Pattern

In general, the specification of a type consists of the following parts:

• A formation rule, expressing how the type may be formed. The
corresponding operator is called the type former.
– A rule expressing how to compute substitutions applied to this type

former.
• Zero or more introduction rules, expressing how to create elements of the
type. The corresponding operators are called constructors of the type.
– A substitution rule for each constructor.

• Zero or more elimination rules, expressing how we can eliminate (destruct,
analyze, use) elements of the type. The corresponding operators are called
eliminators or destructors.
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– A substitution rule for each eliminator.
• A computation rule, reduction rule, β-reduction rule or β-rule for every

constructor-eliminator pair, expressing what happens when we apply that
eliminator to that constructor.

• Optionally, an η-expansion rule or η-rule expressing how an arbitrary
element of the type can be rebuilt by eliminating and reconstructing it.

An η-rule is usually only imposed on types for which it does not harm decidability
of equality.

Amongst types introduced according to the above pattern, we can roughly
distinguish two (overlapping) families:

Data types In a data type D, elements are defined by the constructor they
were created with, and the arguments passed to that constructor. Data types
have a single eliminator, typically written as a let- or case-expression, which
allows us to create a function (d : D)→ C d by providing, for every constructor
ci with arguments ~x : ~A, a function (~x : ~A)→ C (ci ~x). Hence, the eliminator
just lets us distinguish between all the constructors and provides us with the
arguments that have been provided to that constructor to create the eliminee d.
Data types are also called inductive types, especially if one of the constructors
again takes an argument of type D. Data types are generally not equipped with
an η-rule.

Codata types In a codata type D, elements are defined by what can be
observed of them using the eliminators. Codata types have a single constructor,
which allows us to construct an element of D by specifying the output of every
eliminator. Codata types are also called co-inductive types, especially if one of
the eliminators again produces an element of type D. With an exception for
some extraordinary codata types such as Π-types, we can also call them record
types, calling the eliminators fields. Codata types are generally equipped with
an η-rule.

Π-types

Dependent function types or Π-types3 (fig. 3.3) are codata types: their elements
are functions f : (x : A) → B that can be applied to any element of A. As
such, the constructor (called abstraction or λ-abstraction) needs to provide, for

3The name comes from the alternative notation Π(x : A).B.
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pi
Γ ` A type`
Γ, x : A ` B type`
Γ ` (x : A)→ B type`

pi:intro
Γ, x : A ` b : B
Γ ` λ(x : A).b : (x : A)→ B
where f = λ(x : A).f x : (x : A)→ B (pi:eta)

pi:elim
Γ ` f : (x : A)→ B Γ ` a : A
Γ ` f a : B[a/x]
where (λ(x : A).b) a = b[a/x] (pi:beta)

((x : A)→ B)[σ] = (x : A[σ])→ B[σ ◦ πx, x/x]
(λ(x : A).b)[σ] = λ(x : A[σ]).b[σ ◦ πx, x/x]
(f a)[σ] = f [σ] a[σ]

Figure 3.3: Typing rules for Π-types in DTT.

arbitrary x : A, the result of that application. With some fantasy, they can be
regarded as record types with A-many fields.

Definition 3.2.12. The (non-dependent) function type

Γ ` A,B type`
Γ ` A→ B type`

(3.6)

is defined as (A→ B) := (x : A)→ B[πx].

Proposition 3.2.13. In models, instead of modelling the application rule with
substitution, β- and η-rules, it is sound and complete to provide an inverse to
abstraction:

pi:unlambda
Γ ` f : (x : A)→ B

Γ, x : A ` unλx f : B
where unλx(λ(x : A).b) = b (pi:unlambda:beta)

λ(x : A).unλx f = f (pi:unlambda:eta)

(3.7)

Proof. We can mutually define

unλx f := f [πx]x, f a := (unλx f)[a/x]. (3.8)

It is straightforward to check that this satisfies all the necessary equalities.
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Notation 3.2.14. In variable-free notation, we will write ΠAB for (x : A)→ B,
λb for λ(x : A).b and unλ b for unλx b.

Σ-types

sigma
Γ ` A type`
Γ, x : A ` B type`
Γ ` (x : A)×B type`

sigma:intro
Γ ` a : A Γ ` b : B[a/x]
Γ ` (a, b) : (x : A)×B
where c = (fst c, snd c) : (x : A)×B

(sigma:eta)

sigma:fst
Γ ` c : (x : A)×B
Γ ` fst c : A
where fst (a, b) = a

(sigma:fst:beta)

sigma:snd
Γ ` c : (x : A)×B
Γ ` snd c : B[fst c/x]
where snd (a, b) = b

(sigma:snd:beta)

((x : A)×B)[σ] = (x : A[σ])×B[σ ◦ πx, x/x]
(a, b)[σ] = (a[σ], b[σ])
(fst a)[σ] = fst a[σ]
(snd a)[σ] = snd a[σ]

Figure 3.4: Typing rules for Σ-types in DTT.

Dependent pair types or Σ-types4 (fig. 3.4) are codata types: an element c has
two fields fst c : A and snd c : B[fst c/x]. As such, the pair constructor needs to
provide two components.

Definition 3.2.15. The (non-dependent) pair type

Γ ` A,B type`
Γ ` A×B type`

(3.9)

is defined as (A×B) := (x : A)×B[πx].

Notation 3.2.16. In variable-free notation, we will write ΣAB for (x : A)×B.
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unit

Γ ` Unit type`

unit:intro

Γ ` unit : Unit
where u = unit : Unit (unit:eta)

(Unit)[σ] = Unit
unit[σ] = unit

Figure 3.5: Typing rules for the unit type in DTT.

Unit Type

The unit type (fig. 3.5) is a record type with zero fields. As such, the constructor
takes zero arguments. We remark that the η-rule u = unit implies that all
elements of the unit type are equal.

Coproduct Types

coprod
Γ ` A,B type`
Γ ` A ]B type`

coprod:inl
Γ ` a : A
Γ ` inl a : A ]B

coprod:inr
Γ ` b : B
Γ ` inr b : A ]B

coprod:elim
Γ, z : A ]B ` T type
Γ, x : A ` tinl : T [inlx/z]
Γ, y : B ` tinr : T [inr y/z]
Γ ` c : A ]B

Γ ` t := case c of
{

inlx 7→ tinl
inr y 7→ tinr

}
: T [c/z]

where t[inl a/c] = tinl[a/x] (coprod:inl:beta)
t[inr b/c] = tinr[b/x] (coprod:inr:beta)

Figure 3.6: Typing rules for the coproduct type in DTT. Substitution rules
are omitted.

The coproduct type A ] B (fig. 3.6) is a data type with two constructors
inl : A → A ] B and inr : B → A ] B. The eliminator allows the creation of

4The name comes from the alternative notation Σ(x : A).B.
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functions (z : A]B)→ T z by handling two cases: z may be of the form inlx or
inr y, so we need to provide functions (x : A)→ T (inlx) and (y : B)→ T (inr y).
Note that in the β-rule, the notation t[inl a/c] is not a valid substitution (since
c is a term and not a variable) but instead an ad hoc abbreviation for

case inl a of
{

inlx 7→ tinl
inr y 7→ tinr

}
,

and similar for t[inr b/c].

Notation 3.2.17 (Pattern matching). When an eliminator of a data type
is applied to a variable, we will often abbreviate this by directly writing a
pattern where this variable is bound. For example, the following definition of
h : (z : A ]B)→ T z:

h (inlx) = f x

h (inr y) = g y

is an abbreviation of

h z = case z of
{

inlx 7→ f x
inr y 7→ f y

}
.

Empty Type

empty

Γ ` Empty type`

empty:elim
Γ, x : Empty ` T type
Γ ` e : Empty
Γ ` case e of{} : T [e/x]

Figure 3.7: Typing rules for the empty type in DTT. Substitution rules are
omitted.

The empty type Empty (fig. 3.7) is a data type with zero constructors. The
eliminator allows the creation of functions (x : Empty)→ T x by handling zero
cases.

Identity Types

DTT typically features an identity type a ≡A b (fig. 3.8). This comes with
some special terminology: if a ≡A b is inhabited, then we say that a and b are
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General rules:

id
Γ ` A type`
Γ ` a, b : A
Γ ` a ≡A b type`

id:intro
Γ ` a : A
Γ ` refla : a ≡A a

Extensional identity rules:

id:reflection
Γ ` e : a ≡A b
Γ ` a = b : A

id:eta
Γ ` e : a ≡A b
Γ ` e = refla : a ≡A a

Intensional identity rules:
Eliminator (J-rule):

id:j
Γ ` a : A Γ ` b : A
Γ, y : A,w : a ≡A y ` T type Γ ` e : a ≡A b
Γ ` trefl : T [a/y, refla/w]
Γ ` t := case (b, e) of {(a, refla) 7→ trefl} : T [b/y, e/w]
where t[a/b, refla/e] = trefl (id:j:beta)

Function extensionality:

pi:funext
Γ ` f, g : (x : A)→ B
Γ ` h : (x : A)→ f x ≡B g x

Γ ` funexth : f ≡(x:A)→B g

Judgemental uniqueness of identity proofs (UIP):

id:uip
Γ ` e1, e2 : a ≡A b
Γ ` e1 = e2 : a ≡A b

Figure 3.8: Typing rules for the identity type in DTT. Substitution rules
are omitted.
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propositionally equal, and we call the inhabitants equality proofs. If the
judgement a = b : A is derivable, then we say that a and b are judgementally
equal.5 We also use this terminology for other equality judgements, e.g. for
A = B type. There are two versions of the identity type.

Extensional identity type The extensional identity type can be seen as a
codata type, which has a single eliminator (called the reflection rule) that
deduces judgemental equality from a propositional equality proof. One expects
that the extensional identity type, as other codata types, has a single constructor
which only requires that we provide content to the eliminator. In this case, one
would expect that judgemental equality is required:

Γ ` a = b : A
Γ ` refla,b : a ≡A b

(3.10)

Actually, this constructor is equally powerful as refla. Indeed, we can mutually
define

refla := refla,a, refla,b := refla. (3.11)

The former is well-typed because judgemental equality is an equivalence relation
by definition of a GAT. The latter makes sense because, if we can write refla,b,
then we know that a = b judgementally, so that the type a ≡A a of refla is
judgementally equal to the required type a ≡A b. An extensional identity type
can be equipped with an η-rule: if e : a ≡A b, then we can eliminate and deduce
that a = b judgementally, and we can reconstruct refla : a ≡A b. The η-rule
asserts that e = refla. There is no β-rule as the eliminator does not produce a
term.

It is clear that the constructor states that judgemental equality implies
propositional equality, whereas the eliminator states that propositional equality
implies judgemental equality. The η-rule expresses that propositional equality
is proof-irrelevant (all proofs are the same), so in extensional DTT (DTT with
an extensional identity type) we need not distinguish between judgemental and
propositional equality.

Intensional identity type Unless otherwise mentioned, in this thesis we always
use DTT with an intensional identity type.

The intensional identity type is a data type family. That is, for any type A and
element a : A (these are the parameters of the type family), we get a family

5Seeing DTT as a GAT, recall that the equality judgement in fact denotes the congruence
closure of all axioms, i.e. all typing rules ending in an equality judgement. Hence, judgemental
equality is reflexive, transitive, and respected by everything.
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of types a ≡A y depending on y : A (this is the index of the type family). For
every choice of parameters of a type family, we get a set of constructors, and
each constructor gets to choose the value of the indices depending on its inputs.
For the identity type, given parameters A and a, we get a single zero-argument
constructor refla : a ≡A a which chooses y to be a.

When eliminating, we need to pattern-match simultaneously on the element
of the data type and its indices. The eliminator allows us to create functions
(y : A) → (w : a ≡A y) → T y w by handling the case where w = refla and
therefore y = a, i.e. by providing just an element of T a refla. The β-rule simply
states that we actually resort to that element when w = refla. There is no
η-rule: we cannot equate an arbitrary equality proof e : a ≡A b to refla, because
this may not be well-typed as we cannot deduce judgemental equality from
propositional equality.

Remark 3.2.18. One easily shows that a ≡A b is isomorphic to b ≡A a, so
that we will also take the liberty to pattern-match on (a, e) where e : a ≡A b.

In intensional DTT (DTT with an intensional identity type), judgemental
equality is stronger than propositional equality.

The intensional identity type has a few annoying properties:

• We cannot deduce propositional function extensionality: the statement
that if functions are pointwise propositionally equal, then they are
propositionally equal [BPT17]. This property is however satisfied by
many denotational models and also extremely useful, so we postulate it
as an axiom.

• Mathematicians born into set theory who only later discovered type theory,
may balk at the notion of having to prove equality of equality proofs. We
comfort them by postulating that all equality proofs are definitionally
equal. This endows our internal types with the structure of a setoid (a
set equipped with an equivalence relation): judgemental equality has the
meaning of actual equality, whereas propositional equality serves as the
equivalence relation.
If we disable the uniqueness of identity proofs (UIP) rule, then we open
the door to groupoid and ∞-groupoid models and homotopy type theory
(HoTT) [HS94; Uni13].

We remark that Sterling et al.’s extensional type theory XTT [SAG19] satisfies
both function extensionality and judgemental uniqueness of identity proofs
without blocking computation in the sense that the system satisfies canonicity:
every closed boolean is either true or false.
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Booleans

Booleans are not very exciting: they could be implemented as Unit ] Unit.
However, for reasons of readability, we add a type Bool type` with constructors
true : Bool and false : Bool and we write the case expression as if b ttrue tfalse.

Natural numbers

nat:elim
Γ, v : Nat ` T type
Γ ` t0 : T [0/v]
Γ, v : Nat, s : T [v/v] ` tsuc : T [suc v/v]
Γ ` n : Nat

Γ ` t := casen of
{

0 7→ t0
suc(v 7→ s) 7→ tsuc

}
: T [n/v]

where t[0/n] = t0
t[sucm/n] = tsuc[m/v, t[m/n]/s]

Figure 3.9: Elimination rule for the naturals in DTT.

The natural numbers are a data type Nat type` with constructors 0 : Nat and
suc : Nat → Nat. The elimination rule is given in fig. 3.9. It requires us to
handle both constructors; in the case of suc, we are provided not only with
the predecessor v, but also with a variable s that stands for the same case
expression applied to the predecessor.

Universes

We extend DTT with universes à la Coquand [Coq13] (fig. 3.10). The universe
U` of level ` ∈ N (we could also consider levels higher than ω, but in practice
you usually have either enough natural numbers for a practical purpose or too
few ordinal numbers to attain generality), has a single decoding eliminator El
that produces a type of level `. Hence, the encoding constructor requires as
argument a type of level `. The β- and η-rules simply state that these operations
are mutually inverse.

The advantage of universes à la Coquand is that they automatically inherit all
constructions applicable to the typing judgement, simply by decoding, applying
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uni
Γ ctx ` ∈ N
Γ ` U` type`+1

uni:intro
Γ ` T type`
Γ ` pTq : U`
where A = pElAq : U`

(uni:eta)

uni:elim
Γ ` A : U`
Γ ` ElA type`
where El pTq = T type`

(uni:beta)

Figure 3.10: Typing rules for universes in DTT. Substitution rules are
omitted.

the construction, and re-encoding. In particular, we have explicit cumulativity
coercions Uk → U` for k ≤ `.

Notation 3.2.19. We will omit applications of El and pxyq.

3.2.5 An Auxiliary Definition

We needed to put the following definition somewhere:

Definition 3.2.20. The type of isomorphisms A ∼= B is defined as

(A ∼= B) := (f : A→ B)× (g : B → A)

× (g ◦ f ≡A→A idA)× (f ◦ g ≡B→B idB).

3.3 The Curry-Howard Correspondence

The judgement forms of DTT only allow us to say that something is a context,
something is a type, something is a term of a certain type, and that contexts,
terms and types are equal. This may create the impression that DTT is unusable
for logic. However, the contrary is true: the Curry-Howard correspondence lets
us encode propositions proof-relevantly as dependent types. By translating every
logical operator to an operation on DTT types, we can inductively translate
any logical formula to the type of its proofs. Conversely, and more boringly,
every type T can be read as the proposition ‘T is inhabited’.

So in type theory, to state a theorem T is to create a type T type, and to
prove the theorem T is to create an element t : T . This means that the
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above ‘inductive translation’ in type theory is effectively the identity function:
the logical operators that we use in type theory are the type formers that
translate them to types, so the translation function does nothing. For this
reason, some people object to the often used term ‘Curry-Howard isomorphism’:
the isomorphism is the identity. The translation is only necessary to translate
theorems from classical logic to type theory, and to teach people familiar with
classical logic how to do logic in type theory.

3.3.1 Encoding Propositions as Types

We shall now explain how to translate logical operators and related proving
techniques to type theory. The introduction rules of the type correspond to
ways of proving the proposition, whereas the elimination rules correspond to
ways of using knowledge.

> Logical truth is encoded as the Unit type.
Proving Proving truth is trivial. We have unit : Unit.
Using A proof of truth is useless. Unit has no eliminators.

⊥ Logical falsehood is encoded as the Empty type.
Proving Proving falsehood is impossible (unless we start from contra-

dictory assumptions). Empty has no constructors, so we have to
eliminate the context until there are zero cases to complete.

Using Falsehood implies anything. The eliminator for Empty (fig. 3.7)
allows us to prove anything.

∧ The logical conjunction P ∧ Q (P and Q) is encoded as the product type
P ×Q.
Proving The conjunction is proven by proving P and Q. The proofs

p : P and q : Q can be paired up as (p, q) : P ×Q.
Using The conjunction implies P and implies Q. From a proof r : P ×Q

we get fst r : P and snd r : Q.
∨ The logical disjunction A ∨B (A or B) is encoded as the coproduct A ]B.

Proving The disjunction is proven either by proving P or by proving Q.
Indeed, given p : P we get inl p : P ]Q and similar for q : Q.

Using If we know that P∨Q holds, then we can reason by case distinction:
if P holds, then . . . , if Q holds, then . . . . This corresponds to
eliminating r : P ]Q (fig. 3.6).

⇒ Logical implication P ⇒ Q is encoded as the function type P → Q.
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Proving In order to prove P ⇒ Q, we assume P and prove Q.
Abstraction λ(x : P ).q brings a proof x : P in scope, which we
can use in the proof q : Q.

Using Modus ponens translates to application:

P ⇒ Q P

Q

Γ ` f : P → Q Γ ` p : P
Γ ` f p : Q

.

¬ Logical negation ¬P is encoded as P → Empty.
Proving We can prove ¬P from the absurd: we assume P and derive a

contradiction. This is achieved by λ-abstraction: λ(x : P ).e brings a
proof x : P in scope, which we can use in the proof e : Empty.

Using If P and ¬P are both true, then we can deduce ⊥. This again
translates to application.

= Equality a = b ∈ A is encoded as a ≡A b.
Proving Equality is reflexive: refla : a ≡A a.
Using If we know that a = b ∈ A, then we can henceforth replace a

with b. Both the reflection rule and the eliminator of the intensional
identity type (fig. 3.8) allows us to do this.

∀ Universal quantification ∀(x ∈ A).P (x) is encoded as (x : A)→ P (x). Here,
P is a proposition (i.e. a type) depending on x : A.
Proving We need to pick an arbitrary x ∈ A and prove P (x). This is

done by λ-abstraction.
Using If we have a ∈ A, then we can conclude P (a). This translates to

application.
∃ Existential quantification ∃(x ∈ A).P (x) is encoded as (x : A)× P (x).

Proving We need to find some a ∈ A satisfying P (a). The element a : A
and the proof p : P (a) can be paired up as (a, p) : (x : A)× P (x).

Using We get to use some a ∈ A satisfying P (a). Indeed, from a proof
c : (x : A)× P (x), we can extract fst c : A and snd c : P (fst c).

3.3.2 Constructivity

We point out that proofs in DTT are constructive. For example, from a proof
of ∃(x ∈ A).P (x), we can extract an element a ∈ A satisfying P (a). In practice,
this element a is a dependently typed program that can be computed to actually
find a normal form of type A (though we do not treat normalization in this
thesis).
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In general, when we make a claim in DTT, we are not merely saying that the
claim is true, but that it is constructively provable. When we negate a claim,
we are not merely saying that it is false, but that it is refutable.

This leads to some differences with classical logic. In classical logic, for any
proposition P , we know P ∨ ¬P (law of excluded middle) and P ⇔ ¬¬P
(principle of double negation). In DTT, we can prove that for all propositions
P , we have P ⇒ ¬¬P (provability implies refutability of refutability) in the
following sense:

λP.λp.λp∗.p∗ p : (P : U)→ P → ((P → Empty)→ Empty).

However, parametric models of DTT [e.g. AGJ14] prove that there are no
general functions

(P : U)→ ((P → Empty)→ Empty)→ P, (3.12)

(P : U)→ P ] (P → Empty). (3.13)

This means that DTT provides some nuances that are absent in classical logic:

• The proposition P ] (P → Empty) is read as ‘P is decidable’: to prove it
is to write a terminating functional program that computes to either inl p,
which contains a proof p of P , or inr p∗, which contains a refutation p∗.
• The proposition (P → Empty) → Empty is read as ‘P holds non-
constructively’. As there can be at most one function to the empty
type, all proofs of this proposition are equal and devoid of content, so we
cannot extract information.

We remark that it is easy to prove (by writing terms of DTT) that the general
statements in eqs. (3.12) and (3.13) are logically equivalent, i.e. there are
functions in both directions which do not necessarily constitute an isomorphism.
Postulating either statement essentially amounts to assuming the axiom of
choice: if we know that a type P is not empty, then we can obtain a concrete
construction of type P from thin air. Of course no computer or algorithm is
capable of computing these constructions in general, so these axioms cannot
be endowed with computational behaviour and postulating them makes DTT
non-constructive.



Chapter 4

Presheaf Models of
Dependent Type Theory

In this chapter, we explain how the presheaf category Psh(W) over an arbitrary
base category W constitutes a model of DTT with all type formers listed in
section 3.2.4. The entire content of this chapter is based on Hofmann’s work
[Hof97], except for the construction of the universe, which is due to Hofmann
and Streicher [HS97]. The notations are polished from prior work [Nuy18a].

We remind the reader of notation 3.1.12: we will use the syntax and judgements
of DTT directly to act on and to make claims about models, omitting the use
of interpretation brackets.

Readers will also want to learn about our presheaf notations (notation 2.3.2).

4.1 Modelling Structural Rules: Presheaf Cate-
gories are CwFs

We start by modelling the GAT specified by the structural rules of DTT
(sections 3.2.1 and 3.2.2), i.e. by explaining how any presheaf category Psh(W)
can be endowed with the structure of a CwF. We will postpone any discussion
of sizes and universe levels to section 4.2.

99
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4.1.1 Category of Contexts

As category of contexts, of course, we pick Psh(W). Thus, a context is a
presheaf Γ : Wop → Set, and a substitution is a presheaf morphism (natural
transformation) Γ→ ∆.

4.1.2 Types Functor

We need to define the functor Ty : Psh(W)op → Set.

Set of types We start by defining the action of Ty on an object Γ, i.e. the
meaning of the judgement Γ ` T type, as the set of presheaves over the category
of elements W/Γ:

Ty(Γ) := Obj(Psh(W/Γ)). (4.1)
Concretely, a type Γ ` T type consists of:

• For every cell γ : W ⇒ Γ (yielding an object (W,γ) of W/Γ to which we
must be able to apply T ), a set ((W,γ)⇒ T ) of cells over γ which we will
denote as (W � T [γ〉) in order to stay closer to the intuitions of DTT.
We will write W � t : T [γ〉 to say that t is an element of this set.
• For every morphism ϕ : V →W and every cell γ : W ⇒ Γ (hence for every

morphism ϕ : (V, γ ◦ϕ)→ (W,γ) in the category of elements) a restriction
map which we will denote xy〈ϕ〉 : (W � T [γ〉)→ (V � T [γ ◦ ϕ〉).

Type substitution The action of Ty on a substitution σ : Γ→ ∆ defines the
semantics of type substitution. We simply define this by precomposing T :
(W/∆)op → Set with Σ/σ : (W,γ) 7→ (W,σ ◦ γ) (definition 2.2.37). Concretely,
T [σ] is defined as follows:

• For γ : W ⇒ Γ, we have (W � T [σ][γ〉) = (W � T [σ ◦ γ〉),
• The restriction of a cell (W � t : T [σ][γ〉) along ϕ : V → W is simply
given by the restriction in T , yielding (V � t〈ϕ〉 : T [σ][γ ◦ ϕ〉), which is
well-typed by naturality of σ.

Example 4.1.1 (Sets). Continuing example 2.3.7, a context in the CwF
Psh(Point) of sets is just a set Γ. A type Γ ` T type is just a function T : Γ→ Set.
Substitution is given by composition.

Example 4.1.2 (Reflexive graphs). Continuing example 2.3.8, a context in the
CwF Psh(RG) of reflexive graphs, is just a reflexive graph Γ. A type Γ ` T type
consists of:
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• For every node γ : N⇒ Γ a set (N � T [γ〉) of nodes over γ,
• For every edge γ : I⇒ Γ a set (I � T [γ〉) of edges over γ,
• A source map sending (I � t : T [γ〉) to (N � t〈s〉 : T [γ ◦ s〉),
• A target map sending (I � t : T [γ〉) to (N � t〈t〉 : T [γ ◦ t〉),
• A reflexivity map sending (N � t : T [γ〉) to (I � t〈r〉 : T [γ ◦ r〉), such that
t〈r〉〈s〉 = t〈r〉〈t〉 = t.

It is worth remarking that, given a node γ : N⇒ Γ, the nodes above γ and the
edges above γ ◦ r constitute a reflexive graph:

(N � T [γ〉) xy〈r〉 // (I � T [γ ◦ r〉)

xy〈s〉

vv

xy〈t〉

hh

The nodes/edges of T [σ] over γ are the nodes/edges of T over σ ◦ γ.

Example 4.1.3 (Topos of trees). Continuing example 2.3.14, a type Γ ` T type
in the topos of trees consists of:

• For every γ : i⇒ Γ a set (i � T [γ〉),
• Whenever i ≤ j, a restriction map sending (j � t : T [γ〉) to (i � t〈�ji 〉 :
T [γ ◦ �ji 〉), and these maps commute.

4.1.3 Terms Functor

We need to define the functor Tm : Psh(W/Ty)op → Set.

Set of terms We start by defining the action of Tm on an object (Γ, T ), i.e.
the meaning of the judgement Γ ` t : T , as the following set:

Tm(Γ, T ) := ∀W.(γ : W ⇒ Γ)→ (W � T [γ〉) (4.2)

and we denote the action of t on (W,γ) as t[γ〉, i.e. if Γ ` t : T and γ : W ⇒ Γ,
then W � t[γ〉 : T [γ〉. Note that the ∀-symbol denotes a dependent end, i.e.
we have a naturality condition which requires that for ϕ : V → W , we get
t[γ〉〈ϕ〉 = t[γ ◦ ϕ〉.
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Term substitution Given σ : Γ → ∆ and ∆ ` T type, we need to define
term substitution xy[σ] : Tm(∆, T ) → Tm(Γ, T [σ]). This is done simply by
precomposition, i.e. t[σ][γ〉 := t[σ ◦ γ〉.

Theorem 4.1.4. We have a natural isomorphism (W � T [γ〉) ∼= (yW ` T [γ]).1

Proof. This follows from expanding definitions and applying the dependent
Yoneda-lemma (theorem 2.3.20):

(yW ` T [γ]) = ∀V.(ϕ : V ⇒ yW )→ (V � T [γ ◦ ϕ〉)

= ∀V.(ϕ : V →W )→ (V � T [γ ◦ ϕ〉)

∼= (W � T [γ〉).

Example 4.1.5 (Sets). Continuing examples 2.3.7 and 4.1.1, a term Γ ` t : T
is just a function (γ ∈ Γ)→ (∗ � T [γ〉).

Example 4.1.6 (Reflexive graphs). Continuing examples 2.3.8 and 4.1.2, a
term Γ ` t : T consists of:

• an action on nodes, sending γ : N⇒ Γ to N � t[γ〉 : T [γ〉,
• an action on edges, sending γ : I⇒ Γ to I � t[γ〉 : T [γ〉,
• such that source, target and reflexivity are respected:

t[γ〉〈s〉 = t[γ ◦ s〉, t[γ〉〈t〉 = t[γ ◦ t〉, t[γ〉〈r〉 = t[γ ◦ r〉.

Example 4.1.7 (Topos of trees). Continuing examples 2.3.14 and 4.1.3, a term
Γ ` t : T consists of:

• actions sending γ : i⇒ Γ to i � t[γ〉 : T [γ〉,
• such that restriction is respected: t[γ〉〈�ji 〉 = t[γ ◦ �ji 〉.

4.1.4 Empty Context and Context Extension

Presheaf categories have a terminal object () which models the empty context,
given by (W ⇒ ()) = {()}.

The extended context Γ.T is the presheaf defined by:

(W ⇒ Γ.T ) := (γ : W ⇒ Γ)× (W � T [γ〉),

(γ, t) ◦ ϕ := (γ ◦ ϕ, t〈ϕ〉).
1See notation 2.3.18 for the use of γ.
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Then we can pair up a substitution σ : Γ → ∆ and a term Γ ` t : T [σ] to a
substitution (σ, t) : Γ→ ∆.T by defining (σ, t) ◦ γ := (σ ◦ γ, t[γ〉). Conversely,
we define π : Γ.T → Γ by π ◦ (γ, t) := γ, and Γ.T ` ξ : T [π] by ξ[γ, t〉 := t.

4.2 Universe Levels for Size Stratification

We assume that we want, in our type system, ω universe levels. If another
number is desired, one can replace without trouble.

Then as category of contexts, we should take the category of presheaves Wop →
Setω producing sets of size ω. The set Ty`(Γ) of types of level ` is simply given
by the set of presheaves (W/Γ)op → Set` producing sets of size `. The set Ty(Γ)
of types of arbitrary size is given by the set of presheaves (W/Γ)op → Setω.

4.3 Type Formers

We will now describe how to model the type formers listed in section 3.2.4. We
only give the construction of the relevant operators, without always proving
that β-, η- and substitution rules are satisfied. The reader can either check this
for themself or consult Hofmann and Streicher’s work [Hof97; HS97]. We will
also omit considerations of size except for the universe.

4.3.1 Π-types

We need to define the type Γ ` ΠAB type (notation 3.2.14), i.e. for any γ :
W ⇒ Γ we need to define (W � (ΠAB)[γ〉), contravariantly in (W,γ) ∈ W/Γ.

By theorem 4.1.4, this is isomorphic to the set (yW ` (ΠAB)[γ]) = (yW `
Π(A[γ])(B[γ+])), which by proposition 3.2.13 is isomorphic to (yW.A[γ] `
B[γ+]). So we must define

(W � (ΠAB)[γ〉) := (yW.A[γ] ` B[γ+])

∼= ∀V.(ϕ : V →W )→ (V � A[γϕ〉)→ (V � B[γϕ, a〉).

In line with notation 2.0.1, we write λ : (yW.A[γ] ` B[γ+])→ (W � (ΠAB)[γ〉).
Restriction is given by (λb)〈ϕ〉 := λ(b[yϕ+]).

We define (λb)[γ〉 := λ(b[γ+]).
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Example 4.3.1 (Sets). Continuing examples 2.3.7, 4.1.1 and 4.1.5, an element
of ∗ � λb : (ΠAB)[γ〉 is a term y∗.A[γ] ` b : B[γ+], i.e. a function sending
∗ � a : A[γ〉 to ∗ � b[id∗, a〉 : B[γ, x〉.
Example 4.3.2 (Reflexive graphs). Continuing examples 2.3.8, 4.1.2 and 4.1.6,
a node N � λb : (ΠAB)[γ〉 is a term yN.A[γ] ` b : B[γ+], which consists of:

• An action b[idN, xy〉 on nodes above γ:

yN � a : A[γ〉 7→ yN � b[idN, a〉 : B[γ, a〉,

• An action b[r, xy〉 on edges above γ ◦ r:

yI � a : A[γ ◦ r〉 7→ yI � b[r, a〉 : B[γ ◦ r, a〉,

• Respecting source, target and reflexivity:

b[r, a〉〈s〉 = b[idN, a〈s〉〉,

b[r, a〉〈t〉 = b[idN, a〈t〉〉, b[idN, a〉〈r〉 = b[r, a〈r〉〉.

Meanwhile, an edge I � λb : (ΠAB)[γ〉 is a term yI.A[γ] ` b : B[γ+], which
consists of:

• An action b[idI, xy〉 on edges above γ:

yI � a : A[γ〉 7→ yI � b[idI, a〉 : B[γ, a〉,

• An action b[s, xy〉 on nodes above the source γ ◦ s of γ:

yN � a : A[γ ◦ s〉 7→ yN � b[s, a〉 : B[γ ◦ s, a〉,

• An action b[t, xy〉 on nodes above the target γ ◦ t of γ,
• An action b[s ◦ r, xy〉 on edges above the reflexive edge γ ◦ s ◦ r on the

source of γ:

yI � a : A[γ ◦ s ◦ r〉 7→ yI � b[s ◦ r, a〉 : B[γ ◦ s ◦ r, a〉,

• An action b[t ◦ r, xy〉 on edges above the reflexive edge γ ◦ t ◦ r on the
target of γ,

• Respecting source, target and reflexivity:

b[idI, a〉〈s〉 = b[s, a〈s〉〉, b[s, a〉〈r〉 = b[s ◦ r, a〈r〉〉,

b[idI, a〉〈t〉 = b[t, a〈t〉〉, b[t, a〉〈r〉 = b[t ◦ r, a〈r〉〉,

b[s ◦ r, a〉〈s〉 = b[s, a〈s〉〉, b[t ◦ r, a〉〈s〉 = b[t, a〈s〉〉,

b[s ◦ r, a〉〈t〉 = b[s, a〈t〉〉, b[t ◦ r, a〉〈t〉 = b[t, a〈t〉〉.
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Given an edge λb in the Π-type above γ : I⇒ Γ, its source is (λb)〈s〉 = λ(b[ys+]).
Thus:

• The action on nodes is b[ys+][idN, xy〉 = b[s, xy〉, i.e. the action of b on
nodes above the source of γ,

• The action on edges is b[ys+][r, xy〉 = b[s ◦ r, xy〉, i.e. the action of b on
edges above the reflexive edge on the source of γ.

The target of λb is obtained in a similar way.

Given a node λb in the Π-type above γ : N⇒ Γ, its reflexive edge is (λb)〈r〉 =
λ(b[yr+]) and lives above γ ◦ r. Thus:

• The actions on edges are:

b[yr+][idI, xy〉 = b[r, xy〉,

b[yr+][s ◦ r, xy〉 = b[r, xy〉,

b[yr+][t ◦ r, xy〉 = b[r, xy〉,

i.e. they are all equal to the action of b on edges.
• The actions on nodes are:

b[yr+][s, xy〉 = b[yr+][t, xy〉 = b[idN, xy〉,

i.e. they are both equal to the action of b on nodes.

Example 4.3.3 (Topos of trees). Continuing examples 2.3.14, 4.1.3 and 4.1.7,
a cell i � λb : (ΠAB)[γ〉 is a term yi.A[γ] ` b : B, which consists of, for all
j ≤ i, an action b[�ij , xy〉 on j-cells of A above γ ◦ �ij :

j � a : A[γ ◦ �ij〉 7→ j � b[�ij , a〉 : B[γ ◦ �ij , a〉.

such that restriction is respected: b[�ij , a〉〈�
j
k〉 = b[�ik, a〈�

j
k〉〉.

Restriction of λb is given by (λb)〈�ij〉 = λ(b[(y�ij)+]) whose actions are given by
b[y�ij+][�jk, xy〉 = b[�ik, xy〉.

4.3.2 Σ-types

We need to define the type Γ ` ΣAB type, i.e. for any γ : W ⇒ Γ we need to
define (W � (ΣAB)[γ〉), contravariantly in (W,γ) ∈ W/Γ:

(W � (ΣAB)[γ〉) := (W � a : A[γ〉)× (W � B[γ, a〉). (4.3)
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The constructor and eliminators are defined by

(a, b)[γ〉 := (a[γ〉, b[γ〉), (fst c)[γ〉 := π1(c[γ〉), (snd c)[γ〉 := π2(c[γ〉).

4.3.3 Identity types

We model the extensional identity type Γ ` a ≡A b, which trivially satisfies the
typing rules of the intensional identity type including function extensionality
and UIP. To this end, we need to define, for any γ : W ⇒ Γ, the set (W �
(a ≡A b)[γ〉), contravariantly in (W,γ) ∈ W/Γ.

By theorem 4.1.4, this is isomorphic to the set (yW ` (a ≡A b)[γ]) = (yW `
a[γ] ≡A[γ] b[γ]). From the reflexivity and reflection rules and the η-rule, it is
evident that the latter has a (unique) element if and only if yW ` a[γ] = b[γ] :
A[γ], which by theorem 4.1.4 is equivalent to W � a[γ〉 = b[γ〉 : A[γ〉. So we
define:

(W � (a ≡A b)[γ〉) := {refl |W � a[γ〉 = b[γ〉 : A[γ〉}. (4.4)

4.3.4 Universes

We need to define the type Γ ` U` type`+1, i.e. for any γ : W ⇒ Γ we need to
define (W � U`[γ〉) ∈ Set`+1, contravariantly in (W,γ) ∈ W/Γ.

By theorem 4.1.4, this is isomorphic to the set (yW ` U`[γ]) = (yW `
U`), which via encoding/decoding is isomorphic to (yW ` type`) = Ty`(yW )
(notation 3.1.12). So we must define

(W � U`[γ〉) := Ty`(yW ) = Obj(Psh(W/yW )) ∼= Obj(Psh(W/W )), (4.5)

which does not depend on γ, confirming that we have properly modelled the
universe as a closed type. In line with notation 2.0.1, we write El : (W �
U`[γ〉) → Ty`(yW ) with inverse pxyq. Restriction is given by pTq〈ϕ〉 :=
pT [yϕ]q.

We define pTq[γ〉 := pT [γ]q. Hence, we have (ElA)[γ〉 = (ElA)[γ][id〉 =
(El(A[γ〉))[id〉.

This construction is called the Hofmann-Streicher universe [HS97].

Example 4.3.4 (Sets). Continuing examples 2.3.7, 4.1.1, 4.1.5 and 4.3.1, an
element ∗ � pTq : U[_〉 is a type y∗ ` T type, i.e. a set.
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Example 4.3.5 (Reflexive graphs). Continuing examples 2.3.8, 4.1.2, 4.1.6
and 4.3.2, a node N � pTq : U[_〉 is a type yN ` T type, which is a diagram

(N � T [idN〉) xy〈r〉 // (I � T [r〉)

xy〈s〉

vv

xy〈t〉

hh

i.e. a reflexive graph.

An edge N � pTq : U[_〉 is a type yI ` T type, which is a diagram

(N � T [s〉)

xy〈r〉

��

(I � T [idI〉)
xy〈s〉oo xy〈t〉 // (N � T [t〉)

xy〈r〉

��
(I � T [s ◦ r〉)

xy〈t〉

ZZ

xy〈s〉

DD

(I � T [t ◦ r〉)

xy〈t〉

ZZ

xy〈s〉

DD
(4.6)

i.e. it consists of a reflexive graph at the source, a reflexive graph at the target,
and a set of edges spanning across, whose source is a node at the source and
whose target is a node at the target.

The source of I � pTq : U[_〉 is given by pTq〈s〉 = pT [ys]q, which clearly
extracts the reflexive graph at the source, and similarly for the target.

The reflexive edge on N � pTq : U[_〉 is given by pTq〈r〉 = pT [yr]q, which
creates a diagram of the latter shape from one of the former, by using (N �
T [idN〉) for both sets of nodes, and (I � T [r〉) for every set of edges.

Example 4.3.6 (Cubical sets). We remark that in the category of affine cubical
sets Psh(Cube2) (example 2.3.11), an edge (i : I) � pTq : U[_〉 consists of a
cubical set at the source, a cubical set at the target, and an entire cubical set
in the middle, whose n-cubes are actually (n+ 1)-cubes spanning across.

In the category of cartesian cubical sets Psh(Cube), the situation is a bit more
funny: the cubical set at the center becomes ternary, because we cannot only
take sources and targets of lines (which are actually squares spanning across),
but also diagonals.

Example 4.3.7 (Topos of trees). Continuing examples 2.3.14, 4.1.3, 4.1.7
and 4.3.3, an i-cell i � pTq : U[_〉 is a type yi ` T type, which is a presheaf
over ω/yi ∼= ω/i ∼= i+ 1.
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4.3.5 Other types

The unit type Γ ` Unit type is modelled by the terminal presheaf overW/Γ. The
empty type Γ ` Empty type is modelled by the empty presheaf. The coproduct
Γ ` A ] B type is modelled as the coproduct of presheaves A and B. The
naturals and the booleans are modelled by constant presheaves of the sets of
naturals and booleans.
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Chapter 5

Multimode Type Theory

Parts of the introduction of this chapter are taken from the abstract on Menkar
[ND19b].

In modal type theory, all functions and all variables are annotated with a
modality describing the behaviour of the dependency. Applications include:
modal logic (eponymously) [PD01], variance of functors [Abe06; Abe08; LH11],
intensionality vs. extensionality [Pfe01], irrelevance [Pfe01; Miq01; BB08;
MS08; Ree03; AS12; AVW17; ND18a], shape-irrelevance [AVW17; ND18a],
parametricity [NVD17a], axiomatic cohesion [LS16] and globality [Lic+18]. In
order to annotate identity and composite functions, there are identity and
composite modalities, turning the set of modalities into a monoid. The fact
that some modalities are weaker than others, makes this an ordered monoid.

Sometimes, the set of available modalities µ for functions (µ p x : A) → B
depends on the types A and B. For example, in the type system RelDTT for
Degrees of Relatedness [ND18a] (chapter 9), functions from N to Bool are either
ad hoc or irrelevant, whereas functions from the universe to Bool can also be
parametric and functions from N to the universe can also be shape-irrelevant. In
System F, there is always at most one modality applicable, but it is not always
the same: functions from a type to a type are always ad hoc, while functions
from a kind to a type are always parametric. Recently, Licata and Shulman
[LS16] have explained these phenomena by moving from an ordered monoid to
a 2-category, whose objects are called modes and whose morphisms serve as
modalities. If there happens to be only a single mode, then we are essentially
back in the ordered monoid setting. In case there are or may be multiple modes,
we speak of multimode type theory, which is thus a generalization of modal
type theory. Here, one assigns a mode to every type, and the modality of a
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function must match the domain and codomain modes. For System F, we could
have 2 modes: data for types classifying data and type for kinds classifying
types. The modes of RelDTT are called −1, 0, 1, 2, . . . but could be read as
proof, data, type, kind, etc.

Typically, a mode is interpreted as a CwF, and a modality as a CwF morphism.
The modal function type (µ p x : A) → B is then interpreted as an ordinary
function type, with the functor µ applied to its domain.

In this chapter, we present 3 approaches to modal type theory, of which I
contributed to the first and the third.

Section 5.1 starts from the semantics of dependent type theory given in
section 3.2, i.e. the concept of a CwF, and asks the very natural question: what
additional things can we do internally if we have a CwF morphism F : C → D,
a natural transformation ν : F → G between such morphisms, or an adjunction
L a R where at least R is a CwF morphism. Each of these questions leads
to an extension of DTT which is syntactically not well-behaved (e.g. it is not
clear how to write a type-checker) but which is sound and complete for the
assumed semantic situation. This theory was developed as part of the semantics
of ParamDTT and RelDTT [Nuy17; Nuy18a].

Section 5.2, presents Birkedal et al.’s independently developed notion of
dependent right adjoints (DRAs) [Bir+20] (which I have no contribution in),
which could be seen as CwF morphisms R that have a left adjoint L but
which lack an action on contexts and terms. Instead, they are operated using
transposition-like rules. These DRAs are syntactically still ill-behaved because
one of its typing rules (dra:elim) has a conclusion with a non-general context.
DRAs are compared to the situation in section 5.1 where we have adjoint
functors L a R where R is a CwF morphism.

Section 5.3 subsumes our paper on MTT [Gra+20b], which presents a general
multimode type theory parametrized by an arbitrary external 2-category called
the mode theory. This type system contains a modal type that is slightly less
expressive than a DRA – we call it a weak DRA – and solves the syntactic
problems by providing an inductive eliminator.

5.1 Internalizing Transformations of Semantics

This section is heavily based on prior work [Nuy17; Nuy18a, ch. 2].

In chapter 3, we defined dependent type theory (DTT) as a GAT and then took
that definition as a starting point to investigate what models and morphisms of
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models of DTT look like. This lead to the definition of categories with families
(CwF, definitions 3.2.3 and 3.2.5) and natural models (definition 3.2.9).

With these notions at hand, we now ask the following question: if we
have multiple CwFs, some strict or weak CwF morphisms between them
(section 5.1.1), and perhaps natural transformations (section 5.1.2) or even
adjunctions (section 5.1.3) between those, what bigger GAT does that model?
More precisely, we will derive syntax that soundly and completely internalizes
the properties of the aforementioned enlargements of the model.

5.1.1 Internalizing Functors and CwF Morphisms

Given a functor F : C → D between CwFs C and D, we start with a GAT
consisting of twice DTT, once with all judgements postfixed with @ C and
taking place in C, once with @ D. Figure 5.1 lists typing rules involving F
that can be added to this GAT. If F is merely a functor, then we can apply
it to objects (contexts) and morphisms (substitutions) and it respects identity
and composition of substitutions. Moreover, this action preserves identity and
composition of functors.

If F is a CwF morphism, then it follows immediately from the definition that
F can be applied to types and terms in a manner stable under substitution (i.e.
natural in the context). Again, this action preserves identity and composition
of functors.

If F is a weak CwF morphism, then we know that it preserves the empty context
and context extension up to isomorphism. We internalize this by postulating
the same universal properties for the images of the empty context F () and
context extension F (Γ.T ) as we have for () and FΓ.FT . The weakening and
variable operators for F (Γ.T ) are not new operators, as they can be obtained
by applying F to the weakening and variable operators for Γ.T . The pairing
operator and ()F are however new; their notations were already established in
definition 3.2.5. The images of pairs and () can be written in terms of these
new operators; trying it the other way around, e.g. defining ()F as F (), would
be ill-domained in general.

Proposition 5.1.1. We have F () = ()F : FΓ → F () and F (σ, t/x) =
(Fσ, F t/Fx)F : F∆→ F (Γ, x : T ).

Proof. This follows from the η-rule for substitutions to F () and F (Γ, x : T ).

If F is a strict CwF morphism, we simply postulate that F respects the empty
context and context extension and the corresponding operations on the nose.
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Prerequisites: DTT @ C, DTT @ D (fig. 3.2). Some equality rules require an additional
functor G : D → E (fig. 5.1).
Functor:

ftr:ctx
Γ ctx @ C
FΓ ctx @ D
where Id Γ = Γ

(ftr:id:ctx)
(GF )Γ = G(FΓ)
(ftr:comp:ctx)

ftr:sub
σ : Γ→ ∆ @ C
Fσ : FΓ→ F∆ @ D
where Idσ = σ (ftr:id:sub)

(GF )σ = G(Fσ) (ftr:comp:sub)
F idΓ = idFΓ (ftr:sub:id)
F (τ ◦ σ) = Fτ ◦ Fσ (ftr:sub:comp)

CwF morphism:
Types and terms:

ftr:ty
Γ ` T type @ C
FΓ ` FT type @ D
where F (T [σ]) = (FT )[Fσ]

IdT = T (ftr:id:ty)
(GF )T = G(FT ) (ftr:comp:ty)

ftr:tm
Γ ` t : T @ C
FΓ ` Ft : FT @ D
where F (t[σ]) = (Ft)[Fσ]

Id t = t (ftr:id:tm)
(GF )t = G(Ft) (ftr:comp:tm)

Weak CwF morphism:
Empty context:

img:empty-ctx:intro
Γ ctx @ D
()F : Γ→ F ()
where σ = ()F : Γ→ F () (img:empty-ctx:eta)

Context extension:
img:ctx-ext:intro
Γ ` T type @ C
σ : ∆→ FΓ @ D ∆ ` t : (FT )[σ] @ D
(σ, t/Fx)F : ∆→ F (Γ, x : T ) @ D
where (σ, t/Fx)F ◦ ρ = (σ ◦ ρ, t[ρ]/Fx)F

Fπx ◦ (σ, t/Fx)F = σ (img:ctx-ext:wkn:beta)
(Fx)[(σ, t/Fx)F ] = t (img:ctx-ext:var:beta)
τ = (Fπx ◦ τ, (Fx)[τ ]/Fx)F : ∆→ F (Γ, x : T ) (img:ctx-ext:eta)

Strict CwF morphism:
ftr:empty-ctx

F () = () ctx @ D
Γ ` T type @ C
F (Γ, x : T ) = (FΓ, Fx : FT ) ctx @ D (ftr:ctx-ext)
Fπx = πFx : (FΓ, Fx : FT )→ FΓ @ D (ftr:ctx-ext:wkn)
FΓ, Fx : FT ` F (x) = (Fx) : (FT )[πFx] @ D (ftr:ctx-ext:var)

ftr:empty-ctx:intro
Γ ctx @ C
F () = () : FΓ→ () @ D

ftr:ctx-ext:intro
σ : Γ→ ∆ @ C Γ ` t : T [σ] @ C
F (σ, t) = (Fσ, FT ) : FΓ→ (F∆, Fx : FT ) @ D

Figure 5.1: Typing rules internalizing a CwF morphism F : C → D [Nuy17].
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As already remarked in definition 3.2.5, in variable notation we need to decide a
name for the variable x after applying F . The fact that strict CwF morphisms
preserve ξ on the nose (Fξ = ξ) suggests the name Fx. This convention is fine
except when expressing Fξ = ξ in variable notation, as we then get Fx = Fx.

Of course strict CwF morphisms are also weak, but then we can simply derive
the weak CwF morphism rules from the strict ones, e.g. (σ, t/Fx)F := (σ, t/Fx).

Proposition 5.1.2 (Soundness and completeness). A model of the GAT
in fig. 5.1 (including prerequisites, excluding rules requiring additional
prerequisites) consists precisely of two CwFs C and D, together with:

• A functor F : C → D (if we only add the functor rules, leaving out the
rules for identity and composition of functors),

• A weak/strict CwF morphism F : C → D (if we also add the rules for a
weak/strict CwF morphism).

By ‘consists precisely’, we mean that the category of models of the described
GAT is isomorphic to the category of triples (C,D, F ) with as morphisms triples
(C,D) where C and D are strict CwF morphisms causing a square to commute
strictly.

Remark 5.1.3. We call a CwF morphism F level-preserving if it sends
T ∈ Ty`(Γ) ⊆ Ty(Γ) to FT ∈ Ty`(FΓ) ⊆ Ty(FΓ). Of course level-preserving
CwF morphisms model the following rule:

Γ ` T type` @ C
FΓ ` FT type` @ D

. (5.1)

5.1.2 Internalizing Natural Transformations

In this section, we consider functors F,G : C → D and a natural transformation
α : F → G between the underlying functors. Figure 5.2 lists rules that can be
added to a GAT already consisting of twice DTT extended with twice the rules
from fig. 5.1; once for F and once for G.

It is clear that for any context Γ, we get a substitution αΓ : FΓ→ GΓ between
its respective images. Just like we did for π and ξ, we will omit the index Γ on
α.

If F and G are weak CwF morphisms, then without imposing additional
requirements on α, we can also apply it to types Γ ` T type @ C, yielding a
function FΓ ` α : FT → (GT )[α] @ D. We prefer our typing rules to end in
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Prerequisites: DTT @ C, DTT @ D (fig. 3.2), weak CwF morphisms F,G :
C → D (fig. 5.1). Some equality rules require an additional weak CwF morphism
H : D → E (fig. 5.1) or an additional natural transformation β : G→ K : C → D
(fig. 5.2).
For every context a substitution:

nattrans:ctx
Γ ctx @ C
αΓ : FΓ→ GΓ @ D
where α∆ ◦ Fσ = Gσ ◦ αΓ (nattrans:sub)

(idF )Γ = idFΓ : FΓ→ FΓ (nattrans:id:ctx)
(β ◦ α)Γ = βΓ ◦ αΓ : FΓ→ KΓ (nattrans:comp:ctx)
(Hα)Γ = H(αΓ) : HFΓ→ HGΓ (nattrans:whisker:ctx)

For every type a function:

nattrans:ty
Γ ` T type @ C σ : ∆→ FΓ @ D ∆ ` t : (FT )[σ] @ D
∆ ` ασ(t) : (GT )[ασ] @ D
where ασ(t)[τ ] = ασ◦τ (t[τ ]) (nattrans:ty:sub)

αFρ◦σ(t) = ασ(t) (nattrans:ty:coend)
αid(Ft) = (Gt)[α] (nattrans:tm)
idσ(t) = t (nattrans:id:ty)
(β ◦ α)σ(t) = βα◦σ(ασ(t)) (nattrans:comp:ty)
H(ασ(t)) = (Hα)Hσ(Ht) (nattrans:whisker:ty)

Figure 5.2: Typing rules internalizing a natural transformation α : F → G :
C → D [Nuy17].

conclusions living in a general context (so that we can at least dream of building
a type-checker) so we actively close this function under substitution. This yields
the rule for ασ.

Lemma 5.1.4. From the rules in fig. 5.2, we can derive

Γ ` T type @ C
α = (α ◦ Fπx, αid(Fx)/Gx)G : F (Γ, x : T )→ G(Γ, x : T )

.

Proof. We have

α = idGΓ ◦ α = (Gπx, Gx/Gx)G ◦ α = (Gπx ◦ α, (Gx)[α]/Gx)G
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= (α ◦ Fπx, αid(Fx)/Gx)G.

Proposition 5.1.5. The typing rule nattrans:ty in fig. 5.2 and the
corresponding equality rules are uniquely definable/derivable in a GAT consisting
of nattrans:ctx and the prerequisites of fig. 5.2 (with the obvious additional
extensions/assumptions required for the last three equality rules).

Notation 5.1.6. Naturality of ασ(t) in Γ motivates us to suppress the σ-
annotation and just write α(t). Note that this is only reasonable in practice;
theoretically, α(t) is still an ambiguous notation.

Proof. To see uniqueness, we use lemma 5.1.4, which clearly shows that there
is at most one way to properly define F (Γ.T ) ` αid(Fξ) : (GT )[α ◦ Fπ].
Substituting with (σ, t)F : ∆ → F (Γ.T ) we get ∆ ` α(σ,t)F (t) : (FT )[α ◦ σ].
Now σ = Fπ ◦ (σ, t)F , so this further reduces to ασ(t) by nattrans:ty:coend.

To see that it can be done, we use the intuition of lemma 3.2.4. A term
∆ ` t : (FT )[σ] @ D corresponds to a morphism (σ, t) : ∆→ FΓ.FT ∼= F (Γ.T )
such that π ◦ (σ, t) = σ : ∆→ FΓ. Composing with a naturality square of α,
we obtain a morphism from ∆ to GΓ.GT which projects to α ◦ σ, defining the
term ∆ ` ασ(t) : (GT )[ασ]:

FΓ.FT

π

��

(π,ξ)F ''

gg (Fπ,Fξ)
∼=

// GΓ.GT

π

��

(π,ξ)G ''

gg (Gπ,Gξ)
∼=

∆

(σ,t)
<<

σ
""

F (Γ.T )

Fπ
yy

α
// G(Γ.T )

Gπ
yy

FΓ
α

// GΓ

The morphism FΓ.FT → GΓ.GT is

(Gπ,Gξ) ◦ α ◦ (π, ξ)F = (Gπ ◦ α, (Gξ)[α]) ◦ (π, ξ)F

= (α ◦ Fπ, (Gξ)[α]) ◦ (π, ξ)F

= (α ◦ Fπ ◦ (π, ξ)F , (Gξ)[α][(π, ξ)F ])

= (α ◦ π, (Gξ)[α][(π, ξ)F ]).

Precomposing with (σ, t), we get (α ◦ σ, (Gξ)[α][(σ, t)F ]). Thus, we are defining

ασ(t) := (Gξ)[α][(σ, t)F ] (5.2)



118 MULTIMODE TYPE THEORY

or in variable notation

ασ(t) := (Gx)[α][(σ, t/Fx)F ]. (5.3)

We now check all the required properties:

• (nattrans:ty:sub) We have

ασ(t)[τ ] = (Gξ)[α][(σ, t)F ][τ ] = (Gξ)[α][(σ ◦ τ, t[τ ])F ] = ασ◦τ (t[τ ]).

• (nattrans:ty:coend) We have

αFρ◦σ(t) = (Gξ)[α][(Fρ ◦ σ, t)F ]

= (Gξ)[α][F (ρ+)][(σ, t)F ]

= (Gξ)[G(ρ+)][α][(σ, t)F ] = (Gξ)[α][(σ, t)F ].

• (nattrans:tm) We have

αid(Ft) = (Gξ)[α][(id, F t)F ] = (Gξ)[α][F (id, t)]

= (Gξ)[G(id, t)][α] = (Gt)[α].

• (nattrans:id:ty) We have

idσ(t) = (Fξ)[id][(σ, t)F ] = t.

• (nattrans:comp:ty) Let β : G→ K : C → D. We have

βα◦σ(ασ(t)) = (Kξ)[β][(α ◦ σ, ασ(t))G]

= (Kξ)[β][(α ◦ σ, (Gξ)[α][(σ, t)F ])G]

= (Kξ)[β][α ◦ (σ, t)F ] = (Kξ)[β ◦ α][(σ, t)F ] = (β ◦ α)σ(t).

In the first two steps, we simply expand definitions. In the third step, we
observe that

(α ◦ σ, (Gξ)[α][(σ, t)F ])G = α ◦ (σ, t)F : ∆→ G(Γ.T )

because they yield equal results when postcomposing with Gπ and when
applying to Gξ.

• (nattrans:whisker:ty) Let H : D → E , so that Hα : HF → HG : C →
E . We have

H(ασ(t)) = H(Gξ)[α][(σ, t)F ]

= (HGξ)[Hα][(Hσ,Ht)HF ] = (Hα)Hσ(Ht).
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Corollary 5.1.7 (Soundness and completeness). A model of the GAT in fig. 5.2
(including prerequisites; excluding rules requiring additional prerequisites)
consists exactly of two CwFs, two weak CwF morphisms F and G between
them, and a natural transformation α : C → D.

This statement is to be understood in a similar manner as proposition 5.1.2.

Proof. By proposition 5.1.5, the second rule adds nothing to the model. The
first rule is quite obviously sound and complete for a natural transformation.

Corollary 5.1.8. If a functor F : C → D is a weak CwF morphism in two
ways (called F1 and F2), then the actions on types and terms are essentially the
same in the following sense: For any T ∈ TyC(Γ), we have TmD(FΓ, F1T ) ∼=
TmD(FΓ, F2T ) in a manner compatible with the actions of F1 and F2 on terms.

Proof. We have a natural isomorphism α := id : F1 ∼= F2. This yields functions
αid : F1T → F2T and (α−1)id : F2T → F1T which are mutually inverse by
functoriality of the action of natural transformations on terms. Dependent
naturality asserts compatibility with the actions on terms.

5.1.3 Internalizing Adjunctions

In this section, we consider functors L : C → D and R : D → C, where L may
be and R is a morphism of CwFs, such that α : L a R. If L is a CwF morphism,
then fig. 5.2 gives us functions η : T → (RLT )[η] and ε : LRT → T [ε]. Moreover,
η(t) = (RLt)[η] and ε(LRt) = t[ε] by dependent naturality.

We do not need additional rules to transpose substitutions, as we can define

A(σ) := Rσ ◦ η, A−1(τ) := ε ◦ Lτ. (5.4)

Interestingly, without further requirements on A, we can also transpose terms!

Proposition 5.1.9. The rules transpose and untranspose in fig. 5.3 and
their associated equation rules are uniquely definable/derivable in the GAT
consisting of the prerequisites and adj:rlr and adj:lrl.

Notation 5.1.10. Note that in the rule of Aσ(t), without loss of generality,
we may assume that σ = id : L∆ → L∆ = Γ. Hence we will suppress the
annotation σ, unambiguously.

Proof. Uniqueness is obvious, as Aσ(t) is simply defined by Aσ(t) = (Rt)[η]
and A−1 is its inverse.
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Prerequisites: DTT @ C, DTT @ D (fig. 3.2), functor L : D → C, weak
CwF morphism R : C → D, identity and composite functors (fig. 5.1), natural
transformations η : Id→ RL and ε : LR→ Id (fig. 5.2).
Adjunction laws:

Rε ◦ ηR = idR (adj:rlr),

εL ◦ Lη = idL (adj:lrl).

For convenience, we write

A(σ) := Rσ ◦ η, A−1(τ) := ε ◦ Lτ.

Dependent transposition:

transpose
σ : L∆→ Γ @ C Γ ` T type @ C
L∆ ` t : T [σ] @ C
∆ ` Aσ(t) : (RT )[A(σ)] @ D
where Aσ(A−1

σ (s)) = s (transpose:cancel)
Aσ(t)[τ ] = A(t[Lτ ]) (transpose:sub)
Aρ◦σ(t) = Aσ(t) (transpose:coend)
Aσ(t) = (Rt)[η] (transpose:def)

untranspose
σ : L∆→ Γ @ C Γ ` T type @ C
∆ ` s : (RT )[A(σ)] @ D
L∆ ` A−1

σ (s) : T [σ] @ C
where A−1

σ (Aσ(t)) = t (untranspose:cancel)
A−1
σ (s)[Lτ ] = A(s[τ ]) (untranspose:sub)

A−1
ρ◦σ(s) = A−1

σ (s) (untranspose:coend)
A−1
σ (s) = εLA(σ)(Ls) if L is a CwF morphism

(untranspose:def)

Figure 5.3: Typing rules internalizing an adjunction A : L a R between
CwFs where R : C → D is a weak CwF morphism [Nuy17].
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To see existence, we need to prove that Aσ is invertible and satisfies all the
equality rules. To this end, we use lemma 3.2.4 to find a correspondence between
terms:

RΓ.RT

π

��

(π,ξ)R ''

gg (Rπ,Rξ)
∼=

L∆
(σ,t) //

σ
  

Γ.T

π
~~

∆

(A(σ),A(t))
<<

A(σ,t) //

A(σ) ""

R(Γ.T )

Rπ
zz

Γ RΓ

From this, we see that even if L is not a CwF morphism, we can still define
A−1
σ (s) as

A−1
σ (s) := ξ[A−1((π, ξ)R ◦ (A(σ), s))]

= ξ[A−1((A(σ), s)R)].

If L happens to be a CwF morphism, then we can further reduce this to:

= ξ[ε ◦ L((A(σ), s)R)]

= εid(LRξ)[(LA(σ), Ls)LR] = ε(LA(σ),Ls)LR(Ls) = εLA(σ)(Ls),

where in the last step we use nattrans:ty:coend, using that LRπ ◦
(LA(σ), Ls)LR = LA(σ).

Conversely, we find

Aσ(t) := ξ[(Rπ,Rξ) ◦A(σ, t)]

= ξ[(Rπ,Rξ) ◦R(σ, t) ◦ η]

= ξ[(Rσ,Rt) ◦ η] = (Rt)[η]

so that we have indeed inverted the right operation.

For transpose:sub (which implies untranspose:sub), we have

A(t)[τ ] = (Rt)[η][τ ] = (Rt)[RLτ ][η] = (R(t[Lτ ]))[η] = A(t[Lτ ]).

The rules transpose:coend and untranspose:coend are blatantly obvious
as σ does not even occur in the definition.
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Corollary 5.1.11 (Soundness and completeness). A model of the GAT in
fig. 5.3 (including prerequisites) consists exactly of two CwFs C and D, a functor
L : D → C, and a weak CwF morphism R : C → D such that L a R.

This statement is to be understood in a similar manner as proposition 5.1.2.

Proof. By proposition 5.1.9, the rules transpose and untranspose and their
associated equation rules add nothing to the model. The existence of η and
ε together with the adjunction laws are clearly sound and complete for the
requirement that L a R.

Corollary 5.1.12. [From Nuy17] We have naturality rules as for ordinary
adjunctions:

A(τ ◦ σ ◦ Lρ) = Rτ ◦A(σ) ◦ ρ A−1(Rτ ◦ σ ◦ ρ) = τ ◦A−1(σ) ◦ Lρ
A(t[σ][Lρ]) = (Rt)[A(σ)][ρ] A−1((Rt)[σ][ρ]) = t[A−1(σ)][Lρ]

A(α(s[Lρ])) = (Rα)(A(s))[ρ] A−1((Rα)s[ρ]) = α(A−1(s)[Lρ])
A(β(α(Lr))) = (Rβ)(A(α)(r)) A−1((Rβ)(α(r))) = β(A−1(α)(Lr))

where ρ, σ, τ denote substitutions, s, t denote terms and α, β denote natural
transformations.

Proof. Each equation on the right is equivalent to its counterpart on the left.
The first equation on the left is old news. The other equations follow from
A(t) = (Rt)[η].

5.2 Dependent Right Adjoints (DRAs)

Independently of my own development of the material in section 5.1 [Nuy17,
ch. 2], Birkedal et al. [Bir+20] have developed the notion of a dependent right
adjoint (DRA). In section 5.2.1, we describe DRAs syntactically and semantically
in the same framework of type theory as a GAT that we have been using in
the rest of this dissertation. While Birkedal et al. only consider DRAs of
endofunctors, we will immediately make the straightforward generalization to
DRAs of arbitrary functors, as we also did in the technical report on MTT
[Gra+20a]. In section 5.2.2, we adapt some results by Birkedal et al. which
relate the notion of the DRA to the content of section 5.1.3.
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5.2.1 Syntax and Semantics

Definition 5.2.1. Given CwFs C and D and a mere functor L : D → C, a
dependent right adjoint (DRA) R consists of:

• A natural transformation 〈R | xy〉 : TyC ◦ L → TyD : Dop → Set.
Concretely, this is an operation that sends T ∈ TyC(LΓ) to 〈R | T 〉 ∈
TyD(Γ) so that 〈R | T 〉[σ] = 〈R | T [Lσ]〉.
• For every Γ ∈ D and T ∈ TyC(LΓ), an isomorphism A : Tm(LΓ, T ) ∼=

Tm(Γ, 〈R | T 〉) which is natural in Γ so that A(t)[σ] = A(t[Lσ]).

Prerequisites: DTT @ C, DTT @ D (fig. 3.2), functor L : D → C (fig. 5.1).
Formation rule:

dra
Γ ctx @ D
LΓ ` T type @ C
Γ ` 〈R | T 〉 type @ D
where 〈R | T 〉[σ] = 〈R | T [Lσ]〉 (dra:sub)

Introduction and elimination rules:

dra:intro
Γ ctx @ D LΓ ` t : T @ C
Γ ` A(t) : 〈R | T 〉 @ D
where A(t)[σ] = A(t[Lσ]) (dra:intro:sub)

s = A(A−1(s)) (dra:eta)

dra:elim
Γ ` s : 〈R | T 〉 @ D
LΓ ` A−1(s) : T @ C
where A−1(s)[Lσ] = A−1(s[σ]) (dra:elim:sub)

A−1(A(t)) = t (dra:beta)

Figure 5.4: Typing rules for a DRA R of a functor L : D → C between
CwFs [Bir+20].

Figure 5.4 lists typing rules for extending DTT with a DRA. We have adapted
a few notations in order to fit with section 5.1:

Our notation LΓ 〈R | T 〉 A(t) A−1(s)
[Bir+20] Γ,b 2T shut t open t
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There is also a difference in approach. Our formulation of DTT (fig. 3.2)
uses explicit substitutions (there is a substitution judgement and a syntactic
operation t[σ] for applying substitutions). This gives us the luxury of providing
a variable rule only for accessing the last variable; other variables should be
accessed by explicitly applying a weakening substitution. Birkedal et al. do
not use explicit substitutions and instead provide a variable rule for accessing
any variable that is not behind a lock, i.e. not under L. Written in variable
notation with silent weakening, we are allowed to do

L(Γ, x : A), y : B, z : C ` y : B @ C

but not

L(Γ, x : A), y : B, z : C ` x : A @ C (wrong!).

Because we have generalized DRAs beyond endofunctors, the latter judgement
is more obviously nonsense in our setting than it was in the original setting: A
is a type in the CwF D, so accessing its variables when it is under a lock yields
a judgement in the wrong CwF.

A consequence of the absence of explicit weakening is also that the typing rule
for A−1(s), which produces a judgement in a non-general context, originally
had a weakening implied:

Γ ` s : 〈R | T 〉 @ D LΓ,Θ ctx @ C
LΓ,Θ ` A−1(s) : T @ C

In other words, when type-checking A−1(s), we would discard all variable that
are not under L, and then remove the application of L, before type-checking s.

Our development in sections 5.1 and 5.2 is aimed at getting some internalization
of interesting situations in the model. Only in section 5.3 will we make a real
attempt at obtaining a type-checker friendly type system.

Proposition 5.2.2 (Soundess and completeness). A model of the GAT in
fig. 5.4 (including prerequisites) consists exactly of two CwFs C and D and a
functor L : D → C with a DRA R.

5.2.2 Relation to Right Adjoints

Although Birkedal et al. [Bir+20] have not considered typing rules as in fig. 5.3,
they did relate the semantics of DRAs to the existence of a right adjoint functor
L a R [Bir+20, lemma 17 and cor. 23]. We generalize their results beyond
endofunctors and internalize their lemma 17:
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Lemma 5.2.3. In DTT equipped with an adjunction A : L a R (fig. 5.3)
where R is a weak CwF morphism, the rules of a DRA (fig. 5.4) are derivable
by defining 〈R | T 〉 := (RT )[η].

Proof. Then A and A−1 for the DRA are instances of the operators of the same
name for the adjunction.

Theorem 5.2.4. Given CwFs C and D where D is democratic, and a functor
L : D → C with a DRA R, it follows that the functor L has a right adjoint R
which is a weak CwF morphism.

Proof. By straightforward adaptation of [Bir+20, cor. 23] to non-endo L.

5.3 Multimode Type Theory (MTT)

Preamble This section is based partly on the submitted version and partly
on the most up to date version of the intended camera-ready of the following
paper:

[Gra+20b] D. Gratzer, G. A. Kavvos, A. Nuyts, and L. Birkedal.
“Multimodal Dependent Type Theory”. In: LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020. Ed. by H. Hermanns, L. Zhang, N.
Kobayashi, and D. Miller. ACM, 2020, pp. 492–506. doi: 10.1145/
3373718.3394736. url: https://doi.org/10.1145/3373718.
3394736

The most important differences with the original paper are:

• The content of section 5.3.2.a on ‘the type theory at each mode’ was
mostly suppressed in favour of a referral to earlier chapters.

• We introduced the notation using ticks (section 5.3.2.b) in order to better
support the content of chapter 7 on the transpension type.

• Hence, the figures containing typing rules were entirely redone and
integrated with previous chapters, partly using material from the
unpublished paper that chapter 7 is based on. This material is then
suppressed there (section 7.3).

https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
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Personal contributions I contributed

• the general idea of the type system, which was already apparent in Degrees
of Relatedness (RelDTT) [ND18a] and of course based on earlier work
(section 5.3.7),
• the idea that a left division operation could be replaced with a Fitch-style
context constructor µ,

• a semantics in which modalities are interpreted as pairs L a R with R a
CwF morphism,

• an application section on Degrees of Relatedness in the technical report
[Gra+20a], subsumed in chapter 9 of this thesis,

• ideas on internal adjoints which were already ubiquitous in RelDTT,
• the tick notation, which is not actually part of the LICS paper.

Together, we crafted an explicit substitution calculus that handles mode theories
that are 2-categories rather than 2-posets (poset-enriched categories).

Almost everything else is by one or more of the co-authors, including the
precise typing rules, the fully general semantics, the canonicity proof, almost
all applications in the technical report [Gra+20a] and almost all writing.

Abstract We introduce MTT, a dependent type theory which supports multiple
modalities. MTT is parametrized by a mode theory which specifies a collection
of modes, modalities, and transformations between them.

We show that different choices of mode theory allow us to use the same
type theory to compute and reason in many modal situations, including
guarded recursion, axiomatic cohesion, and parametric quantification. We
reproduce examples from prior work in guarded recursion and axiomatic
cohesion – demonstrating that MTT constitutes a simple and usable syntax
whose instantiations intuitively correspond to previous handcrafted modal type
theories. In some cases, instantiating MTT to a particular situation unearths a
previously unknown type theory that improves upon prior systems.

Finally, we investigate the metatheory of MTT. We prove the consistency of
MTT and establish canonicity through an extension of recent type-theoretic
gluing techniques. These results hold irrespective of the choice of mode theory,
and thus apply to a wide variety of modal situations.
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5.3.1 Introduction

In order to increase the expressivity of Martin-Löf Type Theory (MLTT) we
often wish to extend it with new connectives, and in particular with unary
type operators that we call modalities or modal operators. Some of these
modal operators arise as shorthands, while others are introduced as a device for
expressing structure that appears in particular models. Whereas the former class
of modalities are internally definable [RSS20], the latter often require extensive
modifications to the basic structure of type-theoretic judgments. In some cases
we are even able to prove that these changes are necessary, by showing that
the modality in question cannot be expressed internally: see e.g. the ‘no-go’
theorems by Shulman [Shu18, §4.1] and Licata et al. [Lic+18]. This paper is
concerned with the development of a systematic approach to the formulation of
type theories with multiple modalities.

The addition of a modality to a dependent type theory is a non-trivial exercise.
Modal operators often interact with the context of a type or term in a
complicated way, and naïve approaches lead to undesirable interplay with other
type formers and substitution. However, the consequent gain in expressivity
is substantial, and so it is well worth the effort. For example, modalities have
been used to express guarded recursive definitions [Bir+12; Biz+16; BGM17;
Gua18], parametric quantification [NVD17a; ND18a], proof irrelevance [Pfe01;
AS12; ND18a], and to define operations which cannot be localized to an
arbitrary context [Lic+18]. There has also been concerted effort towards the
development of a dependent type theory corresponding to Lawvere’s axiomatic
cohesion [Law07], which has many interesting applications [Sch13; SS14; Shu18;
Gro+17; Kav19].

Despite this recent flurry of developments, a unifying account of modal dependent
type theory has yet to emerge. Faced with a new modal situation, a type theorist
must handcraft a brand new system, and then prove the usual battery of
metatheorems. This introduces formidable difficulties on two levels. First,
an increasing number of these applications are multimodal: they involve
multiple interacting modalities, which significantly complicates the design of
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the appropriate judgmental structure. Second, the technical development of
each such system is entirely separate, so that one cannot share the burden of
proof even between closely related systems. To take a recent example, there
is no easy way to transfer the work done in the 80-page-long normalization
proof for MLTTµ [GSB19a] to a normalization proof for the modal dependent
type theory of Birkedal et al. [Bir+20], even though these systems are only
marginally different. Put simply, if one wished to prove that type-checking is
decidable for the latter, then one would have to start afresh.

We intend to avoid such duplication in the future. Rather than designing a new
dependent type theory for some preordained set of modalities, we will introduce
a system that is parametrized by a mode theory, i.e. an algebraic specification
of a modal situation. This system, which we call MTT, solves both problems at
once. First, by instantiating it with different mode theories we will show that
MTT can capture a wide class of situations. Some of these, e.g. the one for
guarded recursion, lead to a previously unknown system that improves upon
earlier work. Second, the predictable behavior of our rules allows us to prove
metatheoretic results about large classes of instantiations of MTT at once. For
example, our canonicity theorem applies irrespective of the chosen mode theory.
As a result, we only need to prove such results once. Returning to the previous
example, careful choices of mode theory yield two systems that closely resemble
the calculi of Birkedal et al. [Bir+20] and MLTTµ [GSB19a] respectively, so
that our proof of canonicity applies to both.

In fact, we take things one step further: MTT is not just multimodal, but also
multimode. That is, each judgment of MTT can be construed as existing in
a particular mode. All modes have some things in common–e.g. there will
be dependent sums in each–but some might possess distinguishing features.
From a semantic point of view, different modes correspond to different context
categories. In this light, modalities intuitively correspond to functors between
those categories: in fact, they will be structures slightly weaker than dependent
right adjoints (DRAs) [Bir+20].

Mode theories At a high level, MTT can be thought of as a machine that
converts a concrete description of modes and modalities into a type theory.
This description, which is often called a mode theory, is given in the form of a
small strict 2-category [Ree09; LS16; LSR17]. A mode theory gives rise to the
following correspondence:

object ∼ mode

morphism ∼ modality
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2-cell ∼ natural map between modalities

The equations between morphisms and between 2-cells in a mode theory can be
used to precisely specify the interactions we want between different modalities.
We will illustrate this point with an example.

Instantiating MTT Suppose we have a mode theoryM with a single object m,
a single generating morphism µ : m→ m, and no non-trivial 2-cells. Equipping
MTT with M produces a type theory with a single modal type constructor,
〈µ | xy〉. This is the simplest non-trivial setting, and we can prove very little
about it without additional 2-cells.

If we add a 2-cell ε : µ⇒ 1 toM, we can define a function

extractA : 〈µ | A〉 → A

inside the type theory. If we also add a 2-cell δ : µ ⇒ µ ◦ µ then we can also
define

duplicateA : 〈µ | A〉 → 〈µ | 〈µ | A〉〉

Furthermore, we can control the precise interaction between duplicateA and
extractA by adding more equations that relate ε and δ. For example, we may
ask thatM be the walking comonad [SS86] which leads to a type theory with
a dependent S4-like modality [Pfe01; dPR15; Shu18]. We can be even more
specific, e.g. by asking that (µ, ε, δ) be idempotent.

Thus, a morphism µ : p→ q introduces a modality 〈µ | xy〉, and a 2-cell α : µ⇒ ν
ofM allows the definition of a function of type 〈µ | A〉 → 〈ν | A〉 @ q.

Relation to other modal type theories Most work on modal type theories
still defies classification. However, we can informatively position MTT with
respect to two qualitative criteria, viz. usability and generality.

Much of the prior work on modal type theory has focused on bolting a specific
modality onto a type theory. The benefit of this approach is that the syntax
can be designed to be as convenient as possible for the application at hand. For
example, spatial/cohesive type theory [Shu18] features two modalities, [ and ],
and is presented in a dual-context style. This judgmental structure, however, is
applicable only because of the particular properties of [ and ]. Nevertheless,
the numerous pen-and-paper proofs in op. cit. demonstrate that the resulting
system is easy to use.

At the other end of the spectrum, the framework of Licata-Shulman-Riley
(LSR) [LSR17] comprises an extremely general toolkit for simply-typed,
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substructural modal type theory. Its dependent generalization, which is currently
under development, is able to handle a very large class of modalities. However,
this generality comes at a price: its syntax is complex and unwieldy, even in
the simply-typed case.

MTT attempts to strike a delicate balance between those two extremes. By
avoiding substructural settings and some kinds of modalities we obtain a
noticeably simpler apparatus. These restrictions imply that, unlike LSR, we
do not need to annotate our term formers with delayed substitutions, and
that our system straightforwardly extends to dependent types. Crucially, we
ensure that no rule of MTT ‘trims’ the context, which would necessitate either
delayed substitutions [Biz+16; LSR17] or often delicate admissible rules [BGM17;
Bir+20; GSB19a] in order to ensure the validity of substitution. We also show
that MTT can be used for many important examples, and that it is simple
enough to be used in pen-and-paper calculations.

Contributions In summary, we make the following contributions:

• We introduce MTT, a general type theory for multiple modes and multiple
interacting modalities.

• We define its semantics, which constitute a category of models.
• We prove that a slight extension of MTT satisfies canonicity, an important

metatheoretic property, through a modern gluing1 argument [Shu14; AK16;
Coq18; KHS19].

• We instantiate MTT with various mode theories, and show its value in rea-
soning about guarded recursion [Biz+16], degrees of relatedness [ND18a],
and other modal situations.

For want of space we omit many details and proofs, which can be found in the
accompanying technical report [Gra+20a].

5.3.2 The Syntax of MTT

We now present the syntax of MTT. For the rest of section 5.3 we fix an external
2-category M called the mode theory, and use o, p, q, r to stand for modes,
µ, ν, τ for modalities, and α, β, γ for 2-cells.

In broad terms, MTT consists of a collection of type theories, one for each mode
m ∈ M. These type theories will eventually appear in one another, but only

1We adopt the bizarre but seemingly widespread convention to use the spelling ‘gluing’ for
the modelling technique and ‘glueing’ to refer to any usage of the unrelated Glue-type.
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as spectres under a modality. We thus begin by describing the individual type
theories at each mode, and only then discuss how modalities can be used to
relate them.

5.3.2.a The Type Theory at Each Mode

Each mode in MTT is inhabited by a standard dependent type theory (DTT),
and accordingly includes the usual judgments. For example, we have the
judgment Γ ctx @ q which states that Γ is a well-formed context in that particular
mode q. There are likewise judgments for types, terms, and substitutions at
each mode. Concretely, MTT as a GAT contains a copy of DTT @ q (fig. 3.2)
for every mode q, with all the desired types (section 3.2.4).

5.3.2.b Introducing a Modality

Having defined the basic type theory inhabiting each mode, we now show how
these type theories interact.

SupposeM contains a modality µ : p → q. We would like to think of µ as a
‘map’ from mode p to mode q. Then, for each ` A type @ p we would like a
type ` 〈µ | A〉 type @ q. On the level of terms we would similarly like for each
` a : A @ p an induced term ` modµ a : 〈µ | A〉 @ q.

These constructs would be entirely satisfactory, were it not for the presence of
open terms. To illustrate the problem, suppose we have a type Γ ` A type @ p.
We would hope that the corresponding modal type would live in the same
context, i.e. that Γ ` 〈µ | A〉 type @ q. However, this is not possible, as Γ is only
a context at mode p, and cannot be carried over verbatim to mode q. Hence,
the only pragmatic option is to introduce an operation that allows a context to
cross over to another mode.

Forming a modal type There are several different proposed solutions to this
problem in the literature [e.g. PD01; Clo18]. In the case of MTT we will use a
Fitch-style discipline [BGM17; Bir+20; GSB19a]: we will require that µ induce
an operation on contexts in the reverse direction, which we will denote by a
lock:

Γ ctx @ q

Γ,µµ ctx @ p

Intuitively, µµ behaves like a left adjoint to 〈µ | xy〉. However, 〈µ | xy〉 acts on
types while (xy,µµ) acts on contexts, so this cannot be an adjunction. Birkedal
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et al. [Bir+20] call this situation a dependent right adjoint (DRA). A DRA
essentially consists of a type former 〈R | xy〉 and a context operation L such
that

{a | LΓ ` a : A} ∼= {â | Γ ` â : 〈R | A〉}. (5.5)

See Birkedal et al. [Bir+20] or section 5.2 for a formal definition.

Just as with DRAs, the MTT formation and introduction rules for modal types
effectively transpose types and terms across this adjunction:

Γ,µµ ` A type` @ p

Γ ` 〈µ | A〉 type` @ q

Γ,µµ ` a : A @ p

Γ ` modµ a : 〈µ | A〉 @ q

It remains to show how to eliminate modal types. Previous work on Fitch-style
calculi [Bir+20; GSB19a] has employed elimination rules which essentially invert
the introduction rule above. Such rules remove one or more locks from the
context during type-checking, and sometimes even trim a part of it. For example,
a rule of this sort would be

µµ 6∈ Θ Γ ` â : 〈µ | A〉 @ q

Γ,µµ,Θ ` openµ â : A @ p
.

However, this kind of rule tends to be unruly, and requires delicate work to
prove even basic results, such as the admissibility of substitution: see the
technical report by Gratzer et al. [GSB19b] for a particularly laborious case.
The results in op. cit. could not possibly reuse any of the work of Birkedal
et al. [Bir+20], as a small change in the syntax leads to many subtle changes
in the metatheory. Consequently, it seems unlikely that one could adapt this
approach to a modality-agnostic setting like ours.

We will use a different technique, which is reminiscent of dual-context calculi
[Kav17]. First, we will let the variable rule control the use of modal variables.
Then, we will take a ‘modal cut’ rule, which will allow the substitution of modal
terms for modal variables, to be our modal elimination rule.

Accessing a modal variable The behavior of modal types can often be clarified
by asking a simple question: when can we use x : 〈µ | A〉 to construct a term
of type A? In previous Fitch-style calculi we would use the modal elimination
rule to reduce the goal to 〈µ | A〉, and then – had the modal elimination rule
not eliminated x from the context – we would simply use the variable. We may
thus write down a term of type A using a variable x : 〈µ | A〉 only when our
context has the appropriate structure, and the final arbiter of that is the modal
elimination rule.
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MTT turns this idea on its head: rather than handing control over to the
modal elimination rule, we delegate this decision to the variable rule itself. In
order to ascertain whether we can use a variable in our calculus, the variable
rule examines the locks to the right of the variable. The rule of thumb is
this: we should always be able to access 〈µ | A〉 behind µµ. Carrying the
(xy,µµ) a 〈µ | xy〉 analogy further, we see that the simplest judgment that fits
this, namely Γ, x : 〈µ | A〉,µµ ` x : A @ p, corresponds to the counit.

To correctly formulate the variable rule, we will require one more idea: following
modal type theories based on left division [Pfe01; Abe06; Abe08; NVD17a;
ND18a], every variable in the context will be annotated with a modality, µ p x : A.
Intuitively a variable µ p x : A is the same as a variable x̂ : 〈µ | A〉 (which
in turn is shorthand for 1 p x̂ : 〈µ | A〉), but the annotations are part of the
structure of a context while 〈µ | A〉 is a type. This small circumlocution will
ensure that the variable rule respects substitution.

The most general form of the variable rule will be able to handle the interaction
of modalities, so we present it in stages. A first ‘counit-like’ approximation is
then

µ 6∈ ∆ Γ,µµ ` A type @ p

Γ, µ p x : A,µµ,∆ ` x : A @ p

The first premise expresses that no further locks occur in ∆.

Ticks Just as we assign names to variables so that we do not have to use
numbers and count variables to know what we are talking about, it will also be
useful in complicated settings to have names to refer to locks in the context. So
when we extend a context with a lock, we will assign it a name m and write
Γ,µm

µ . Following [BGM17], we call these names ticks. For almost all purposes
(including formalizing MTT as a GAT), ticks can be ignored, but we believe they
are of great help when modal bookkeeping is being performed by a human. By
consequence, since the arguments A and a of 〈µ |m A〉 and modm

µ a are checked
with an additional lock in the context, these operators bind a tick.

Modal context extension The switch to modality-annotated declarations
µ p x :m A also requires us to revise the context extension rule. The revised
version below closely follows the formation rule for 〈µ |m A〉: if A is a type
in the locked context Γ,µm

µ , then we may extend Γ to include a declaration
µ p x :m A, so that x stands for a term of type A under the modality µ:

Γ,µm
µ ` A type @ p

Γ, µ p x :m A ctx @ q
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The elimination rule The difference between a modal type 〈µ |m A〉 and an
annotated declaration µ p x :m A in the context is navigated by the modal
elimination rule. In brief, its role is to enable the substitution of a term of the
former type for a variable with the latter declaration. The full rule is complex,
so in this section we will only discuss the case of a single modality, µ : n→ m.
The rule for this µ is

Γ,µm
µ ` A type @ p Γ, 1 p x̂ : 〈µ |m A〉 ` T type @ q

Γ ` â : 〈µ |m A〉 @ q Γ, µ p x :m A ` t : T [modµ x/x̂] @ q

Γ ` let (modµ x = â) in t : T [â/x̂] @ q
(5.6)

Forgetting dependence for a moment, this rule is close to the dual context
style [PD01; Kav17]: if we think of annotations as separating the context into
multiple zones, then µ p x :m A clearly belongs to the ‘modal’ part.

In the dependent case we also need a motive T , which depends on a variable of
modal type, but under the identity modality 1. This premise is then fulfilled
by â in the conclusion. In a sense, this rule permits a form of modal induction:
every variable 1 p x̂ : 〈µ |m A〉 can be assumed to be of the form modµ x for
some µ p x :m A. This kind of rule has appeared before in dependent modal
type theory, mainly in the work of Shulman [Shu18].

In the type theory of Birkedal et al. [Bir+20] modalities are taken to be
dependent right adjoints, with terms witnessing eq. (5.5). This isomorphism can
encode eq. (5.6), but eq. (5.6) cannot encode eq. (5.5). As a result, modalities
in MTT are weaker than DRAs. For this reason, we shall call them weak DRAs.

5.3.2.c Multiple Modalities

Thus far we have only considered a single modality. In this section we discuss the
small changes that are needed to enable MTT to support multiple interacting
modalities. The final version of the modal rules is given in figs. 5.5 and 5.6.

Multimodal locks We have so far only used the operation (xy,µµ) on contexts
for the single modality µ : p → q. This operation should also work for any
modality with the same rule lock, hence inducing an action of locks on contexts
that is contravariant with respect to the mode. The only question, then, is
how these locks should interact. This is where the mode theory comes in:
locks should be functorial, so that ν : q → r, µ : p → q, and Γ ctx @ r imply
(Γ,µm

µ ,µ
n
ν) = (Γ,µmn

µ◦ν) ctx @ p. This brings us in a pesky situation regarding the
ticks, but we save ourselves by taking the liberty to use strings like mn as ticks
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Prerequisites: DTT @ p for each p ∈ M (fig. 3.2), with all the desired types
(section 3.2.4).
Locked context:
Note: ↓mm is shorthand for 1↓mm.

lock
Γ ctx @ q µ : p→ q

Γ,µm
µ ctx @ p

where Γ = Γ,µ•1 (lock:id)
Γ,µn

ν ,µ
m
µ = Γ,µnm

ν◦µ (lock:comp)

lock:fmap
σ : Γ→ ∆ @ q µ, ν : p→ q α : µ⇒ ν

(σ, α↓mn ) : (Γ,µn
ν)→ (∆,µm

µ ) @ p
where (σ, α↓mn ) ◦ (τ, β↓no) = (σ ◦ τ, (β ◦ α)↓mo ) (lock:fmap:comp)

id = (id, ↓mm) (lock:fmap:id)
(σ, α′↓m

′

n′ , α↓
m
n ) = (σ, (α′ ? α)↓m

′m
n′n ) (lock:comp:fmap)

σ = (σ, 11↓••) (lock:id:fmap)
Modal context extension:
We consider the non-modal rule ctx-ext and its introduction, elimination and
computation rules as a special case of ctx-modext for p = q and µ = 1.

ctx-modext
Γ ctx @ q µ : p→ q
Γ,µm

µ ` T type @ p

Γ, µ p x :m T ctx @ q

ctx-modext:var
Γ,µµ ` T type @ p α : µ⇒ locks(∆)
Γ, µ p x :m T,∆ ` xα↓m : T [α↓mticks(∆)] @ p

where (xα↓ticks(∆))[σ, t/x ↓m] = t[α↓mticks(∆)]
(ctx-modext:var:beta)

where (xα↓ticks(∆))[β↓
ticks(∆)
ticks(Θ) ] = x (β ◦ α)↓ticks(Θ)

(ctx-modext:var:2cell)

ctx-modext:wkn
Γ ctx @ q µ : p→ q Γ,µm

µ ` T type @ p

πx : (Γ, µ p x :m T )→ Γ @ q
where πx ◦ (σ, t/x ↓m) = σ (ctx-modext:wkn:beta)

ctx-modext:intro
σ : Γ→ ∆ @ q µ : p→ q Γ,µm

µ ` t : T [σ] @ p

(σ, t/x ↓m) : Γ→ (∆, µ p x :m T ) @ q
where τ = (πx ◦ τ, (x ↓m)[τ ]/x ↓m) (ctx-modext:eta)

(σ, t/x ↓m) ◦ ρ = (σ ◦ ρ, t[ρ, 1↓mm]/x ↓m)
Locks in a telescope:

locks(·) = 1 locks(∆,µm
µ ) = locks(∆) ◦ µ locks(∆, µ p x :m T ) = locks(∆)

ticks(·) = • ticks(∆,µm
µ ) = ticks(∆)m ticks(∆, µ p x :m T ) = ticks(∆)

Figure 5.5: Structural rules of MTT.
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Prerequisites: Structural rules of MTT (fig. 5.5).

wdra
µ : p→ q
Γ,µm

µ ` A type` @ p

Γ ` 〈µ |m A〉 type` @ q

wdra:intro
µ : p→ q
Γ,µm

µ ` a : A @ p

Γ ` modm
µ a : 〈µ |m A〉 @ q

wdra:elim
µ : p→ q ν : q → r
Γ,µn

ν ` â : 〈µ |m A〉 @ q
Γ, ν p x̂ :n 〈µ |m A〉 ` T type @ r
Γ, ν ◦ µ p x :nm A ` t : T [modm

µ x ↓nm/x̂ ↓n] @ r

Γ ` letnν (modm
µ (x ↓nm) = â) in t : T [â/x̂ ↓n] @ r

where letnν (modm
µ (x ↓nm) = modm

µ a) in t = t[a/x ↓nm] (wdra:beta)

Figure 5.6: Typing rules for the modal type (weak DRA).

(recall that ticks are solely there for the sake of readability). We additionally
ask that the identity modality 1 : p → p at each mode has a trivial, invisible
action on contexts, i.e. Γ = (Γ,µ•1) ctx @ p (using the empty string • as a tick).

These two actions, which are encoded by lock:comp and lock:id, ensure
that µ is a contravariant functor onM, mapping each mode p to the category
of contexts Γ ctx @ p. The contravariance originates from the fact that M
is a specification of the behaviour of the modalities 〈µ | xy〉, so that their
left-adjoint-like counterparts (xy,µµ) act with the opposite variance.

The full variable rule We have seen that µ induces a functor from M to
categories of contexts, but we have not yet used the 2-cells ofM. In short, a
2-cell α : µ⇒ ν contravariantly induces a substitution from (Γ,µn

ν) to (Γ,µm
µ )

(lock:fmap), which we discuss this further in section 5.3.4.

In section 3.2, we formulated the variable rule ctx-ext:var without weakening
included. This means that the expression x[πy] cannot be reduced to a
substitution-free expression. Similarly, here, we could state the variable rule in
its most bare form:

ctx-modext:var:bare
Γ,µm

µ ` T type @ p

Γ, µ p x :m T,µ
m
µ ` x ↓m : T @ p
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However, for MTT, we prefer to give a variable rule which already incorporates
a combination of weakenings and 2-cell substitutions, because it clarifies how
the variable rule is checked in practice and also simplifies a discussion of the
interaction of 2-cells and variables. The above rule ctx-modext:var:bare
requires that the lock and the variable annotation are an exact match. We relax
this requirement by allowing for a mediating 2-cell:

Γ,µm
µ ` T type @ p α : µ→ ν

Γ, µ p x :m T,µ
n
ν ` xα↓n : T @ p

(5.7)

The annotation α↓n on x is now part of the syntax: each variable must be
annotated with a 2-cell, though we will still write x to mean x 1↓•. The final
form of the variable rule, which appears as ctx-modext:var in fig. 5.5, is only
a slight generalization which allows the variable to occur at positions other than
the very front of the context. In fact, ctx-modext:var can be reduced to the
one in eq. (5.7) by using weakening to remove variables to the right of x, and
then invoking functoriality to fuse all the locks to the right of x into a single
one with modality locks(∆).

The full elimination rule Recall that the elimination rule for a single modality
(eq. (5.6)) allowed us to plug a term of type 〈µ |m A〉 for an assumption µ p
x :m A. Some additional generality is needed to cover the case where the
motive ν p x̂ :n 〈µ |m A〉 ` T type @ r depends on x under a modality ν 6= 1.
This is where the composition of modalities in M comes in handy: our new
rule will use it to absorb ν by replacing the assumption ν p x̂ :n 〈µ |m A〉 with
ν ◦ µ p x :nm A. The new rule, wdra:elim, is given in fig. 5.5. The simpler rule
may be recovered by setting ν = 1.

Modal Π-types In the technical report we have supplemented MTT with a
primitive modal dependent product type, (µ p x :m A) → B, which bundles
together 〈µ | xy〉 and the ordinary Π-type. If we ignore η-equality, (µ p x :m
A) → B can be defined as (x̂ : 〈µ |m A〉) → let (modm

µ (x ↓m) = x̂) inB. This
modal Π-type is convenient for programming but it is not essential, so we defer
further discussion to the technical report [Gra+20a].

Definitional equality in MTT A perennial problem in type theory is that
of deciding where the boundary between derviable and definitional equalities
should lie. We have followed standard practices regarding definitional equalities
for dependent products, sums, etc. The situation is somewhat more complicated
regarding modal types. On the one hand, we have expected β-rule wdra:beta.
On the other hand, we do not include any definitional η-rules: as the eliminator is
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Prerequisites: Structural rules of MTT (fig. 5.5).
Generalizes: Π-types in DTT if µ = 1 (fig. 3.3).

modpi
Γ,µm

µ ` A type` @ p µ : p→ q
Γ, µ p x :m A ` B type` @ q

Γ ` (µ p x :m A)→ B type` @ q

modpi:intro
Γ, µ p x :m A ` b : B @ q µ : p→ q

Γ ` λ(µ p x).b : (µ p x :m A)→ B @ q
where λ(µ p x).f ·m x ↓m = f (modpi:eta)

modpi:elim
Γ ` f : (µ p x :m A)→ B @ q
Γ,µm

µ ` a : A @ p µ : p→ q

Γ ` f ·m a : B[a/x] @ q
where (λ(µ p x).b) ·m a = b[a/x ↓m] (modpi:beta)

Figure 5.7: Typing rules for Π-types in MTT.

a positive pattern-matching construct, the proper η-rule would need commuting
conversions, which would enormously complicate the metatheory.2

5.3.3 Programming with Modalities

In this section we show how MTT can be used to program and reason with
modalities. We develop a toolkit of modal combinators, which we then use
in section 5.3.3.b to show how MTT can be effortlessly used to present an
idempotent comonad.

5.3.3.a Modal Combinators

We first show how each 2-cell α : µ ⇒ ν with µ, ν : p → q induces a natural
transformation 〈µ | xy〉 → 〈ν | xy〉. Given Γ,µm

µ ` A type @ q, we define

coe[µ : ν ⇒ α] : 〈µ |m A〉 → 〈ν |n A[α↓mn ]〉

coe[µ : ν ⇒ α] x̂ := let (modm
µ (x ↓m) = x̂) in modn

ν (xα↓n).
2But see proposition 7.3.3.
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With this operation, we have completed the correspondence from section 5.3.1:
objects of M correspond to modes, morphisms to modalities, and 2-cells to
coercions.

We can also show that the assignment µ 7→ 〈µ | xy〉 is, in some sense, functorial.
Unlike the action of locks, this functoriality is not definitional, but only a
type-theoretic equivalence [Uni13, §4]. Fixing Γ,µn

ν ,µ
m
µ ` A type @ p, let

compν,µ : 〈ν |n 〈µ |m A〉〉 → 〈ν ◦ µ |nm A〉

compν,µ ˆ̂x = let (modn
ν (x̂ ↓n) = ˆ̂x) in letnν (modm

µ (x ↓nm) = x̂ ↓n) in modnm
ν◦µ (x ↓nm)

comp−1
ν,µ : 〈ν ◦ µ |nm A〉 → 〈ν |n 〈µ |m A〉〉

comp−1
ν,µ x̂ = let (modo

ν◦µ (x ↓o) = x̂) in modn
ν (modm

µ (x ↓nm)).

Even in this small example the context equations that involve locks are essential:
for 〈ν ◦ µ |nm A〉 to be a valid type we need that (Γ,µn

ν ,µ
m
µ ) = (Γ,µnm

ν◦µ), which
is ensured by lock:comp. Additionally, observe that compν,µ relies crucially
on the multimodal elimination rule wdra:elim: we must pattern-match on x̂,
which is under ν in the context.

These combinators are only propositionally inverse. In one direction, the proof
is

_ : (ˆ̂x : 〈ν |n 〈µ |m A〉〉)→ ˆ̂x ≡ comp−1
ν,µ (compν,µ ˆ̂x)

_ ˆ̂x = let (modn
ν (x̂ ↓n) = ˆ̂x) in letnν (modm

µ (x ↓nm) = x̂ ↓n) in reflmodnν (modmµ (x ↓nm)).

This is a typical example of reasoning about modalities: we use the modal
elimination rule to induct on a modally-typed term. This reduces it to a term
of the form mod , and the result follows definitionally. It is equally easy to
construct an equivalence 〈1 |• A〉 ' A.

As a final example, we will show that each modal type satisfies axiom K,3 a
central axiom of Kripke-style modal logics. This combinator will be immediately
recognizable to functional programmers as the term that shows that 〈µ | −〉 is
an applicative functor [MP08].

xy ~µ xy : 〈µ |m A→ B〉 → 〈µ |m A〉 → 〈µ |m B〉

f̂ ~µ â = let (modm
µ (f ↓m) = f̂) in let (modm

µ (a ↓m) = â) in modm
µ (f ↓m (a ↓m)).

We can also define a stronger combinator, which corresponds to a dependent
form of the Kripke axiom [Bir+20], and which generalizes ~µ to dependent
products (x : A)→ B(x).

3The modal one, that is, not uniqueness of identity proofs.
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5.3.3.b Idempotent Comonads in MTT

A great deal of prior work in modal type theory has focused on comonads [PD01;
dPR15; Shu18; GSB19a], and in particular idempotent comonads. Shulman
[Shu18, Theorem 4.1] has shown that such modalities necessitate changes to
the judgmental structure, as the only idempotent comonads that are internally
definable are of the form xy × U for some proposition U . In this section we
present a mode theory for idempotent comonads, and prove that the resulting
type theory internally satisfies the expected equations using just the combinators
of the previous section.

We define the mode theoryMic to consist of a single mode p, and a single non-
trivial morphism µ : p→ p. We will enforce idempotence by setting µ ◦ µ = µ.
Finally, we include a unique non-trivial 2-cell ε : µ⇒ 1. We force uniqueness of
this 2-cell by imposing equations such as 1µ ?ε = ε?1µ = 1. The resulting mode
theory is a 2-category, albeit a very simple one: it is in fact only a poset-enriched
category.

We can show that 〈µ | xy〉 is a comonad by defining the expected operations
using the combinators of section 5.3.3.a:

dupA : 〈µ |m A〉 → 〈µ |m 〈µ |n A[↓mmn]〉〉 extractA : 〈µ |m A〉 → A[ε↓m• ]

dupA = compµ,µ extractA = coe[µ : 1⇒ ε]

Note that the substitution ↓mmn is the identity after desugaring (i.e. erasing)
ticks.

We must also show that dupA and extractA satisfy the comonad laws, but that
automatically follows from general facts pertaining to coe and comp.4 This
is indicative of the benefits of using MTT: every general result about it also
applies to this instance, including the canonicity theorem of section 5.3.5.

5.3.4 The Substitution Calculus of MTT

Until this point we have presented a curated, high-level view of MTT, and we
have avoided any discussion of its metatheory. Yet, these syntactic aspects can
be quite complex, and have historically proven to be sticking points for modal
type theory. While these details are not necessary for the casual reader, it is
essential to validate that MTT is syntactically well-behaved, enjoying e.g. a
substitution principle.

4In particular, our modal combinators satisfy a variant of the interchange law of a 2-
category.
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We have opted for a modern approach in the analysis of MTT by presenting it
as a generalized algebraic theory (GAT) [Car86; KKA19]. While this simplifies
the study of its semantics (see section 5.3.5), it can also be used to study the
syntax. For example, the formulation of MTT as a GAT naturally leads us to
include explicit substitutions [Mar92; Gra13] in the syntax. Thus, substitution
in MTT is not a metatheoretic operation on raw terms, but a piece of the
syntax. This presentation helps us carefully state the equations that govern
substitutions and their interaction with type formers. We consequently obtain
an elegant substitution calculus, which can often be quite complex for modal
type theories. We only discuss the modal aspects of substitution here; the full
calculus is discussed in the technical report [Gra+20a].

Modal substitutions In addition to the usual rules, MTT features substitutions
corresponding to the 1- and 2-cells of the mode theory. First, recall that for
each modality µ : p → q we have the operation µµ on contexts. We make
this operation, as an action on pairs of a context and a modality, bifunctorial
(lock:fmap). At the same time, we ensure that µ :Mcoop → Cat is a strict
2-functor (lock:id:fmap, lock:comp:fmap); see fig. 5.5.

While it is no longer necessary to prove that substitution is admissible, we would
like to show that explicit substitutions can be pushed inside terms, and ultimately
eliminated on closed terms. The proof of canonicity (theorem 5.3.5) implicitly
contains such an algorithm, but it is overkill: a simple argument directly proves
that all explicit substitutions can be propagated down to variables.

Pushing substitutions under modalities In order for the aforementioned
algorithm to work, we must specify how substitutions commute with the modal
connectives of MTT. Unlike previous work [GSB19b], the necessary equations
are straightforward:

〈µ |m A〉[σ] = 〈µ |m A[σ, ↓mm]〉,

(modm
µ a)[σ] = modm

µ (a[σ, ↓mm]).

This simplicity is not coincidental. Previous modal type theories included rules
that, in one way or another, trimmed the context during type checking: some
removed variables [Pra65; PD01; Shu18], while others erased context formers,
e.g. locks [Bir+20; GSB19a]. In either case, it was necessary to show that the
trimming operation, which we may write as ‖Γ‖, is functorial: Γ ` δ : ∆ should
imply ‖Γ‖ ` ‖δ‖ : ‖∆‖. Unfortunately, the proof of this fact is almost always
very complicated. Some type theories avoid it by ‘forcing’ substitution to be
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admissible using delayed substitutions [BdP00; LSR17], but this causes serious
complications to the equational theory.

MTT circumvents this by avoiding any context trimming. As a result, we need
neither delayed substitutions nor a complex proof of admissibility.

5.3.5 The Semantics of MTT

As mentioned in section 5.3.4, we have structured MTT as a GAT. As a result,
MTT automatically induces a category of models and (strict) homomorphisms
between them [Car86; KKA19]. However, this notion of model follows the syntax
quite closely. In order to work with it more effectively we factor it into pieces,
using the more familiar definition of categories with families (CwFs) [Dyb96].5
We will then use this notion of model to present a semantic proof of canonicity
via gluing [Shu14; AK16; Coq18; KHS19].

Like MTT itself, the definition of model is parametrized by a mode theory, so
we fix a mode theoryM.

Mode-local structure Recall that MTT is divided into several modes, each of
which is closed under the standard connectives of DTT. Accordingly, a model
of MTT requires a CwF (Ctxp,Typ,Tmp) for each mode p ∈M. Each CwF is
required to be a model of DTT with Σ-, Π- and identity types, and a Coquand-
style universe. This part of the definition is entirely standard, and can be found
in the literature (see chapter 3) [Dyb96; Hof97; Awo18]. The novel portion of
an MTT model describes the relations between CwFs induced by the 1- and
2-cells ofM.

Locks Recall that for Γ ctx @ q and p : q → we have a context Γ,µm
µ ctx @ p,

and that this construction extends functorially to substitutions. Hence, we will
require for each modality p : q → a functor JµµK : Ctxq → Ctxp. Similarly, each
α : µ⇒ ν induces a natural transformation from (Γ,µn

ν) to (Γ,µm
µ ). Accordingly,

a model should come with a natural transformation Jα↓K : JµνK → JµµK.
Moreover, the equalities of fig. 5.5 require that the assignments µ 7→ (xy,µµ)
and α 7→ (xy, α↓) be strictly 2-functorial. Thus, this part of the model can
be succinctly summarized by requiring a 2-functor Ctx− :Mcoop → Cat. The
contravariance accounts for the fact µ corresponds to 〈µ | −〉, but that the
functor JµµK models (xy,µµ), which acts with the opposite variance.

5In the technical report [Gra+20a] we have used a more categorical presentation of CwFs,
known as natural models [Awo18]. However, in the interest of clarity we state our results in
terms of CwFs here.
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Modal comprehension structure Variable declarations in MTT are annotated
with a modality, and the context extension rule ctx-modext involves locks.
Thus, our CwFs should be equipped with more structure than mere context
extension to support it.

Recall from definition 3.2.3 that, in an ordinary CwF C, given a context Γ ∈ C
and a type A ∈ Ty(Γ) we have a context Γ.A along with a substitution
π : Γ.A→ Γ, and a term ξ ∈ Tm(Γ.A,A[π]).

To model MTT we need a modal comprehension operation, which for each
context Γ ∈ Ctxq, modality µ : p→ q, and type A ∈ Typ(JµµK(Γ)) yields

• a context Γ.(µ p A) ∈ Ctxq,
• a substitution π : Γ.(µ p A)→ Γ, and
• a term ξ ∈ Tmp(JµµK(Γ.(µ p A)), A

[
JµµK(π)

]
)

where Γ.(µ p A) is universal in an appropriate sense.

Intuitively, ξ corresponds to ctx-modext:var:bare. As mentioned before,
this suffices to model the full variable rule ctx-modext:var, as π, Jα↓K, and ξ
can be used to define it from ctx-modext:var:bare.

Modal types The interpretation of the modal type 〈µ | xy〉 for a modality
µ : p→ q requires operations for the formation, introduction, and elimination
rules. Just as with the other connectives, these are a direct translation of
the rules wdra, wdra:intro, and wdra:elim to the language of CwFs. For
example, for every Γ ∈ Ctxq, A ∈ Typ(JµµK(Γ)), and a ∈ Tmp(JµµK(Γ), A), we
require modµ a ∈ Tmq(Γ, 〈µ | A〉).

Conclusions This discussion leads to the following definition.

Definition 5.3.1. A model of MTT is a 2-functor Ctxxy : Mcoop → Cat,
equipped with the following structure:

• for each p ∈M, a CwF (Ctxp,Typ,Tmp) that is closed under Π-, Σ- and
identity types as well as U,

• a modal comprehension structure forM on these CwFs, and
• for each modality µ : p→ q, a modal type structure (〈µ | xy〉,modµ , open)

modelling the weak DRA.

Definition 5.3.2. A morphism between models F : Cxy → Dxy is a strict 2-
natural transformation such that each Fp : Cp → Dp is part of a strict CwF
morphism [CCD17] which strictly preserves modal comprehension and types.
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We observed in section 5.3.2.c that modalities in MTT are weaker than
DRAs [Bir+20].6 Since DRAs are often easier to construct, we make this
relation formal.

Theorem 5.3.3. A 2-functor Ctxxy :Mcoop → Cat satisfying the following two
conditions induces a model of MTT:

1. for each p ∈ M, there is a CwF (Ctxp,Typ,Tmp) that is closed under
Pi-, Σ- and identity types as well as U,

2. for each µ : p→ q, the functor JµµK : Ctxq → Ctxp has a DRA.

In practice virtually all the models of MTT that we consider will be constructed
by applying theorem 5.3.3. We can also use it to immediately prove consistency:

Corollary 5.3.4. There is no closed term of type true ≡Bool false.

Proof. By theorem 5.3.3, any model C of DTT is a valid model of MTT: send
each mode to C, and each modality to the identity. Therefore, a closed term of
type true ≡Bool false in MTT would also be a term of the same type in DTT.
We may therefore reduce the consistency of MTT to that of a model of DTT,
and in particular the set-theoretic one.

5.3.5.a Canonicity

We can now use MTT models to prove canonicity via gluing. Canonicity is
an important metatheoretic result: it establishes the computational adequacy
of MTT by ensuring that every closed term already is in or is equal to a
canonical form – a value. Canonicity is traditionally established through a
logical relation [Tai67; Mar75]. However, this method becomes very complicated
when we have universes, as their presence makes the definition by induction
on types impossible. It is instead necessary to construct a (large) relation on
types, which associates a pair of types with a PER; the logical relation on terms
is then subordinated to this relation on types [All87; Ang19]. This technique
requires significant effort, and involves many proofs by simultaneous induction.

This approach can be simplified by replacing proof-irrelevant logical relations by
a proof-relevant gluing construction [MS92]. This leads to the construction of a
model in which (a) types are paired with proof-relevant predicates and (b) terms
are equivalence classes of syntactic terms, along with a (type-determined) proof
of their canonicity. The proof-relevance is crucial in the case of the universe,

6While Birkedal et al. [Bir+20] only consider endofunctors, there is no obstacle to extending
the definition of a DRA to different categories, see section 5.2.
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which contains not just the canonicity data for A : U but also the predicate for
ElA.

In order to simplify the construction of the glued model, we add an additional
definitional equality to MTT, namely (·,µµ) = () ctx. This equation is satisfied
by all the concrete examples described in section 5.3.6.7 Semantically, it states
that the functors JµµK strictly preserve the chosen terminal objects. Without
this assumption we would have to establish canonicity not just for terms in
the empty context, but for terms in a locked empty context, i.e. of the form
(µµ). This would semantically correspond to gluing along the nerve of the
inclusion of locked empty contexts into the categories of contexts. This situation
is comparable to that of proving canonicity for cubical type theories, where it
is necessary to consider terms with open dimension variables [AHH18; Hub19].
However, the attendant glued model is complex, so we restrict this discussion
to this simpler and more common case.

The full details of the glued model can be found in the technical report. Once
we construct it, the initiality of syntax [Car86; KKA19] provides a witness of
canonicity for every term.
Theorem 5.3.5 (Canonicity). If we extend MTT8 with the judgemental
equality (·,µµ) = () ctx, then for every closed term · ` a : A @ p, the following
conditions hold:

• If A = Bool, then · ` a = b̄ : A @ p where b̄ ∈ {true, false}.
• If A = (b0 ≡B b1) then · ` b0 = b1 : B @ p and · ` a = reflb0 : b0 ≡B b1 @
p.

• If A = 〈ν |n B〉 then there is a term · ` b : B @ o such that · ` a =
modm

µ b : 〈ν |n B〉 @ p.

5.3.6 Applying MTT

We will now show concretely how MTT can be used in specific modal situations
by varying the mode theory. We will focus on two different examples: guarded
recursion [Nak00; Clo+16; Biz+16], which captures productive recursive
definitions through a combination of modalities, and adjoint modalities [Ree09;
LS16; LSR17; Shu18; Zwa19], where two modalities form an adjunction internal
to the type theory. In both cases we will show how to reconstruct examples
from op. cit. in MTT. The case of guarded recursion is particularly noteworthy,
as the specialization of MTT to the appropriate mode theory leads to a new
syntax which is considerably simpler than previous work.

7But not by the model of the mode theory used in chapter 7.
8without special equality rules such as pi:funext and id:uip.
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5.3.6.a Guarded Recursion

The key idea of guarded recursion [Nak00] is to use the later modality (�) to
mark data which may only be used after some progress has been made, thereby
enforcing productivity at the level of types. Concretely, the later modality is
equipped with three basic operations:

next : A→ �A

~ : �(A→ B)→ �A→ �B

löb : (�A→ A)→ A

The first two operators make � into an applicative functor [MP08] while the
third, which is known as Löb induction, encodes guarded recursion: it enables
us to define a term recursively, provided the recursion is provably productive.

The perennial example is, of course, the guarded stream type StrA ∼= A×�StrA.
This recursive type requires that the head of the stream is immediately available,
but the tail may only be accessed after some productive work has taken place.
This allows us to e.g. construct an infinite stream of ones:

inf_stream_of_ones := löb(λs.cons(1, s))

However, StrA does not behave like a coinductive type: we may only define
causal operations on streams, which excludes e.g. tail. In order to regain
coinductive behaviour, Clouston et al. [Clo+16] introduced a second modality,
2 (‘always’), an idempotent comonad for which

2�A ' 2A. (5.8)

Combining this modality with � has proved rather tricky: previous work
has used delayed substitutions [Biz+16], or has replaced 2 with clock
quantification [AM13; Møg14; BM15; BGM17]. The former poses serious
implementation issues, and – while more flexible – the latter does not enjoy
the conceptual simplicity of a single modality. In contrast, MTT enables us to
effortlessly combine the two modalities and satisfy eq. (5.8).

To encode guarded recursion inside MTT, we must

1. choose a mode theory which induces an applicative functor � and a
comonad 2 satisfying eq. (5.8),

2. construct the intended model of MTT with this mode theory, i.e. a model
where these modalities are interpreted in the standard way [Bir+12], and

3. include Löb induction as an axiom.
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To begin, we defineMg to be the mode theory generated by

t

γ

((
`
''

s

δ

hh
δ ◦ γ ≤ 1 1 = γ ◦ δ

1 ≤ ` γ = γ ◦ `
(5.9)

We require that Mg is poset-enriched, i.e. that there is at most one 2-cell
between a pair of modalities, (µ, ν), which we denote µ ≤ ν when it exists. As
Mg is not a full 2-category, we do not need to state any coherence equations
between 2-cells.

Unlike prior guarded type theories,Mg has two modes. We will think of elements
of s as being constant types and terms, while types in t may vary over time.
The reason for enforcing this division will become apparent in theorem 5.3.8,
but for now observe that we can construct an idempotent comonad b := δ ◦ γ.

Lemma 5.3.6. 〈b | xy〉 is an idempotent comonad and 〈` | xy〉 is an applicative
functor.

Proof. Follows from the combinators in section 5.3.3.

Next, eq. (5.8), which was hard to force in previous type theories, is provable:
as γ ◦ ` = γ, the combinator compb,` from section 5.3.3.a has the appropriate
type:

compb,` :
〈
b |b

〈
` |l A

〉〉
'
〈
b ◦ ` |bl A

〉
=
〈
b |bl A

〉
.

In order to construct the intended model, recall that the standard interpretation
of guarded type theory uses the topos of trees, Psh(ω): see Birkedal et al.
[Bir+12] for a thorough discussion. Crucially, it is easy to see that 2 = M ◦ t,
where

t : Psh(ω)→ Set M : Set→ Psh(ω)

tΓ := Hom(>,Γ) (i⇒ MS) := S

As both Set and Psh(ω) are models of DDT (see chapter 4), we may use
theorem 5.3.3 to construct the intended model.

Theorem 5.3.7. There exists a model of MTT with mode theoryMg where
〈b | xy〉 is interpreted as 2 and 〈` | xy〉 as �.

Proof. We choose the 2-functor which sends s 7→ Set and t 7→ Psh(ω).
Moreover, we define Jµ`K, JµδK, and JµγK to be the left adjoints of �, M,
and t respectively [Bir+20].
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From this point onwards we will write �l :=
〈
` |l xy

〉
(making l truly a tick in

the sense of Bahr et al. [BGM17]), Md := 〈δ |d xy〉, and 2b :=
〈
b |b xy

〉
.

The only thing that remains is to add Löb induction. This is a modality-specific
operation that cannot be expressed in the mode theory, so we must add it as
an axiom:

loeb
Γ ` A type @ t
Γ, ` p x :l A[(1 ≤ `)↓•l ] ` a : A @ t

Γ ` löb(x.a) : A @ t
where löb(x.a) = a[löb(x.a)[(1 ≤ `)↓•l ]/x ↓l] (loeb:beta)

Unfortunately, any axiom disrupts the metatheory of MTT so canonicity
no longer applies. However, adding it to the type theory is sound, as
the model supports it. At this point we may as well assume equality
reflection (id:reflection) [Jac99], as is commonplace in previous guarded
type theories [Biz+16]. This is stronger than necessary (function extensionality
would suffice), but it simplifies proofs and makes comparison to previous work
more direct.

Programming with Guarded MTT We can now use MTT to program with
and reason about guarded recursion. For instance, we can define coinductive
streams:

Str : U → U @ s
Str(A) := tu(löb(S.Md(A[↓•ud])×�l(S (1 ≤ `)↓l)))

Unlike prior guarded type theories, we have defined this stream operator not
in mode t, which represents Psh(ω), but in mode s, which represents Set.
Accordingly, this definition does not use 2. It first uses M to convert A to a
t-type, and then t to move the recursive definition back to s. This alleviates
some bookkeeping: in previous work [Biz+16] the stream type was actually
coinductive only if A was a constant type (i.e. A ' 2A). Accordingly, theorems
about streams had to pass around proofs that the elements of the stream are
constant. In our case, defining Str at mode s ensures that the elements of the
stream are automatically constant. Hence, Str(A) is equivalent to the familiar
definition, but it is no longer necessary to carry through proofs of constancy.
Therefore, for any A : U @ s we have

Theorem 5.3.8. Str(A) is the final coalgebra for S 7→ A× S in mode s.

We can also program with Str(A) by more directly appealing to the underlying
guarded structure. For instance, we can define a ‘zip with’ function. Let
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Str′(dA) = löb(S.Md(A)×�l(S (1 ≤ `)↓l)) and write zsh and zst for fst zs and
snd zs respectively:

zipWith′ : Md(A→ B → C)→ Str′(dA)→ Str′(dB)→ Str′(d C)
zipWith′ := λf̂ .löb(r.λxs.λys.(f̂ ~δ xsh ~δ ysh,modl

` (r ↓l)~` xst ~` yst)

zipWith : (A→ B → C)→ Str(A)→ Str(B)→ Str(C)
zipWith := λf.λx̂s.λx̂s.modu

γ (zipWith′(modd
δ f ↓ud))~γ x̂s~γ x̂s

where ~µ is defined in section 5.3.3.a.

We can also use dependent types to reason about guarded recursive programs.
For example,

Theorem 5.3.9. If f is commutative then zipWith f is commutative. That is,
given A,B : U and f : A→ A→ B there is a term of the following type:

((x, y : A)→ f x y ≡B f y x)

→ (xs, ys : Str(A))→ zipWith f xs ys ≡Str(B) zipWith f ys xs

All things considered, instantiating MTT withMg yields a highly expressive
guarded dependent type theory with coinductive types. Unlike prior systems,
e.g.Bahr et al.’s [BGM17], we do not need clock variables or syntactic checks
of constancy. Moreover, the syntax is more robust than previous work that
combines 2 and� [Clo+16; Biz+16], as there is no need for delayed substitutions.
Unfortunately, the addition of the Löb axiom means theorem 5.3.5 cannot be
directly applied, but the syntax remains sound and tractable.

5.3.6.b Internal Adjunctions

Up to this point we have only considered mode theories which are poset-enriched:
there is at most one 2-cell between any pair of modalities. This has worked
well for describing strict structures (section 5.3.3.b), as well as some specific
settings (section 5.3.6.a). However, we would like to use MTT to reason about
less strict categorical models. In this section we will show that we can readily
use MTT to reason about a pair ν a µ of adjoint modalities.

Adjoint modalities are common in modal type theory, much in the same way
that adjunctions are ubiquitous in mathematics [Ree09; LS16; LSR17; Lic+18;
Shu18]. For example, the adjunction δ a γ played an important role in the
previous section. However, that particular case is unusually well-behaved, as it
arises from a Galois connection. In contrast, the behavior of general adjoint
modalities is much more subtle. We will show that by instantiating MTT with
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a particular mode theory we can internally prove many properties of adjoint
modalities that have previously been established only in special cases.

To begin, we pick the walking adjunction [SS86] for our mode theory, i.e. the
2-categoryMadj generated by:

p

ρ

))
q

κ

hh
η : 1⇒ ρ ◦ κ 1ρ = (1ρ ? ε) ◦ (η ? 1ρ)

ε : κ ◦ ρ⇒ 1 1κ = (ε ? 1κ) ◦ (1κ ? η)
(5.10)

This mode theory is the classifying 2-category for internal adjunctions: every
2-functor Mcoop

adj ' Madj → Cat determines a pair of adjoint functors, and
vice versa. Consequently, substitutions ∆ → (Γ,µρ) are in bijection with
substitutions (∆,µκ)→ Γ. However, this is not enough on its own: we must
also show that 〈κ | xy〉 and 〈ρ | xy〉 form an adjunction inside MTT.

Recovering the adjunction in MTT We can construct the unit and counit
internally:

unit : A→
〈
ρ |r

〈
κ |k A[η↓•rk]

〉〉
unit := λx.modr

ρ (modk
κ (x η↓rk))

counit :
〈
κ |k 〈ρ |r B〉

〉
→ B[ε↓kr• ]

counit := λˆ̂y.let (modk
κ (ŷ ↓k) = ˆ̂y) in letkκ (modr

ρ (y ↓kr) = ŷ ↓k) in y ε↓•
In order to account for dependence we must adjust the type by a 2-cell. For
example, in the definition of unit we assume Γ ` A type @ q, so

〈
ρ |r

〈
κ |k A

〉〉
is

ill-typed. We can, however, obtain a version of A that is typable in the context
(Γ,µr

ρ,µ
k
κ) by applying the substitution η↓•rk to it, as in ctx-modext:var.

We can prove that these two operations form an adjunction by showing they
satisfy the triangle identities, e.g.

_ : (x̂ :
〈
κ |k A

〉
)→ x̂ ≡〈κ|kA〉 counit((modk

κ unit)~κ x̂)

_ := λx̂.let (modk
κ (x ↓k) = x̂) in reflmodk

κ x ↓k

This proof relies on the fact that the modalities κ and ρ satisfy the triangle
identities themselves inMadj.

The existence of the unit and counit is enough to internally determine an
adjunction. We might want to use an alternative description, e.g. to manipulate
a natural bijection of Hom-sets, Hom(LA,B) ∼= Hom(A,RB).
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Unfortunately, this isomorphism cannot be recovered internally. First, notice
that 〈κ | A〉 → B and A → 〈ρ | B〉 are types in different modes – p and q
respectively – so (〈κ | A〉 → B) ' (A → 〈ρ | B〉) is ill-typed. Second, even if
p = q so that κ and ρ are endomodalities and this equivalence is well-typed, an
internal equivalence is a stronger condition than a bijection of hom-sets: it is
equivalent to an isomorphism of exponential objects BL ∼= (RB)A.

Prior work [Lic+18] addressed this by introducing a third modality 2, such that
terms of 2A represent global elements of A, and then requiring transposition only
for functions under 2. Global elements of BA are in bijection with Hom(A,B),
so the postulated equivalence corresponds to the expected bijection. We can
rephrase this argument in MTT. Suppose that p = q, and that Hom(p, p) is
equipped with an initial object, i.e. a modality ⊥ : p→ p and a unique 2-cell
[] : ⊥ ⇒ µ for all µ. Then,

Theorem 5.3.10. The following equivalence is definable in MTT:〈
⊥ |t

〈
κ |k A[[]↓ttk]

〉
→ B

〉
'
〈
⊥ |t A→

〈
ρ |r B[[]↓ttr]

〉〉
.

In fact, because modalities in MTT preserve finite products (a consequence of
~ν), an alternative phrasing of transposition is possible.

Theorem 5.3.11. The following equivalence is definable in MTT:〈
ρ |r

〈
κ |k A[η↓•rk]

〉
→ B

〉
' A→ 〈ρ |r B〉.

Modal induction for the left adjoint Having internalized κ a ρ, many of the
classical results about adjunctions can be replayed inside MTT. For instance,
by carrying out a proof that left adjoints preserve colimits internally to MTT,
we recover modal or crisp induction principles for κ [LS16; Shu18]. We can
then show e.g. that

〈
κ |k Bool

〉
' Bool. However, in order to construct this

equivalence it will be convenient to formulate a general induction principle for〈
κ |k Bool

〉
.

Supposing that Γ,µk
κ,µ

r
ρ ` T :

〈
κ |k Bool

〉
→ U @ p, we can define a term

ifκ :
〈
κ ◦ ρ |kr T (modk′

κ true)
〉
→
〈
κ ◦ ρ |kr T (modk′

κ false)
〉

→ (b̂ :
〈
κ |k Bool

〉
)→ C[ε↓kr• ](b̂).

This is a version of the conditional that operates on
〈
κ |k Bool

〉
rather than

Bool. Using this modal induction principle, we can show

Theorem 5.3.12.
〈
κ |k Bool

〉
' Bool
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Similarly, we can prove that κ preserves identity types:

Theorem 5.3.13.
〈
κ |k a ≡A b

〉
' (modk

κ a ≡〈κ|kA〉 modk
κ b).

This instantiation of MTT with Madj yields a systematic treatment of an
internal transposition axiom [Lic+18], and is sufficiently expressive to derive
crisp induction principles [Shu18]. In both cases we can use MTT instead of
a handcrafted modal type theory. Moreover, as we have not added any new
axioms to deal with internal adjunctions, our canonicity result applies.

5.3.6.c Further Examples

In addition to the examples described above, we have applied MTT to a wide
variety of other situations, including

• parametricity, via degrees of relatedness [ND18a] (see chapter 9),
• synchronous and guarded programming with warps [Gua18],
• finer grained notions of realizability and local maps of categories of
assemblies [Bir00].

While interesting, we cannot discuss the details of these applications here for
want of space. We invite the interested reader to consult the accompanying
technical report.

5.3.7 Related Work

MTT is related to many prior modal type theories. In particular, its formulation
draws on three important techniques: split contexts, left division, and the Fitch
style.

Split-context type theories [PD01; NPP08; dPR15; Kav17; Shu18; Pie+19;
Zwa19] divide the context into different zones, one for each modality, which
are then manipulated by modal connectives. This has proven to be an effective
approach for a number of modalities, and sometimes even scales to full dependent
type theories [dPR15; Shu18; Zwa19]. However, the structure of contexts
becomes very complex as the number of modalities increases.

In order to manage this complexity, some modal type theories employ left-
division: each variable declaration in the context is annotated with a modality,
and a left-division operation, which is a left adjoint to post-composition of
modalities, is used to state the introduction rules [Pfe01; Abe06; Abe08; AS12;
NVD17a; ND18a]. Left-division calculi handle multiple modalities and support
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full dependent types, but many important modal situations cannot be equipped
with a left-division structure.

Another technique stipulates that modalities are essentially right adjoints, with
the corresponding left adjoints being constructors on contexts. These Fitch-
style type theories [BGM17; Clo18; Bir+20; GSB19a; BGM19] are relatively
simple, which has made them convenient for programming applications [GSB19a;
BGM19]. Nevertheless, scaling this approach to a multimodal setting has proven
difficult. In particular, extending the elimination rule to a multimodal setting
remains an open problem.

MTT synthesizes these approaches by including both Fitch-style locks and left-
division-style annotations in its judgmental structure. The combination of these
devices circumvents many previously encountered difficulties. For example, this
combination obviates the need for a left division operation, as MTT uses a Fitch-
style introduction rule.9 On the other hand, the left-division-style elimination
rule of MTT smoothly accommodates multiple interacting modalities.

Most prior work on modal type theory has focused on incorporating a specific
collection of modalities. The sole exception is the LSR framework of Licata,
Shulman, and Riley [LSR17]. The LSR framework supports an arbitrary
collection of substructural modalities over simple types, and there is ongoing
work on a dependently-typed system. The price to pay for this expressivity
is practicality: the modal connectives require delayed substitutions [BdP00;
Biz+16], which complicate the equational theory, and make pen-and-paper
calculations cumbersome. The relationship between the modalities of MTT and
those of the LSR framework is not clear. The introduction rule wdra:intro
mirrors the introduction rule for U types. This is to be expected, as U types
behave like right adjoints. On the other hand, the elimination rule in eq. (5.6)
does not match the rule for U types, but instead is closer to the elimination rule
for F types. In fact, this is a necessary compromise to avoid the introduction
of delayed substitutions. In op. cit. the elimination rule for U types and the
introduction rule for F types both require annotation with a substitution to
bring the context into a specific shape. MTT avoids this by by mixing these
two styles of presentation.

5.3.8 Conclusion

We introduced and studied MTT, a dependent type theory parametrized by
a mode theory that describes interacting modalities. We have demonstrated

9Should a left division operation be available, then the lock can be desugared to a left
division.
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that MTT may be used to reason about several important modal settings, and
proven basic metatheorems about its syntax, including canonicity.

In the future we plan to further develop the metatheory of MTT. In addition
to extending our canonicity result to remove the restriction that locks preserve
the empty context, we hope to prove that MTT enjoys normalization, and
hence that type-checking is decidable (provided the mode theory is). Both of
these theorems can be proven by gluing arguments similar to that discussed in
section 5.3.5.a by gluing along the appropriate nerves. The latter result would
pave the way to a practical implementation of a multimodal proof assistant.

Presently MTT only supports modalities which behave like right adjoints. While
this covers a wide class of examples, many modalities are instead left adjoints.
We hope to extend MTT to allow left adjoints to act on types instead of merely
contexts while retaining its practical syntax. Similarly, we also hope to extend
our analysis to some class of modality-specific operations, e.g. Löb induction.
These operations cannot be captured by a mode theory, and so can only be
added axiomatically to MTT (as was done in section 5.3.6.a), thus invalidating
some of our metatheorems. However, such operations play an important role in
many applications, and should be accounted for in a systematic way.



Chapter 6

Presheaf Type Theory

Recall from chapter 4 that every presheaf category is a CwF. In this chapter,
we consider what special things we can do in type theory if we model it in
presheaf CwFs.

Section 6.3 discusses four type formers that can be modelled in any presheaf
category:

• The Glue-type, which takes as input a type Γ ` A type and a partial slice
f : T → A; partial meaning that the slice is only defined when a certain
proposition ϕ holds. It then gives the final total (as opposed to partial)
slice over A that extends (T, f).
This type was introduced by Cohen, Coquand, Huber, and Mörtberg
[Coh+17] in order to give computational content to the univalence axiom
of HoTT. There, in order to guarantee Kan fibrancy (composition of
paths) of the Glue-type, f was required to be an equivalence.
In ParamDTT [NVD17a], we used the Glue-type as an internal parame-
tricity operator. As we did not need fibrancy, we removed the condition
that f be an equivalence. In the technical report of ParamDTT [Nuy17],
I think I was first to interpret the Glue-type in an arbitrary presheaf
category, but this was a straightforward generalization.
We include Orton and A. M. Pitts’s implementation of the Glue-type by
strictifying a pullback [OP18; Ort18].

• We introduced the Weld-type in ParamDTT [NVD17a], also as an internal
parametricity operator. It is dual to Glue and gives the initial completion
of a partial coslice f : A→ T under A. We dualize Orton and A. M. Pitts’s
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implementation of the Glue-type and implement Weld by strictifying a
pushout.

• The Strict-type [OP18; Ort18] is used to perform said strictifications; it
gives the essentially unique completion of a partial ‘isoslice’ i : T ∼= A
over A.

• The pushout needed to implement Weld, is not definable and needs to be
added explicitly as a (moderately novel) type former.

The four type formers above all take partial objects as input, which are only
defined when a proposition ϕ holds. Thus, we need to extend DTT with
propositions. Moreover, in an intensional setting, the idea is that Glue, Weld
and Strict extend their inputs definitionally, which is only useful if it is at least
sometimes decidable whether ϕ is true. In cubical HoTT, Cohen et al. [Coh+17]
give a theory of decidable propositions (called faces) depending only on interval
variables, thus defining a subpresheaf of an n-cube. This theory does not take
proposition variables into account.

In sections 6.1 and 6.2, we give typing rules for dealing with propositions in
DTT modelled in an arbitrary presheaf category, and we do consider proposition
variables, as we believe that this is very desirable in practice.1 These sections do
not sparkle with novelty, but we do generalize (and in the latter case formalize)
the treatments in cubical HoTT [Coh+17] and ParamDTT [NVD17a] and bring
some structure by translating less straightforward intensional concepts to more
straightforward extensional concepts before interpreting those in the presheaf
model. We also sketch a type-checking algorithm, arguing that indeed it is often
possible to reduce true propositions to >.

In section 6.4 on presheaf modalities, we prove that certain functors involving
presheaf categories are automatically strict or weak CwF morphisms.

In section 6.5 on presheaf MTT, we discuss what happens when we want to
use the content of sections 6.1 to 6.3 in MTT.

Those who have consulted the technical reports on ParamDTT [Nuy17] and
RelDTT [Nuy18a], may expect that this chapter would also contain theorems
asserting that certain presheaf modalities preserve certain type formers, which
were used there as a lemma in order to model modal induction principles.
However, these preservation theorems often only hold for internally left adjoint
modalities, and then we argue in the MTT technical report [Gra+20a] that
they can be proven internally.

1Cubical Agda [VMA19] has proposition variables by reusing the interval as the type of
propositions. The connections ∨ and ∧ and the endpoints 0 and 1 serve as logical operators,
the identity serves as xy .=I 1 and the negation as xy .=I 0.
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For readers familiar with the presheaf model of DTT, we recommend a look
at notation 2.3.2 and a quick skim of chapter 4 to acquaint oneself with the
peculiar notations used in this thesis. Readers unfamiliar with the presheaf
model, can either omit the proofs on semantics in the current chapter or learn
about it in chapter 4 or of course in the original work [Hof97; HS97].

6.1 Propositions: Syntax and Presheaf Semantics

In this section, we extend DTT with a judgement form and typing rules for
working with propositions. Semantically, these are essentially types whose
elements are all equal. Such types are also considered internally in many type
theories, including HoTT [Uni13], and proof assistants, including Coq [Coq;
Coq14] and recently also Agda [Nor09].

However, syntactically, these propositions will not serve quite the same purpose
as in the aforementioned systems. Rather, they will take the role of faces in
cubical homotopy type theory [Coh+17]. The idea is that these propositions
will actually reduce to > (logical truth) when they are provable. This allows
us to consider terms and types extending other terms and types. For example,
if a type A exists when the proposition ϕ holds, then we can consider a type
Bϕ such that B> reduces to A. This is then effectively a type that extends A.
Note that this application does not require that propositions reduce to ⊥ when
they are not provable.

We give an intensional and an extensional variant of the typing rules for
propositions (marking inference rules with I resp. E when they belong to only
one variant), each meant to extend DTT with the corresponding identity type,
and we will gradually prove the following results:

Theorem 6.1.1. All typing rules of the extensional variant are sound in any
presheaf CwF over a small base category.

Theorem 6.1.2. All judgement forms of the intensional variant are definable
by translation to other judgements in the extensional variant. After doing so
(in an appropriate way), all typing rules of the intensional variant are derivable
in the extensional variant, and therefore also sound in any presheaf CwF.

Note that we no longer aim for completeness, now that we have moved to
presheaf CwFs.

The extensional version will not be so different from a typical treatment of
propositions as in Coq; the main unusual characteristic will be that logical
operators have computation rules, e.g. ϕ ∧ > = ϕ. In the intensional
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version, however, we will need to avoid ending up with neutral propositions (i.e.
propositions whose computation is stuck on a variable). Having a proposition
that is simply a variable is ok, as we can simply decree that the variable equals
> when the proposition is assumed to be true in the context. However, we
cannot have propositions of the form f a where f is a variable, because it is
problematic from an algorithmic viewpoint to equate f a to >.

The treatment of propositions for this purpose is different in almost all accounts
[see e.g. Coh+17; VMA19; NVD17a]. To our knowledge, none of these handles
proposition variables in a principled way, and all of these are designed with a
specific base category in mind. In this sense, the existing approaches do not
meet our needs. For our purposes in the remainder of this thesis, we needed
some fixed treatment, and we decided to try and give an intensional treatment
that is maximally ready to be implemented, leading to a treatment that is
probably novel in the sense that no prior treatment is identical. However, we do
not consider the implementability of our typing rules to be a core contribution
of this thesis and do not attempt to solidify it in a formal theorem.

The main purpose of the extensional treatment is that we can simplify the
semantics of the intensional system by factoring them through the extensional
one. Similar factorizations, using some form of extensional type theory as the
internal language of a topos, have been used by Birkedal et al. [Bir+19] for
guarded cubical HoTT and later2 by Orton and A. M. Pitts [OP18] for cubical
HoTT.

6.1.1 Structural Rules

In fig. 6.1, we extend DTT with proposition and assertion judgements. The
proposition judgement (Γ ` ϕ prop) states that ϕ is a proposition, and the
assertion judgement (Γ ` ϕ) states that ϕ holds. This means that an assertion
judgement by itself does not classify a GAT term, which is against the definition
of a GAT. However, this can again be solved by a simple trick: we could have
a judgement Γ ` p : ϕ which expresses that p is proof of ϕ, and then have a
typing rule that equates all proofs of the same proposition.

Propositions can be substituted and when a proposition holds, this fact is
preserved under substitution.

A context can be restricted to the situation where ϕ holds (one could think of
this as adding a variable p : ϕ), and this behaves quite similar to weakening.
An object (type, term, proposition, . . . ) which has a proposition in the context,
is called partial; the antonym of partial is total.

2in terms of first arXiv preprint
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Prerequisites: DTT (fig. 3.2).
Judgement forms:

jud:prop
Γ ctx
(Γ ` ϕ prop) jud

jud:assert
Γ ` ϕ prop
(Γ ` ϕ) jud

prop:sub
Γ ` ϕ prop σ : ∆→ Γ
∆ ` ϕ[σ] prop
where ϕ[id] = ϕ ϕ[σ ◦ τ ] = ϕ[σ][τ ]

assert:sub
Γ ` ϕ σ : ∆→ Γ
∆ ` ϕ[σ]

Context restriction:

ctx-restr
Γ ctx
Γ ` ϕ prop
(Γ, ϕ) ctx

ctx-restr:intro
σ : ∆→ Γ
∆ ` ϕ[σ]
(σ, ok) : ∆→ (Γ, ϕ)
where (σ, ok) ◦ ρ = (σ ◦ ρ, ok)

τ = (π ◦ τ, ok) (ctx-restr:eta)

ctx-restr:wkn
Γ ctx
Γ ` ϕ prop
π : (Γ, ϕ)→ Γ
where π ◦ (σ, ok) = σ (ctx-restr:wkn:beta)

ctx-restr:var
Γ ctx
Γ ` ϕ prop
Γ, ϕ ` ϕ

Figure 6.1: Structural rules for propositions.

Proof of theorem 6.1.1. Semantically, a proposition Γ ` ϕ prop is a subpresheaf
Γ.ϕ of Γ. Substitution is defined by pullback (preimage under σ). The judgement
Γ ` ϕ is interpreted by Γ.ϕ = Γ. The restricted context is of course interpreted
by Γ.ϕ, making the other operations straightforward to model.

Notation 6.1.3. For γ ∈ (W ⇒ Γ), we write W � ϕ[γ〉 for the statement
γ ∈ (W ⇒ Γ.ϕ), mimicking the assertion judgement.

6.1.2 Universe of Propositions

In the extensional system, just like there is a universe U` classifying types of
level ` (fig. 3.10), we will have a universe Prop classifying propositions. We will
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Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1).
Extensional variant:

propuni
Γ ctx
Γ ` Prop type0

E

propuni:intro
Γ ` ϕ prop
Γ ` pϕq : Prop
where θ = pEl θq

(propuni:eta)

E

propuni:elim
Γ ` θ : Prop
Γ ` El θ prop
where El pϕq = ϕ

(propuni:beta)

E

Intensional variant:
Well-behaved propositions:

Γ ctx
(Γ ` θ :: Prop) jud

I
Γ ` ϕ prop
Γ ` pϕq :: Prop
where pEl θq = θ

I
Γ ` θ :: Prop
Γ ` El θ prop
where El pϕq = ϕ

I

Γ ` θ :: Prop σ : ∆→ Γ
∆ ` θ[σ] :: Prop
where θ[id] = θ θ[σ ◦ τ ] = θ[σ][τ ]

Context extension with a proposition:

Γ ctx
(Γ, χ :: Prop) ctx

(other rules analogous to fig. 3.2)

Π-types over Prop:

Γ, χ :: Prop ` T type`
Γ ` (χ :: Prop)→ T type`

(other rules analogous to fig. 3.3)

Figure 6.2: Typing rules for the universe of propositions.

generally omit the encoding and decoding operations.

In the intensional system, we want to avoid obtaining propositions that are
eliminations stuck on a variable. Therefore, following Cohen et al.’s treatment
of interval variables [Coh+17], we perform a hack: we make Prop only a
pseudotype: it does not appear in a type judgement (so that we cannot apply
arbitrary type formers to it) but instead inhabiting Prop is a judgement form
in itself. We do allow Prop to appear in the domain of a Π-type. So functions
can take propositions as input, but not as output. Similarly, we cannot have
Prop×B, so we avoid propositions of the form fst z where z is a variable.
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Proof of theorem 6.1.1. In order to define the semantics of Prop, we need to
define (W � Prop[γ〉). By lemma 3.2.4, this is isomorphic to (yW ` Prop[γ]) =
(yW ` Prop), which by the typing rules is clearly isomorphic to (yW ` prop), i.e.
the set of subpresheaves of yW . Unsurprisingly, this reveals that Prop ∈ Ty0(())
is actually the type counterpart (in the sense of definition 3.2.8) of the subobject
classifier Prop ∈ Psh(W) (section 2.3.6). We then interpret El and pxyq as the
encoding and decoding of subpresheaves as/from morphisms to the subobject
classifier.

Proof of theorem 6.1.2. We define Γ ` θ :: Prop simply as Γ ` θ : Prop. Then
all other rules follow.

6.1.3 Logical Operators

The typing rules discussed in this section are listed in fig. 6.3.

Logical truth Logical truth always holds. In the extensional system, we
postulate that any proposition that holds in a context, is in that context equal
to >. In the intensional system, we will prove this by induction, and we need
only postulate it in the base case.

Proposition 6.1.4. In the intensional system, every proposition that holds, is
equal to >.

Logical conjunction The logical conjunction computes to one operand if the
other is >. We need no introduction rules, because if ϕ and χ both hold, then
they are both equal to >, so that ϕ ∧ χ = > ∧> = >. We do need elimination
rules.

Logical falsehood Logical falsehood of course has no introduction rule. It is
eliminated in the same way as Empty (fig. 3.7). However, the motive T gets no
assumption that ⊥ holds. Indeed, such an assumption is useless: since Γ ` ⊥,
we know that ⊥ = >, and it is useless to assume >.

We equip logical falsehood with an η-rule which not only applies to terms
but to inhabitants of arbitrary judgement forms. This effectively asserts that
everything is equal as soon as ⊥ holds.

In the extensional system, the η-rule does not really add anything. Indeed,
there, thanks to the existence of universes and the non-existence of a special
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Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1).
Logical truth:

truth
Γ ctx
Γ ` > prop

truth:intro
Γ ` ctx
Γ ` >

Uniqueness of truth:
E: Always holds. I: Holds as a rule for variables; then admissible for all propositions
(proposition 6.1.4).

ut
Γ ` ϕ
Γ ` ϕ = > prop

Logical conjunction:

and
Γ ` ϕ, χ prop
Γ ` ϕ ∧ χ prop
where ϕ ∧ > = ϕ (and:red:fst)

> ∧ χ = χ (and:red:snd)

and:elim:fst
Γ ` ϕ ∧ χ
Γ ` ϕ

and:elim:snd
Γ ` ϕ ∧ χ
Γ ` χ

Logical falsehood:

falsehood
Γ ctx
Γ ` ⊥ prop

falsehood:elim
Γ ` T type Γ ` ⊥
Γ ` {} : T

falsehood:eta
Γ ` j1, j2 : J Γ ` ⊥
Γ ` j1 = j2 : J

Logical disjunction:

or
Γ ` ϕ, χ prop
Γ ` ϕ ∨ χ prop
where ϕ ∨ > = > (or:red:inl)

> ∨ χ = > (or:red:inr)

or:elim
Γ, ϕ ` tinl : T Γ ` T type
Γ, χ ` tinr : T Γ ` ϕ ∨ χ
Γ, ϕ ∧ χ ` tinl = tinr : T
Γ ` {ϕ ? tinl | χ ? tinr} : T
where {> ? tinl | χ ? tinr} = tinl (or:inl:beta)

{ϕ ? tinl | > ? tinr} = tinr (or:inr:beta)

or:eta
Γ ` j1, j2 : J
Γ, ϕ ` j1 = j2 : J
Γ, χ ` j1 = j2 : J
Γ ` ϕ ∨ χ
Γ ` j1 = j2 : J

Figure 6.3: Typing rules for logical operators and proof elimination.



PROPOSITIONS: SYNTAX AND PRESHEAF SEMANTICS 163

Prop judgement, every judgemental equality is equivalent to a judgemental
equality for terms. And the η-rule for terms holds judgementally since it is
provable propositionally.

Logical disjunction Logical disjunction computes to > if one operand is >.
Hence, again, we need no introduction rules. We eliminate by pattern matching.
The eliminator is similar to that of the coproduct type (fig. 3.6), but requires
that the clauses for both patterns match as we do not distinguish between
evidence of ϕ ∨ χ that proves the left vs. the right operand. Again, it is
superfluous to let the motive assume ϕ ∨ χ. Again, the η-rule holds for all
judgement forms.

Fulfilling our obligations

Proof of theorem 6.1.1. > We (must) interpret > as the full subpresheaf Γ.> :=
Γ ⊆ Γ. Clearly then, > holds. Uniqueness of proofs is semantically obvious
because both judgements mean the same thing.

∧ We define Γ.(ϕ∧χ) := Γ.ϕ∩Γ.χ. This clearly satisfies the computation rules
for >, as well as the elimination rules for ∧.

⊥ We define Γ.⊥ as the empty presheaf. Then Γ ` ⊥ means that Γ is empty so
we can soundly say whatever we want in context Γ.

∨ We define Γ.(ϕ∨χ) := Γ.ϕ∪Γ.χ. This clearly satisfies the computation rules
for >.
For the eliminator, call the resulting term t. The premise Γ ` ϕ∨χ means
that Γ = Γ.ϕ ∪ Γ.χ. Then every cell γ : W ⇒ Γ is a cell of either Γ.ϕ or
Γ.χ. In the former case, we define t[γ〉 as tinl[γ, tt〉; in the latter as tinr[γ, tt〉.
In the overlap of both cases, we have ensured that both definitions match,
so that the resulting term automatically respects restriction.

Proof of theorem 6.1.2. We did not add any intensional-specific typing rules.

Proof of proposition 6.1.4. We prove that any proposition Γ ` ϕ prop which
holds (Γ ` ϕ) is true (Γ ` ϕ = > prop).

> Trivial.
∧ Assume ϕ ∧ χ holds. Then ϕ and χ hold, so ϕ ∧ χ = > ∧> = >.
⊥ Assume ⊥ holds. Then by the η-rule for ⊥-elimination, everything is equal.
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∨ Assume ϕ ∨ χ holds. Then by the η-rule for ∨-elimination, we only need to
prove ϕ ∨ χ = > assuming that either ϕ or χ holds. But by the induction
hypothesis, this operand is then equal to >, so that ϕ ∨ χ = >.

6.1.4 Equality Proposition

Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth
(fig. 6.3).

eq
Γ ` A type`
Γ ` a, b : A
Γ ` a .=A b prop
where (a .=A a) = > (eq:red)

eq:reflection
Γ ` a .=A b

Γ ` a = b : A
E

eq:j
Γ ` a : A
Γ, y : A, a .=A y ` T type Γ ` b : A
Γ ` trefl : T [a/y, refla/w] Γ ` a .=A b

Γ ` {b := a ? trefl} : T [b/y]
where {a := a ? trefl} = trefl (eq:beta)
To be supplemented later with an η-rule.

I

Figure 6.4: Typing rules for the equality proposition.

We introduce an equality proposition which computes to > if both hands are
judgementally equal. Hence, we do not need an introduction rule for reflexivity.

The eliminators are essentially the same as for the intensional/extensional
identity type (fig. 3.8). However, unlike the eliminators for falsehood and
disjunction, the use of the eliminator (J-rule) for the intensional identity
proposition requires a choice of motive T . Hence, we cannot simply postulate
an η-rule for arbitrary judgement forms as we did earlier, and therefore we
cannot yet prove proposition 6.1.4.

The computation rules eq:red and eq:beta are impractical from an
implementation perspective. Although we aim for judgemental equality to
be decidable, it is still a judgement and deciding its derivability can be a
fair amount of work. Moreover, in a language with implicit arguments, its
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derivability can depend on the value of certain metavariables. It is therefore
inconvenient if the rewriting algorithm has to wait for such judgement to be
decided.

We will only resolve the aforementioned issues when we have more knowledge
of the specific application at hand. Typically, we will only allow the use of
the equality proposition for a specific pseudotype (e.g. the interval I in cubical
type theory) which, like Prop, can only appear in the domain of a Π-type and
nowhere else in type formers, in order to avoid having to deal with terms that
are stuck on eliminating a variable.

We do not postulate function extensionality for the identity proposition. One
reason is that it follows from function extensionality for the identity type (using
proof types, see section 6.2). More importantly, we do not intend to use the
identity proposition on types as advanced as the Π-type; rather, we intend to
reserve it for types such as the interval I.

Proof of theorem 6.1.1. We define

(W ⇒ Γ.(a .=A b)) := {γ : W ⇒ Γ | a[γ〉 = b[γ〉}.

Thus, Γ ` a .=A b asserts that a[γ〉 = b[γ〉 for all cells γ : W ⇒ Γ, i.e. a = b.

Proof of theorem 6.1.2. In the extensional system, we can define refla := tt and
t := trefl.

6.1.5 System Notation

We adopt notational conventions, officially purely syntactic sugar, that are
similar to the ‘system’ notation introduced by Cohen et al. [Coh+17].

Notation 6.1.5. While deciding inhabitation for any given proposition in a
context, may be an undecidable problem, it is often easily resolved by a human
reader. For this reason, we will prefer to use some more lightweight notations
in which we omit proof variables and proof terms:

• Just like we may informally use pattern matching notation for matching
deeper than one level, we will do so for this notation, e.g. {ϕ ? t1 | χ ?
t2 | ψ ? t3} can mean

{ϕ ? t1 | χ ∨ ψ ? {χ ? t2 | ψ ? t3}},

and {i := 0 ? t0 | i := 1 ? t1} means

{0 .=I i ? {i := 0 ? t0} | 1
.=I i ? {i := 1 ? t1}.}
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Of course remark 3.2.18 also applies.

6.1.6 Sketch of a Type Checking Algorithm

Without claiming a mathematical theorem, we motivate our choices in the
intensional system by sketching how a type-checking algorithm might work.
The idea is that, when type-checking a term Γ ` t : T , we force most or all
propositions assumed by Γ. The ‘or’ appears because the actions taken will be
slightly different for checking judgements with evidence (e.g. term, type and
proposition judgements) and checking judgements without evidence (assertion
and equality judgements). The actions needed to force ϕ are determined by
induction:

∧ In order to force ϕ ∧ χ, force ϕ and force χ.
> In order to force >, do nothing.
∨ When checking a judgement with evidence, we do not force disjunctions.

When checking a judgement without evidence, in order to force ϕ ∨ χ, we
simply check the judgement at hand twice in different extended contexts,
namely (Γ, ϕ) and (Γ, χ). That is, the judgement must hold when we
force ϕ and it must hold when we force χ.

⊥ When checking a judgement with evidence, we do not force ⊥. When
checking a judgement without evidence, in order to force ⊥, we simply do
not check the judgement at all. That is, the judgement need not hold.

ϕ In order to force a proposition variable, we just substitute it with >. This
is justified: the proposition is asserted and is a variable, so even in the
intensional system we know that it is equal to > anyway.

.= The way to force equalities depends on the specific application. Typically,
assumptions of the form x

.=A a where x is a variable, will be forced by
substituting a/x, as is justified by the J-rule for the equality proposition.
Obvious falsities such as 0 .=I 1 in a cubical type theory may be treated
as ⊥.

An assertion judgement Γ ` ϕ is approved if ϕ reduces to > after forcing. Other
judgements are checked the same way as usual, but after forcing.

Example 6.1.6 (Cubical type theory). In presheaf type theory for cartesian
cubical sets (example 2.3.10), we will typically have a closed interval type I
modelled by y(i : I). Similar to Prop, in the intensional system we will make
this a pseudotype whose only terms are variables, 0 and 1. We then only allow
.= to be used on the type I, which makes it easy to force i .=I j: if either hand
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is a variable, we substitute it for the other. If both are constants, then we force
it as if it were > (if the constants are equal) or ⊥ (if they are not).

For CCHM cubical sets (example 2.3.12), Cohen, Coquand, Huber, and Mörtberg
[Coh+17] have a similar but more complicated procédé, where terms of the
interval pseudotype are elements of the free de Morgan algebra over the available
interval variables.

6.2 Types for Propositions

6.2.1 Proof Types

Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth
(fig. 6.3).

proof
Γ ` ϕ prop
Γ ` [ϕ] type0

E

proof:intro
Γ ` ϕ
Γ ` tt : [ϕ]
where p = tt (proof:eta)

E

proof:elim
Γ ` p : [ϕ]
Γ ` ϕ

E

Figure 6.5: Typing rules for proof types.

In the extensional system, we will add a proof type constructor (fig. 6.5) which
promotes propositions to types. This type constructor will allow us to implement
many interesting types from the intensional system. The introduction rule
inhabits [ϕ] when ϕ holds; the elimination rule asserts ϕ when [ϕ] is inhabited.
The η-rule states that any element of [ϕ] equals tt.

Proof of theorem 6.1.1. Given γ : W ⇒ Γ

[ϕ][γ〉 = {tt | γ ∈ (W ⇒ Γ.ϕ)}.

If Γ ` ϕ, then we know that Γ.ϕ = Γ, so we can define tt[γ〉 = tt. Conversely,
if Γ ` p : [ϕ], then p[ϕ〉 ∈ {tt | γ ∈ (W ⇒ Γ.ϕ)} clearly equals tt, asserting the
η-rule, and also asserts that γ ∈ (W ⇒ Γ.ϕ). Since this holds for all γ : W ⇒ Γ,
we concldue that Γ.ϕ = Γ, i.e. ϕ holds.

Remark 6.2.1. We could alternatively implement [ϕ] := (ϕ ≡Prop >).
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6.2.2 Extension Types

The elimination rule for the disjunction has an equality judgement in its premises.
In the extensional DTT this is unproblematic, but in intensional DTT we
can expect situations where the terms we want to use are propositionally
but not judgementally equal. In order to deal with such situations, we can
extend intensional DTT with a type A ext{ϕ ? a} of terms of type A which are
judgementally equal to a when ϕ = >.

Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth
(fig. 6.3), proof types (fig. 6.5).

extension
Γ ` A type` Γ ` ϕ prop Γ, ϕ ` a : A
Γ ` A ext{ϕ ? a} type`

I

extension:intro
Γ ` a : A Γ ` ϕ prop
Γ ` cutϕ a : A ext{ϕ ? a}
where e = cutϕ(paste{ϕ ? a | e})

(extension:eta)

I

extension:elim
Γ ` e : A ext{ϕ ? a}
Γ ` paste{ϕ ? a | e} : A
where paste{> ? a | e} = a

(extension:strict)
paste{ϕ ? a | cutϕ a} = a
(extension:beta)

I

Figure 6.6: Typing rules for extension types.

Figure 6.6 lists the typing rules for this extension type.3 The formation rule
takes a type A, a proposition ϕ and a partial term a defined when ϕ holds.
The introduction rule takes only a term a : A. By weakening that term to
context (Γ, ϕ), we get a partial term to be used in the type. Of course, since
everything respects judgemental equality, we also have cutϕ a : A ext{ϕ ? b} if
Γ, ϕ ` a = b : A. The elimination rule promotes an element of A ext{ϕ ? a} to
an element of A that definitionally extends a on ϕ.

Proof of theorem 6.1.2. In the extensional system, we can define A ext{ϕ ? a} =
(x : A) × ((p : [ϕ]) → x ≡A a). The introduction and elimination rules are
straightforward to implement and the required equations follow.

3Others [e.g. RS17] have used the term ‘extension type’ for what is essentially a quan-
tification over an extension type, e.g. a construct such as (i : I)→ A ext{i := 0 ? a0 | i := 1 ?
a1}.
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The idea is now that, if we have terms Γ, ϕ ` tinl : T and Γ, χ ` tinr : T and
we know that if ϕ ∧ χ holds, then tinl ≡T tinr propositionally, then we get
cutχ tinl : T ext{χ ? tinl}, which we can convert to e : T ext{χ ? tinr} using the
J-rule, and then we get Γ, ϕ ` paste{χ ? tinr | e} : T which is propositionally
equal to tinl and can be used as a clause of the disjunction eliminator, yielding

Γ, ϕ ∨ χ ` {ϕ ? paste{χ ? tinr | e} | χ ? tinr} : T.

6.3 Presheaf Types: Syntax and Presheaf Seman-
tics

In this section, we extend dependent type theory with three type formers that are
sound in every presheaf category: Glue [Coh+17; NVD17a], Weld [NVD17a] and
Strict [OP18; Ort18]. Given a total type A and a partial slice (T, f : T → A) /
coslice (T, f : A→ T ) / isoslice (T, i : A ∼= T ), the type formers Glue/Weld/Strict
(resp.) give us a universal extension of that partial slice/coslice/isoslice, which
by the universal property is unique up to isomorphism. In the diagrams below,
the bottom row shows a general situation which reduces to the top row when ϕ
holds:

Γ, ϕ ` A T
foo A

f // T A oo
i
∼=

T

Γ ` A Glue
unglue
oo A

weld
// Weld A oo

∼=
strict

Strict

It is clear that, at least in the extensional system where we need not worry about
η-rules, Strict will be definable internally from either Glue or Weld. Conversely,
Orton and Pitts [OP18; Ort18] show that Glue is definable from Strict, by
strictifying an internally definable pullback. Their construction can be dualized,
but the required pushout is not definable internally. It is, however, sound in
any presheaf category, so we provide a type former for it in section 6.3.3.

6.3.1 Strictification

The strictness axiom is one out of 9 axioms that Orton and Pitts [OP18; Ort18]
rely on to build what we call a meta-internal4 model of cubical homotopy type

4By a meta-internal approach, we mean an approach that models a type system internally
in another type system, as opposed to an auto-internal approach, that implements the special
features of a type system in the system itself.
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theory. It is sound in every presheaf category. Orton and Pitts present it as
an axiom (a postulated invariant of a type expressing a certain theorem), but
we present it (entirely equivalently) as a type former Strict. The strictness
type is a bit obnoxious when it comes to β- and η-rules, so we only give it
in the extensional system. The typing rules are given densely in fig. 6.7.

Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth (fig. 6.3).

Γ ` A type` Γ, ϕ ` T type`
Γ ` ϕ prop Γ, ϕ ` i : T ∼= A

Γ ` Strict{A ∼= (ϕ ? T, i)} type` (strict)
where Strict{A ∼= (> ? T, i)} = T (strict:strict)
Γ ` strict{ϕ ? i} : Strict{A ∼= (ϕ ? T, i)} ∼= A (strict:iso)
where Γ ` strict{> ? i} = i (strict:iso:strict)

E

Figure 6.7: Typing rules for the strictness type.

Given a total type A and a partial type T that is isomorphic to A, we get
an extension Strict{A ∼= (ϕ ? T, i)} of T and an extension of the isomorphism.
The presentation is dense in the sense that we would normally unpack the
rule strict:iso into four rules strict:intro, strict:elim, strict:beta and
strict:eta corresponding to the four components of the isomorphism, and
similar for strict:iso:strict.

Proof of theorem 6.1.1. An analysis of the semantics of the type of isomor-
phisms, reveals that the information encoded in i is exactly an isomorphism of
presheaves A[π] ∼= T (the weakening is over π : Γ.ϕ ⊆ Γ), where both presheaves
are over W/Γ. Given γ : W ⇒ Γ, we define

(W � Strict{A ∼= (ϕ ? T, i)}[γ〉) :=
{

(W � T [γ〉) if γ is a cell of Γ.ϕ,
(W � A[γ〉) otherwise.

Restriction along ϕ : (V, γ ◦ ϕ)→ (W,γ) :W/Γ where γ ◦ ϕ is a cell of Γ.ϕ but
γ is not, is defined by applying the isomorphism.

Clearly, the resulting presheaf over W/Γ extends T and is isomorphic to A by
an isomorphism extending the one given by i.
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Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth (fig. 6.3).

Γ ` A type` Γ, ϕ ` T type`
Γ ` ϕ prop Γ, ϕ ` f : T → A

Γ ` Glue{A← (ϕ ? T, f)} type` (glue)
where Glue{A← (> ? T, f)} = T (glue:strict)
Γ ` unglue{ϕ ? f} : Glue{A← (ϕ ? T, f)} → A (glue:elim)
where Γ ` unglue{> ? f} = f (glue:elim:strict)

Γ ` unglue{ϕ ? f}(glue{a←[ (ϕ ? t)}) = a (glue:beta)

I

glue:intro
Γ ` a : A Γ, ϕ ` t : T Γ, ϕ ` f t = a : A
Γ ` glue{a← [ (ϕ ? t)} : Glue{A← (ϕ ? T, f)}
where glue{a←[ (> ? t)} = t : T (glue:strict:beta)

g = glue{unglue{ϕ ? f}(g)←[ (ϕ ? g)} (glue:eta)

I

Figure 6.8: Typing rules for the Glue type.

6.3.2 Glueing: The Final Slice Extension Operation

If we replace every isomorphism sign (∼=) in the typing rules for Strict, we get
excellent formation and elimination rules for the Glue type (fig. 6.8).5 However,
we are still in need of a good introduction rule. In order to find out what that
rule should look like, observe that in the extensional system we can obtain the
final extension of the coslice (T, f) (up to isomorphism) by taking a pullback:

Glue{A← (ϕ ? Tf)} unglue //

const
��

A

const
��

(p : [ϕ])→ T
f◦xy

// [ϕ]→ A.

Indeed, if ϕ = >, then the vertical arrow const : A ∼= ([>] → A) becomes an
isomorphism, so that the pullback will be isomorphic to (p : [>])→ T , which
is isomorphic to T . This shows that the pullback extends T . Moreover, any
slice (G, u) extending (T, f) will factor through the pullback, since we have
u : G→ A and const : G→ ((p : [ϕ])→ T ) compatibly.

5Again, merely for brevity, we are giving a rule for unglue{ϕ ? f} as a function instead of
the fully applied unglue{ϕ ? f} g.
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This shows that, despite the fact that there is only a single eliminator unglue,
there are actually two ways to eliminate an element g of the Glue type: we can
apply unglue, or we can assume ϕ and obtain g : T . Thus, a constructor by
copattern matching will provide data for these two constructors which match
up at [ϕ]→ A. This is exactly the input of the glue constructor.

Proof of theorem 6.1.2. [OP18; Ort18] From the above, it is immediately clear
that we can define the Glue-type up to isomorphism as

Glue{A← (ϕ ? T, f)} :∼= (a : A)× (t : (p : [ϕ])→ T )× ((p : [ϕ])→ (f t ≡A a)).

If ϕ holds, the right hand side is isomorphic to T , so we can use Strict to obtain
a type isomorphic to the above that strictly extends T . The constructor and
eliminator are trivial to implement.

6.3.3 Pushout Type

Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth (fig. 6.3).

pushout
Γ ` A,B type` Γ, y : B ` ϕ prop
Γ, y : B,ϕ ` a : A
Γ ` A ] (y : B � {ϕ ? a}) type`

pushout:inl
Γ ` a : A
Γ ` inl a : A ] (y : B � {ϕ ? a})

pushout:inr
Γ ` b : B
Γ ` inr b : A ] (y : B � {ϕ ? a})
where Γ, ϕ[b/y] ` inr b = inl a[b/y] (pushout:tip)

pushout:elim
Γ, z : A ] (y : B � {ϕ ? a}) ` T type
Γ, x : A ` tinl : T [inlx/z]
Γ, y : B ` tinr : T [inr y/z]
Γ, y : B,ϕ ` tinr = tinl[a[y/y]/x] : T [inr y/z]
Γ ` c : A ] (y : B � {ϕ ? a})
Γ ` t := case c of {inlx 7→ tinl | inr y 7→ tinr} : T [c/z]
where t[inl a1/c] = tinl[a1/x] (pushout:inl:beta)

t[inr b/c] = tinr[b/y] (pushout:inr:beta)

Figure 6.9: Typing rules for the pushout type.
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In order to dualize the above reasoning for the Weld type, we need to be able
to take the dual pushout internally. We add a pushout type former for taking
a class of pushouts that is only slightly larger than what we need:6 given the
inputs of the pushout rule (fig. 6.9), we want to take the pushout of the
following cospan constructed in the extensional system:

(y : B)× [ϕ] λy.λp.a //

fst
��

A

inl
��

B
inr

// A ] (y : B � {ϕ ? a}).

Clearly the pushout type should get two constructors inl and inr which match
up when ϕ holds. The eliminator needs to handle these two constructors in a
compatible way.

Proof of theorem 6.1.1. All presheaf categories have pushouts (proposition 2.3.6),
so this holds in particular for Psh(W/Γ). The only non-trivial remaining thing
is that pushouts admit a dependent eliminator. This however follows from
the fact that terms of type T are just substitutions to Γ.P.T (where P is the
pushout type) whose weakening is predetermined.

6.3.4 Welding: The Initial Coslice Extension Operation

Again, if we replace the isomorphism signs in the typing rules for Strict with
arrows, now pointing the other way, we get formation and introduction rules
for Weld. In order to eliminate, we observe that in the extensional system, the
initial coslice over (T, f) can be obtained as a pushout:

[ϕ]×A (p : [ϕ])× T//id×f

A

��
snd

Weld{A→ (ϕ ? Tf)}.//
weld

��
snd

by reasoning dual to that in section 6.3.2. This shows that there are two ways to
construct an element of the Weld type: either by using the weld constructor or

6We could of course add a general pushout type former, but the one introduced here works
even in the intensional system satisfying the definitional equalities that Weld needs to inherit.
This can become relevant if we actually want to apply this construction in a programming
language using an intensional version of Strict.
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Prerequisites: DTT (fig. 3.2), propositions (fig. 6.1), logical truth (fig. 6.3).

Γ ` A type` Γ, ϕ ` T type`
Γ ` ϕ prop Γ, ϕ ` f : A→ T

Γ `Weld{A→ (ϕ ? T, f)} type` (weld)
where Weld{A→ (> ? T, f)} = T (weld:strict)
Γ ` weld{ϕ ? f} : A→Weld{A→ (ϕ ? T, f)} (weld:intro)
where Γ ` weld{> ? f} = f (weld:intro:strict)

I

weld:elim
Γ, z : Weld{A→ (ϕ ? T, f)} ` S type
Γ, x : A ` sweld : S[weld{ϕ ? f}x/z]
Γ, ϕ, z : T ` s> : S
Γ, ϕ, x : A ` sweld = s>[f x/z] : S[f x/z]
Γ ` w : Weld{A→ (ϕ ? T, f)}
Γ ` s := casew of {weld{> ? f}x 7→ sweld | ϕ ? z 7→ s>} : S[w/z]
where s[weld{ϕ ? f} a/w] = sweld[a/x] (weld:beta)

s[>/ϕ] = s>[w/z] (weld:strict:beta)

I

Figure 6.10: Typing rules for the Weld type.

by asserting ϕ and taking an element of T . Hence, we give a pattern matching
eliminator that requires the user to handle both cases compatibly.

Proof of theorem 6.1.2. We can define the Weld-type up to isomorphism by the
following pushout:

Weld{A→ (ϕ ? Tf)} :∼= ((p : [ϕ])× T ) ] (x : A � {ϕ ? (tt, f x)}).

When ϕ holds, the inr constructor becomes redundant and the right hand side
becomes isomorphic to T , so we can use Strict to obtain a type isomorphic
to the above that strictly extends T . The constructor and eliminator are
straightforward to implement.

6.4 Presheaf Modalities

In this section, we prove that certain functors involving presheaf categories are
automatically strict or weak CwF morphisms.
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6.4.1 Right Adjoint Presheaf Functors

Theorem 6.4.1. If a functor R : C → Psh(W) from an arbitrary CwF to
a presheaf CwF has a left adjoint L, then it is automatically a weak CwF
morphism.

Proof. Given Γ ` T type @ C, we need to define RΓ ` RT type @ Psh(W).
So pick δ : W ⇒ RΓ and write γ = A−1(δ) : LyW → Γ, so δ = A(γ).
Then we need to define (W � (RT )[A(γ)〉). By theorem 4.1.4, this will be
isomorphic to (yW ` (RT )[A(γ)]), which by proposition 5.1.9 will be isomorphic
to (LyW ` T [γ]). So we must (up to isomorphism) define

(W � (RT )[A(γ)〉) := {A(t) |LyW ` t : T [γ]}.

The symbol A is a label (notation 2.0.1). Restriction is of course given by
A(t)〈ϕ〉 := A(t[Lyϕ]).

We have to show that the action of R on types defined above is natural, i.e.
that (RT )[Rσ] = R(T [σ]). We have:

(W � (RT )[Rσ][A(γ)〉) = (W � (RT )[Rσ ◦A(γ)〉)

= (W � (RT )[A(σ ◦ γ)〉)

= (LyW ` T [σ ◦ γ])

= (LyW ` T [σ][γ])

= (W � (R(T [σ]))[A(γ)〉).

Given Γ ` t : T , we must define RΓ ` Rt : RT . Again, we have no choice.
Indeed, pick δ = A(γ) : W ⇒ RΓ. By corollary 5.1.12, we will have

(Rt)[A(γ)〉 = (Rt)[A(γ)][id〉 = A(t[γ])[id〉 = A(t[γ]).

So we should define (Rt)[A(γ)〉 := A(t[γ]). This is compatible with restriction:

(Rt)[A(γ)〉〈ϕ〉 = A(t[γ])〈ϕ〉 = A(t[γ][Lyϕ])

= (Rt)[A(γ ◦ Lyϕ)〉 = (Rt)[A(γ) ◦ ϕ〉.

Again, we have to show that the action of R on terms is natural, i.e. that
(Rt)[Rσ] = R(t[σ]), but the reasoning is similar to the reasoning for types.
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Being a right adjoint, R preserves the terminal object (the empty context) up
to isomorphism.

For context extension, we have:

(W ⇒ R(Γ.T )) ∼= (LyW → Γ.T )

∼= (σ : LyW → Γ)× (LyW ` T [σ])

= (δ : W ⇒ RΓ)× (W � (RT )[δ〉)

= (W ⇒ RΓ.RT ),

so context extension is preserved up to isomorphism.

Corollary 6.4.2. The right lifting7 (theorem 2.3.32) F∗ : Psh(V) → Psh(W)
of a functor F : V → W is a weak CwF morphism.

We will write (W � (F∗T )[BF (γ)〉) := {BF (t) |F ∗yW ` t : T [γ]}.

6.4.2 Central Liftings of Base Functors

Theorem 6.4.3. The central lifting (theorem 2.3.32) F ∗ : Psh(W)→ Psh(V)
of a functor F : V → W is a strict CwF morphism.

Proof. In the proof of theorem 6.4.1, we saw that up to isomorphism, we never
had a choice. So the only thing we can do now is redefine the action on types
in a way isomorphic to the one used before, and hope that the resulting CwF
morphism will be strict. To this end, we use the property that F! ◦ y ∼= y ◦ F ,
and define

(V � (F ∗T )[AF (γ)〉) := {AF (t) |FV � t : T [γ〉},

(F ∗t)[AF (γ)〉 := AF (t[γ〉).

We then have

(V ⇒ F ∗(Γ.T )) = (FV ⇒ Γ.T )

= (γ : FV ⇒ Γ)× (FV � T [γ〉)

= (AF (γ) : V ⇒ F ∗Γ)× (V � (F ∗T )[AF (γ)〉)
7For central liftings, we have a stronger theorem 6.4.3.
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= (V ⇒ F ∗Γ.F ∗T ),

and similar for the empty context.

6.5 Presheaf MTT

Prerequisites: Structural rules for propositions fig. 6.1, MTT fig. 5.5.
Modal context restriction:
Generalizes ctx-restr and corresponding rules.

ctx-modrestr
Γ ctx @ q
Γ,µm

µ ` ϕ prop @ p
µ : p→ q

Γ, µ pm ϕ ctx @ q

ctx-modrestr:intro
σ : ∆→ Γ @ q µ : p→ q
∆,µm

µ ` ϕ[σ, ↓mm] @ p

(σ, ok) : ∆→ (Γ, µ pm ϕ) @ q
where (σ, ok) ◦ ρ = (σ ◦ ρ, ok)

τ = (π ◦ τ, ok) (ctx-modrestr:eta)

ctx-modrestr:wkn
Γ ctx @ q
Γ,µm

µ ` ϕ prop @ p

π : (Γ, µ pm ϕ)→ Γ @ q
where π ◦ (σ, ok) = σ

(ctx-modrestr:wkn:beta)

ctx-modrestr:var
Γ ctx @ q
Γ,µm

µ ` ϕ prop @ p
α : µ⇒ locks(Θ)
Γ, µ pm ϕ,Θ ` ϕ[α↓mticks(Θ)] @ p

DRA for propositions:

propdra
µ : p→ q
Γ ctx @ q
Γ,µm

µ ` ϕ prop @ p

Γ ` 〈µ | ϕ〉 prop @ q
where 〈µ | >〉 = >

(propdra:red)

propdra:intro
µ : p→ q
Γ ctx @ q
Γ,µm

µ ` ϕ @ p

Γ ` 〈µ | ϕ〉 @ q

propdra:elim
µ : p→ q
Γ ctx @ q
Γ ` 〈µ | ϕ〉 @ q

Γ,µm
µ ` ϕ @ p

Figure 6.11: Modal typing rules for presheaf type theory

In this section, we briefly consider some additional typing rules that are of
interest when using MTT modelled in presheaf categories. Figure 6.11 lists
typing rules for modal context restriction, which generalizes context restriction
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(fig. 6.1) in the same way that modal context extension (fig. 5.5) generalizes
ordinary context extension (fig. 3.2).

On top of that, fig. 6.11 lists typing rules for applying a DRA to a proposition.
We choose a DRA, rather than an MTT-style weak DRA, because most presheaf
modalities arise as central or right liftings anyway and are therefore DRAs.
Of course every DRA is also a weak DRA. These rules are the obvious proof-
irrelevant counterpart of those in fig. 5.4. Note that propdra:intro is actually
unnecessary as it follows from propdra:red and ut.

Theorem 6.5.1. The typing rules in fig. 6.11 are sound in any model of MTT
which interprets modes as presheaf categories and modalities as DRAs.

Proof. We first model the DRA. Write L = JµµK. We have

(W � 〈µ | ϕ〉[γ〉)⇔ (yW ` 〈µ | ϕ〉[γ])

= (yW ` 〈µ | ϕ[Lγ]〉)⇔ (LyW ` ϕ[Lγ])

so we (must) define

(W � 〈µ | ϕ〉[γ〉) :⇔ (LyW ` ϕ[Lγ]).

It follows that [〈µ | ϕ〉] ∼= 〈µ | [ϕ]〉 so that the introduction and elimination rules
clearly hold.

Next, we model (Γ, µ p ϕ) as (Γ, 〈µ | ϕ〉). Then ctx-modrestr and ctx-
modrestr:wkn are clearly sound, whereas ctx-modrestr:var is derived by
by using, in this order, ctx-restr:var, propdra:elim, lock:fmap over α,
and then strict functoriality of locks and weakening to turn µlocks(Θ) into Θ.

6.5.1 Extending the Type Checking Algorithm

Regarding the algorithm sketched in section 6.1.6:

• Of course, we force 〈µ | ϕ〉 by turning it into a modal assumption µ p ϕ.
• The forcing approaches for equality, conjunction, truth and DRAs concern

isomorphisms of contexts which are preserved by locks and modalities. As
such, these forcing approaches can be executed unproblematically under
a lock/modality.

• Left adjoints, such as locks, preserve colimits, so that the forcing ap-
proaches for disjunction and falsehood can be executed unproblematically
under a lock or under a modality that has a right adjoint.



PRESHEAF MTT 179

• We do not force disjunctions and falsehoods under a modality that does
not have a right adjoint. For example, it does not make sense to force ⊥
under the final modality sending every type to the unit type, or to force
(i .=I 0) ∨ (i .=I 1) under a codiscrete modality.





Chapter 7

Transpension: The Right
Adjoint to the Π-type

Preamble This chapter contains an extended version of a presently unpublished
paper with Dominique Devriese [ND20], and has an associated technical report
[Nuy20] which is not included in this thesis for reasons of space. Section 7.5,
which introduces an informal and friendlier notation, was added on the occasion
of this thesis. A section introducing MTT (section 7.3) was largely removed, as
we can refer to section 5.3.

Personal contributions Dominique Devriese incited this research by attempt-
ing to use Glue and Weld to prove parametricity of an internal System F universe
in ParamDTT [NVD17a] in order to benchmark their expressivity, and obtaining
convincing non-positive results. Other than that, his contribution is primarily
in the area of writing. Apart from this input, the work described in this chapter
is entirely my own.

Abstract Presheaf models of dependent type theory have been successfully
applied to model HoTT, parametricity, and directed, guarded and nominal type
theory. There has been considerable interest in internalizing aspects of these
presheaf models, either to make the resulting language more expressive, or in
order to carry out further reasoning internally, allowing greater abstraction and
sometimes automated verification. While the constructions of presheaf models
largely follow a common pattern, approaches towards internalization do not.
Throughout the literature, various internal presheaf operators (

√
, Φ/extent,
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Ψ/Gel, Glue, Weld, mill, the strictness axiom and locally fresh names) can be
found and little is known about their relative expressivenes. Moreover, some of
these require that variables whose type is a shape (representable presheaf) be
used affinely.

We propose a novel type former, the transpension type, which is right adjoint
to universal quantification over a shape. Its structure resembles a dependent
version of the suspension type in HoTT. We give general typing rules and
a presheaf semantics in terms of base category functors dubbed multipliers.
Structural rules for shape variables and certain aspects of the transpension
type depend on characteristics of the multiplier. We demonstrate how the
transpension type and the strictness axiom can be combined to implement all
and improve some of the aforementioned internalization operators (without
formal claim in the case of locally fresh names).

7.1 Introduction and Related Work

7.1.1 The Power of Presheaves

Presheaf semantics (see chapter 4) [Hof97; HS97] are an excellent tool for
modelling relational preservation properties of (dependent) type theory. They
have been applied to parametricity (which is about preservation of relations)
[AGJ14; BCM15; ND18a; NVD17a], univalent type theory (preservation of
equivalences) [BCH14; CMS20; Coh+17; Hub16; KLV12; Ort18; OP18], directed
type theory (preservation of morphisms), guarded type theory (preservation
of the stage of advancement of computation) [BM18] and even combinations
thereof [Bir+19; CH20; RS17; WL20].1 The presheaf models cited almost all
follow a common pattern: First one chooses a suitable base category W. The
presheaf category over W is automatically a model of dependent type theory
with important basic type formers [Hof97] as well as a tower of universes [HS97].
Next, one identifies a suitable notion of fibrancy (see section 2.4 and chapter 8)
and replaces or supplements the existing type judgement Γ ` T type with one
that classifies fibrant types:

HoTT For homotopy type theory (HoTT, [Uni13]), one considers Kan fibrant
types, i.e. presheaves in which edges can be composed and inverted as in
an ∞-groupoid. The precise definition may differ in different treatments.

Parametricity For parametric type theory, one considers discrete types
[AGJ14; CH20; ND18a; NVD17a]: essentially those that satisfy Reynolds’

1We omit models that are not explicitly structured as presheaf models [AHH18; LH11;
Nor19].
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identity extension property [Rey83] which states that homogeneously
related objects are equal.

Directed In directed type theory, one may want to consider Segal, covariant,
discrete and Rezk types [RS17] and possibly also Conduché types [Gir64;
Nuy18b].

Guarded In guarded type theory, one considers clock-irrelevant types [BM18]:
types A such that any non-dependent function � → A from the clock
type, is constant.

Nominal Nominal type theory [Che12; PMD15] can be modelled in the
Schanuel topos [Pit14].2

To the extent possible, one subsequently proves that the relevant notions
of fibrancy are closed under basic type formers, so that we can restrict to
fibrant types and still carry out most of the familiar type-theoretic reasoning
and programming. Special care is required for the universe: it is generally
straightforward to adapt the standard Hofmann-Streicher universe to classify
only fibrant types, but the universe of fibrant types is in general not automatically
fibrant itself. In earlier work on parametricity with Vezzosi [NVD17a; ND18a],
we made the universe discrete by modifying its presheaf structure and introduced
a parametric modality in order to use that universe. In contrast, Atkey et al.
[AGJ14] and Cavallo and Harper [CH20] simply accept that their universes of
discrete types are not discrete. In guarded type theory, Bizjak et al. [Biz+16]
let the universe depend on a collection of in-scope clock variables lest the clock-
indexed later modality � : ∀(κ : �).U∆ → U∆ (where κ ∈ ∆) be non-dependent
and therefore constant (not clock-indexed) by clock-irrelevance of U∆ → U∆
[BM18].

7.1.2 Internalizing the Power of Presheaves

Purely metatheoretic results about type theory certainly have their value. Pa-
rametricity, for instance, has originated and proven its value as a metatheoretic
technique for reasoning about programs. However, with dependent type theory
being not only a programming language but also a logic, it is preferable to
formulate results about it within the type system, rather than outside it.

2This is the full subcategory of the category of nullary affine cubical sets Psh(0Cube2)
consisting of presheaves sending pushouts (intersections of dimensions) in 0Cube2 to pullbacks
in Set, i.e. presheaves such that if a cell γ is degenerate in dimension i (γ = γ1 ◦ (i/�)) and
degenerate in dimension j (γ = γ2 ◦ (j/�)), then it is uniquely simultaneously degenerate in
both dimensions (γ1 = γ3 ◦ (j/�) and γ2 = γ3 ◦ (i/�)).
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Enlarging the end user’s toolbox One motivation for internalizing metathe-
orems is to enlarge the toolbox of the end user of the proof assistant. If this
is the only goal, then we can prove the desired results in the model on pen
and paper and then internalize them ad hoc with an axiom with or without
computation rules.

HoTT Book HoTT [Uni13] simply postulates the univalence axiom without
computational behaviour, as justified e.g. by the model of Kan-fibrant
simplicial sets [KLV12].
CCHM cubical type theory [Coh+17] provides the Glue type, which
comes with introduction, elimination, β- and η-rules and which turns
the univalence axiom into a theorem with computational behaviour. It
also contains CCHM-Kan-fibrancy of all types as an axiom, in the form
of the CCHM-Kan composition operator, with decreed computational
behaviour that is defined by induction on the type.

Parametricity Bernardy, Coquand and Moulin [BCM15; Mou16] (henceforth:
Moulin et al.) internalize their (unary, but generalizable to k-ary) cubical
set model of parametricity using two combinators Φ and Ψ [Mou16], a.k.a.
extent and Gel [CH20]. Φ internalizes the presheaf structure of the function
type, and Ψ that of the universe.
The combinator Φ and at first sight also Ψ require that the cubical set
model lacks diagonals. Indeed, to construct a value over the primitive
interval, Φ and Ψ each take one argument for every endpoint and one
argument for the edge as a whole. Nested use of these combinators, e.g.
to create a square, will take (k + 1)2 arguments for k2 vertices, 2k sides
and 1 square as a whole but none for specifying the diagonal. For this
reason, Moulin et al.’s type system enforces a form of affine use of interval
variables.
In earlier work with Vezzosi [NVD17a], we have internalized parametricity
instead using the Glue type [Coh+17] and its dual Weld. Later on, we
added a primitive mill [ND18b] for swapping Weld and Π(i : I). These
operations are sound in presheaves over any base category where we can
multiply with I, and therefore strictly less expressive than Φ which is
not. Discreteness of all types was internalized as a non-computing path
degeneracy axiom.

Directed Weaver and Licata [WL20] use a bicubical set model to show that
directed HoTT [RS17] can be soundly extended with a directed univalence
axiom.

Guarded In guarded type theory [BM18], one axiomatizes Löb induction and
clock-irrelevance.
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Nominal One version of nominal type theory [PMD15] provides the locally
fresh name abstraction ν(i : I) which introduces a name but requires a
body that is fresh for the name (i.e. we do not get to use it) and can be
used anywhere. This would be rather useless, were it not that we are
allowed to abstract over the fresh name (see section 7.8).

Internalizing fibrancy proofs Another motivation to internalize aspects of
presheaf categories, is for building parts of the model inside the type theory,
thus abstracting away certain categorical details such as the very definition of
presheaves, and for some type systems enabling automatic verification of proofs.
Given the common pattern in models described in the previous section, it is
particularly attractive to try and define fibrancy and prove results about it
internally.

In the context of HoTT, Orton and Pitts [Ort18; OP18] study CCHM-Kan-
fibrancy [Coh+17] in a type theory satisfying a set of axioms, of which all but
one serve to characterize the interval and the notion of cofibration. One axiom,
strictness, provides a type former Strict for strictifying partial isomorphisms,
which exists in every presheaf category. In order to prove fibrancy of the universe,
Licata et al. postulate an “amazing right adjoint” I

√
xy to the non-dependent

path functor I → xy [Lic+18; Ort18], which indeed exists in presheaves over
cartesian base categories if I is representable. Since I

√
xy and its related axioms

are global operations (only applicable to closed terms, unless you want to open
Pandora’s box as we do in the current paper), they keep everything sound by
introducing a judgemental comonadic global modality [.

Orton et al.’s formalization [Lic+18; Ort18; OP18] is only what we call meta-
internal: the argument is internalized to some type theory which still only
serves as a metatheory of the type system of interest. Ideally, we would define
and prove fibrancy of types within the type theory of interest, which we call
auto-internal. Such treatments exist of discrete types in parametricity [CH20],
and discrete, Segal and Rezk types in directed type theory [RS17], but not yet
for covariant or CCHM-Kan-fibrant types due to the need to consider paths in
the context I→ Γ.

7.1.3 The Transpension Type

What is striking about the previous section is that, while most authors have
been able to solve their own problems, a common approach is completely absent.
We have encountered Φ and Ψ [Mou16], the amazing right adjoint

√
[Lic+18],

Glue [Coh+17; NVD17a], Weld [NVD17a], mill [ND18b] and the strictness axiom
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[OP18]. We have also seen that Φ and Ψ presently require an affine base category,
and that

√
presently requires the global modality [.

The goal of the current paper is to develop a smaller collection of internal
primitives that impose few restrictions on the choice of base category and allow
the internal construction of the aforementioned operators when sound. To this
end, we introduce the transpension type former Gi : Ty(Γ) → Ty(Γ, i : I)
which in cartesian settings is right adjoint to Π(i : I) : Ty(Γ, i : I)→ Ty(Γ) and
is therefore not a quantifier binding i, but a coquantifier that depends on it.
Using the transpension and Strict, we can construct Φ (when sound), Ψ,

√
and

Glue. Given a type former for certain pushouts, we can also construct Weld.

The transpension coquantifier G(u : U) : Ty(Γ) → Ty(Γ, u : U) is part of a
sequence of adjoints Σu a Ωu a Πu a Gu, preceded by the Σ-type, weakening
and the Π-type. Adjointness of the first three is provable from the structural
rules of type theory. However, it is not immediately clear how to add typing
rules for a further adjoint. Birkedal et al. [Bir+20] explain how to add a single
modality that has a left adjoint in the semantics. If we want to have two or
more adjoint modalities internally, then we can use a multimodal type system
such as MTT [Gra+20b; Gra+20a]. Each modality in MTT needs a semantic
left adjoint, so we can only internalize Ωu, Πu and Gu. A drawback which we
accept, is that Ωu and Πu become modalities which are a bit more awkward
to deal with than ordinary weakening and Π-types.

7.1.4 Contributions

Our central contribution is to reduce the plethora of interal presheaf operators
in the literature to only a few operations.

• To this end, we introduce the transpension type G(u : U), right adjoint
to Π(u : U), with typing rules built on extensional MTT [Gra+20b;
Gra+20a]. We explain how it is reminiscent of the suspension type from
HoTT [Uni13].

• More generally, the transpension type can be right adjoint to any quantifier-
like operation ∀(u : U) which need neither respect the exchange rule, nor
weakening or contraction. In this setting, we also introduce the fresh
weakening coquantifier `(u : U), which is left adjoint to ∀(u : U) and
therefore coincides with weakening Ω(u : U) in cartesian settings.

• We provide a categorical semantics for G(u : U) in almost any presheaf
category Psh(W) over base category W, for almost any representable
object U = yU , U ∈ W. To accommodate non-cartesian variables,
our system is not parametrized by a representable object U = yU ,
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but by an arbitrary endofunctor xy n U on W: the multiplier. We
introduce criteria for characterizing the multiplier – viz. semi-cartesian,
cartesian, cancellative, affine, connection-free and quantifiable – which
we use as requirements for internal type theoretic features. We identify
a complication dubbed spookiness in certain models (most notably
in guarded type theory), and define dimensionally split morphisms (a
generalization of split epimorphisms) in order to include spooky models.
We exhibit relevant multipliers in base categories found in the literature
(fig. 7.2).
• We show that all general presheaf internalization operators that
we are aware of – viz. Φ/extent (when sound), Ψ/Gel [Mou16; BCM15],
the amazing right adjoint

√
[Lic+18], Glue [Coh+17; NVD17a], Weld

[NVD17a], mill [ND18b] and (with no formal claim) locally fresh names –
can be recovered from just the transpension type, the strictness axiom
and pushouts along snd : ϕ × A → A where ϕ : Prop. In the process,
some of these operators can be improved: We generalize Ψ to arbitrary
multipliers, including cartesian ones and we justify U

√
xy without a global

modality and get proper computation rules for it. Moreover, since our
system provides an operation µGu for quantifying over contexts, we take a
step towards auto-internalizing Orton et al.’s work [Lic+18; Ort18; OP18].
When Φ is not sound (e.g. in cartesian or non-connection-free settings),
we suggest the internal notion of transpensive types to retain some of its
power. Finally, a form of higher dimensional pattern matching is enabled
by exposing ∀(u : U) internally as a left adjoint.

• In a technical report [Nuy20], we investigate how the modalities introduced
in this paper commute with each other, and with prior modalities (i.e.
those already present before adding the transpension type). We also
consider 2-cells arising from multiplier morphisms.

While MTT [Gra+20b; Gra+20a] satisfies canonicity3, decidable type-checking
will at least require a computational understanding of the mode theory, and
of some new typing rules that we add to MTT. For this reason, we build on
extensional MTT [Gra+20a], and defer decidability and canonicity to future
work.

Overview of the chapter In section 7.2, we demonstrate in a simple setting
how the transpension resembles the suspension from HoTT and how it allows for
higher-dimensional pattern matching. In section 7.3, we list a few results from

3The current state of affairs is that MTT extended with a single typing rule satisfies
canonicity. That rule is not compatible with the model used in this paper, but Gratzer et al.
are working on a canonicity theorem for MTT proper.
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MTT. In section 7.4, we define the mode theory on which we will instantiate
MTT and highlight some important modalities. The instantiation of MTT
is the type system we are after, but it is next to unreadable for humans, so
in section 7.5, we define an informal notation that is much less precise but
more readable. In section 7.6, we supplement our MTT instance with a few
specialized typing rules. In section 7.7, we investigate the structure of the
transpension type. In section 7.8, we explain how to recover known internal
presheaf operators. We conclude in section 7.9.

7.2 A Naïve Transpension Type

In this section, for purposes of demonstration, we present simplified typing
rules for the transpension. Using these, we will already be able to exhibit
the transpension as similar to a dependent version of the suspension in HoTT
[Uni13]. Moreover, in order to showcase how the transpension type allows
us to internalize the presheaf structure of other types, we will demonstrate a
technique which we call higher-dimensional pattern matching and which has
already been demonstrated by A. Pitts [Pit14] in nominal type theory using
locally fresh names.

Typing rules To do this, we first present, in fig. 7.1, typing rules for the
transpension type in a very simple setting: a type system with affine shape
variables u : U. Variables to the left of u are understood to be fresh for u;
variables introduced after u may be substituted with terms depending on u.
In particular, we have no contraction (w/u,w/v) : (w : U)→ (u, v : U), while
exchange (x : A, u : U) → (u : U, x : A) only works in one direction. This is
enforced by the special substitution rules for shape variables.

The elimination rule for f u requires that the function f be fresh for u, i.e. that
f depend only on variables to the left of u [BCM15; Mou16].

Additionally, the system contains a transpension type Gu.A over U, with more
unusual rules. When checking the type G(u : U).A in context (Γ, u : U, y : B), the
part A will be checked in a modified context [BV17; ND19a], were y : B (which
potentially depends on u) will change type, becoming a function y|u=xy : ∀u.B
that can be applied to v : U yielding y|u=v : B[v/u]. In other words, we get hold
of the dependency of y on u. The meridian constructor meridu a is checked in a
similar way, and is modelled by transposition for the adjunction ∀u a Gu. We
remark that both Gu.A and meridu a depend on u, whereas A and a do not, so
in a way the transpension lifts data to a higher dimension, turning points into
U-cells. The elimination rule takes data again to a lower dimension: it turns a
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Affine shape variables:

Γ ctx
Γ, u : U ctx

σ : Γ→ Γ′

(σ, u/v) : (Γ, u : U)→ (Γ′, v : U)
σ : Γ→ Γ′

σ : (Γ, u : U)→ Γ′

Affine function type:

Γ, u : U ` A type
Γ ` ∀u.A type

Γ, u : U ` a : A
Γ ` λu.a : ∀u.A

Γ ` f : ∀u.A
Γ, u : U, δ : ∆ ` f u : A

Telescope quantification:

∀u.() = ()
∀u.(δ : ∆, x : A) = (∀u.(δ : ∆)), x|u=xy : ∀u.(A[δ|u=u/δ])
∀u.(δ : ∆, v : U) = (∀u.(δ : ∆)), v : U

Transpension type:

Γ, u : U ` (δ : ∆) telescope
Γ, ∀u.(δ : ∆) ` A type
Γ, u : U, δ : ∆ ` G(u : U).A type

Γ, u : U ` t : Gu.A
Γ ` unmerid(u.t) : A
where unmerid(u.meridu a) = a

Γ, ∀u.(δ : ∆) ` a : A
Γ, u : U, δ : ∆ ` meridu a : G(u : U).A
where meridu (unmerid(v.t[v/u, δ|u=v/δ])) = t

Figure 7.1: Selection of typing rules for a naïve transpension type.

dependent U-cell in the transpension into a point in A. This is the co-unit of
the adjunction. The β- and η-rules internalize the adjunction laws.

These typing rules are sound in certain presheaf categories (those where U is
cancellative and affine, see definition 7.4.1), but are unsatisfactory in several
respects. First, we have no story for substitutions which exist in cubical
type systems such as (0/i) : Γ → (Γ, i : I) [BCM15; BCH14; Coh+17] or
(j ∧ k/i) : (Γ, j, k : I) → (Γ, i : I) [Coh+17], as there is no formation rule for
G 0.A or G (j ∧ k).A. Secondly, in non-affine generalizations, the transpension is
not stable under substitution of the variables preceding u [Nuy20]. In order to
obtain a better behaved type system, in the rest of the paper we will rely on
MTT, which we briefly summarize in section 7.3.
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Poles We can still try to get a grasp on G 0.A, however. In general we have
T [0/i] ∼= (∀ i.(i = 0) → T ). For T = G i.A, the latter type is inhabited by
λi.λe.merid i ( e|i=1), since e|i=1 proves 1 = 0. Moreover, using the η-rule, we
can show that this is the only element.

Thus we see that the transpension type essentially consists of meridians (i :
I)→ G i.T for all t : T which are all equal when i = 0 or i = 1. This makes the
transpension type quite reminiscent of a dependent version of the suspension
type from HoTT [Uni13], although the quantification of the context is obviously
a distinction.

Higher-dimensional pattern matching Given two types A,B : U, higher-
dimensional pattern matching allows us to construct a function Γ ` f : (∀u.A]
B)→ (∀u.A) ] (∀u.B). This function expresses that any U-shaped cell in the
coproduct type A]B must be either a cell in A or a cell in B. In that sense, it
exposes the presheaf structure of the coproduct type A ]B. We can define f
as follows (and generalization to A,B : ∀u.U is straightforward):

f ĉ = unmerid
(
u.case ĉ u of

{
inl a 7→ meridu (inl (λv.a|u=v))
inr b 7→ meridu (inr (λv.b|u=v))

})
The argument to unmerid(u.xy) should be of type Gu.((∀u.A) ] (∀u.B)).
Interestingly, since we have u in scope, we can apply ĉ : ∀u. (A ] B) to it,
and pattern match to decide which case we are in. Both cases are analogous;
in the first case, a variable a : A is brought in scope, so we are in context
(Γ, ĉ : ∀u.A ] B, u : U, a : A). We then use the constructor meridu xy, which
again removes u from scope and turns a : A into a function a|u=xy : ∀u.A. Then
we trivially finish the proof by writing inl (λv.a|u=v), where we have η-expanded
a|u=xy mainly for facilitating further narrative. In summary, between unmerid
and merid, we had temporary access to a variable u : U which allowed us to
pattern-match on ĉ u. More conceptually, we can say that the transpension
allows us to temporarily work with ĉ as if it were a lower-dimensional value
of type A ] B. We will see in section 7.8 how similar ideas can be used to
implement other internalization operators. Interestingly, this construction of
f using the transpension also comes with suitable computational behaviour.
When we evaluate f (λu.inl(â u)), then â u is substituted for a. Next, (â u)|u=v
simplifies to â v, so we can η-contract λv.â v, and β-reduce unmerid, which yields
inl â as expected.
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7.3 A Snippet of MTT

We highlight some results about MTT [Gra+20b; Gra+20a] (section 5.3) that
are relevant in the current paper.

Proposition 7.3.1. We have 〈id |• A〉 ∼= A and 〈ν ◦ µ |nm A〉 ∼= 〈ν |n 〈µ |m A〉〉.

Proposition 7.3.2. For any 2-cell α : µ ⇒ ν, we have 〈µ |m A〉 →
〈ν |n A[α↓mn ]〉.

Proposition 7.3.3. If κ a µ internal to the mode theory, there is a
function prmodµ : (κ pk 〈µ |m A〉) → A[ε↓km• ], satisfying a β- and (thanks
to extensionality) an η-law. Combined with these rules, prmodµ is equally
expressive as the let-eliminator for 〈µ | xy〉.

Proposition 7.3.4. If κ a µ internal to the mode theory, there is an
isomorphism of contexts σ = (x η↓mk/y ↓k) : (Γ, x : A,µm

µ ) ∼= (Γ,µm
µ , κ p

y :k A[η↓•mk]) with inverse σ−1 = (idΓ, η↓•mk, y ↓k/x ↓•, ↓
m
m′) ◦ (id(Γ,µm

µ ,y), ε↓km
′

• ).
Correspondingly, given B in the latter context, there is an isomorphism of types
((x : A)→ 〈µ |m B[σ]〉) ∼=

〈
µ |m (κ p y :k A[η↓•mk])→ B

〉
.

7.4 A Mode Theory for Shape (Co)quantification

For space reasons, we assume that there are no prior modalities, i.e. that the
type system to which we wish to add a transpension type is non-modal in the
sense that it has a single mode and only the identity modality. Prior modalities
are considered in the technical report [Nuy20]. We assume that this single prior
mode is modelled by the presheaf category Psh(W).

7.4.1 Shape Contexts

A first complication is that the modalities Ωu a Πu a Gu all bind or depend
on a variable, a phenomenon which is not supported by MTT. However, the
following trick solves this problem. Assume we have in the prior system a
context Ξ modelled by a presheaf over W. Then the presheaves Psh(W/Ξ)
over the category of elements of the presheaf Ξ are also a model of dependent
type theory. Denoting the judgements of the latter system with a prefix Ξ |,
it happens to be the case that judgements Ξ | Γ ` J (i.e. Γ ` J in Psh(W/Ξ))
have precisely the same meaning as judgements Ξ.Γ ` J in Psh(W) (for a
suitable but straightforward translation of J). Thus, we will group together all
shape variables (variables for which we want a transpension type) in a shape
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context Ξ in front of the typing context. Our judgements will then take the
form Ξ | Γ ` J . This allows us to frame Ξ as the mode of the judgement.

7.4.2 Mode Theory

For simplicity, we take a highly general mode theory and will then only be
able to say interesting things about specific modes, modalities and 2-cells. In
practice, and especially in implementations, one will want to select a more
syntactic subtheory right away.

As modes, we take the set of all small presheaves over W, which we think of
as shape contexts. The mode Ξ is modelled in Psh(W/Ξ). As modalities
µ : Ξ1 → Ξ2, we take all functors

q
µµ
y

: Psh(W/Ξ2)→ Psh(W/Ξ1) which have
a right adjoint µ that is then automatically a weak CwF morphism [Nuy20]
and gives rise to a DRA [Bir+20; Nuy18a]. As 2-cells α : µ⇒ ν, we take all
natural transformations.

7.4.3 Shapes and Multipliers

We now proceed by highlighting some interesting modes, modalities, and 2-cells.
To begin with, we fix a collection of shapes. We associate to each shape U
a functor xy n U : W → W which extends to a functor xy n yU : Psh(W) →
Psh(W).4 Internally, we will use shape variables to increase human readability
and to reduce the heaviness of notation for shape substitutions, writing (Ξ, u : U)
for the shape context ΞnyU . However, in a fully elaborate syntax these variables
would be redundant.

Of course, if we model shape context extension with u : U by an arbitrary
functor, then we will not be able to prove many results. Depending on the
properties of the functor, the variable u will behave like an affine one or like
a cartesian one (or perhaps neither) and the Φ-combinator will or will not be
sound for U. For this reason, we introduce some criteria that help us classify
shapes:

Definition 7.4.1. Assume W has a terminal object >. A multiplier for an
object U is a functor xyn U :W →W such that >n U ∼= U .5 This gives us a
natural second projection π2 : (xyn U)→ U . We define the fresh weakening
functor to the slice category as `U :W →W/U : W 7→ (W n U, π2). We say
that a multiplier (as well as its shape) is:

4Both xyn U and xyn yU are to be regarded as single-character symbols, i.e. n in itself is
meaningless.

5In the technical report [Nuy20], we generalize beyond endofunctors.
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• Semicartesian if it is copointed, i.e. has a first projection π1 : (xynU)→
Id,

• Cartesian if it is naturally isomorphic to the cartesian product with U ,
• Cancellative if `U is faithful,
• Affine if `U is full,
• Connection-free if `U is essentially surjective on objects (V, ψ) such
that ψ is dimensionally split (definition 7.4.3),

• Quantifiable if `U has a left adjoint ∃U :W/U →W.

Variables of shape U admit weakening if and only if the multiplier is
semicartesian, and exchange and contraction if (but not only if) it is cartesian.
Weakening, exchange and contraction are all shape substitutions, which will be
internalized as modalities.

Proposition 7.4.2. If a multiplier is affine and cartesian, then it is the identity
functor. [Nuy20]

Definition 7.4.3. A morphism ψ : V → U is called dimensionally split
(w.r.t. xy n U) if there is some W such that π2 : W n U → U factors over ψ.
We define the boundary ∂U as the subpresheaf of the Yoneda-embedding yU
consisting of those morphisms that are not dimensionally split, and we define
xyn ∂U by pullback. We also write (Ξ, u : ∂U) for Ξ n ∂U .

In most popular base categories, all morphisms to > are split epi. Being
dimensionally split is then equivalent to being split epi. We call a category
spooky if some morphism to > is not split epi. The notion of dimensionally split
morphisms lets us consider the boundary and connection-freedom (a requirement
for modelling Φ) also in spooky base categories, where the output of `U may
not be split epi.

Examples Let us look at some examples of multipliers. Their properties are
listed in fig. 7.2. Most properties are easy to verify, so we omit the proofs.

Example 7.4.4 (Identity). The identity functor on an arbitrary category W is
an endomultiplier for >. It is quantifiable, with ∃> :W/> →W : (W, ()) 7→W .

Example 7.4.5 (Cartesian product). LetW be a category with finite products
and U ∈ W . Then xy× U is an endomultiplier for U , which is affine if and only
if U is non-terminal (proposition 7.4.2, example 7.4.4). It is quantifiable with
∃U :W/U →W : (W,ψ) 7→W . Hence, we have ∃U`U = xy× U .
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7.4.4 W Id ? Ë Ë Ë Ë Ë Ë Ë Ë
7.4.5 W xy× U ? Ë Ë Ë Ë ? é ? Ë
7.4.6 kCube2 xy ∗ (i : I) k = 0 Ë Ë é é Ë Ë Ë Ë
7.4.7 kCube xy× (i : I) k = 0 Ë Ë Ë Ë Ë é Ë Ë
7.4.8 CCHM xy× (i : I) é Ë Ë Ë Ë Ë é é Ë
7.4.9 DCubed xy n LdM é Ë Ë Ë Ë Ë é Ë Ë
7.4.10 Clock xy× (i : �k) Ë Ë Ë Ë Ë Ë é Ë Ë
7.4.11 TwCube xy n I é é é é é Ë Ë Ë Ë
7.4.12 n min(xy, i) Ë Ë Ë Ë Ë Ë é Ë Ë
7.4.13 Simplex xy ]< [0] é Ë é Ë é Ë Ë é Ë

Figure 7.2: Some interesting multipliers and their properties.

Example 7.4.6 (Affine cubes). Let kCube2 be the category of affine k-ary
cubes as used in [BCH14] (binary) or [BCM15] (unary) (example 2.3.11). This
category is spooky if and only if k = 0. Consider the functor xy ∗ (i : I) :
kCube2 → kCube2 : W 7→ (W, i : I), which is a multiplier for (i : I). This
functor is quantifiable with ∃(i:I)((W, j : I), (j/i)) = W and ∃(i:I)(W, (ε/i)) = W
for each of the k endpoints ε.

In the nullary case, 0Cube2 is the base category of the Schanuel topos, which
is equivalent to the category of nominal sets [Pit13]. In that case, ∃(i:I) is not
just left adjoint to `(i:I), but in fact an inverse and hence also right adjoint.
This is in line with the fact that in nominal type theory [PMD15], there is
a single name quantifier which can be read as either existential or universal
quantification.

Example 7.4.7 (Cartesian cubes). We also consider xy× (i : I) in the category
kCube of cartesian k-ary cubes (example 2.3.10), which is an instance of
example 7.4.5.

Example 7.4.8 (CCHM cubes). Idem for CCHM (example 2.3.12). Connection-
freedom is now violated by (j ∨ k/i), (j ∧ k/i) : (j : I, k : I)→ (i : I).
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Example 7.4.9 (Depth d cubes). We consider xy × (i : LkM) in the category
DCubed of depth d cubical sets (example 2.3.13), which is an instance of
example 7.4.5.

Example 7.4.10 (Clocks). Idem for xy × (i : �k) in the category Clock
(example 2.3.16).

Example 7.4.11 (Twisted cubes). Pinyo and Kraus’s category of twisted cubes
TwCube [PK19] can be described as a subcategory of the category of linear
orders, and indeed a subcategory of the category of simplices Simplex. On these
categories, we can define a functor xyn I such that W n I = W op ]<W , where
we consider elements from the left smaller than those from the right. Now
TwCube is the subcategory of Simplex whose objects are generated by > and
xy n I (note that every object then also has an opposite since >op = > and
(V n I)op ∼= V n I), and whose morphisms are given by

• (ϕ, 0) : HomTwCube(V,W n I) for all ϕ : HomTwCube(V,W op),
• (ϕ, 1) : HomTwCube(V,W n I) for all ϕ : HomTwCube(V,W ),
• ϕn I : HomTwCube(V n I,W n I) for all ϕ : HomTwCube(V,W ),
• () : HomTwCube(V,>).

Note that this collection automatically contains all identities, composites, and
opposites. Isomorphism to Pinyo and Kraus’s category of twisted cubes can be
seen from their ternary representation [PK19, def. 34]. We now consider the
multiplier xyn I : TwCube→ TwCube, which Pinyo and Kraus call the twisted
prism functor. It is quantifiable with

∃I :

 (W, ((), 0)) 7→ W op

(W, ((), 1)) 7→ W
(W n I, () n I) 7→ W,

(7.1)

with the obvious action on morphisms.

Example 7.4.12 (Finite ordinals). In the base category ω of the topos of trees
(example 2.3.14), a cartesian product is given by i × j = min(i, j). However,
this category lacks a terminal object. Instead, on the subcategory n, which is
endowed with the same cartesian product, we consider the multiplier xy × i,
which is again an instance of example 7.4.5.

Example 7.4.13 (Simplices). In the category of simplices Simplex (exam-
ple 2.3.9), we consider the functor xyn [1] := xy ]< [0], which adds a maximal
element to a linear order. This is a multiplier for [1] and is quantifiable with
∃[1](W,ψ) = ψ−1(0).
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7.4.4 Modalities for Substitution

A substitution σ : Ξ1 → Ξ2 gives rise to a functor Σ/σ : W/Ξ1 →
W/Ξ2 and hence [StaVC] to a triple of adjoint functors Σσ a Ωσ a Πσ
between the presheaf categories, where Ωσ has the exact same semantics
as ordinary substitution. The two functors Ωσ and Πσ give rise to DRAs
and can be internalized as MTT modalities. We denote these as6 Ωσ or
Ω(ξ1 : Ξ1, ξ2 = ξ2[σ]) : (ξ2 : Ξ2)→ (ξ1 : Ξ1) and as Πσ or Π(ξ1 : Ξ1, ξ2 = ξ2[σ]) :
(ξ1 : Ξ1) → (ξ2 : Ξ2). For example, in cubical type theory, we get
Ω(i = 0) : (Ξ, i : I) → Ξ with right adjoint Π(i = 0), and for semicartesian
U, we get Ω(u : U) : Ξ→ (Ξ, u : U) with right adjoint Π(u : U). The Π-modality
is strictly functorial, whereas the Ω-modality is pseudofunctorial: we need
explicit 2-cells witnessing Ω τ ◦ Ωσ ∼= Ω(τ ◦ σ).7 These modalities are adjoint
internally by virtue of the 2-cells for the unit constσ : id ⇒ Πσ ◦ Ωσ and
co-unit appσ : Ωσ ◦Πσ ⇒ id. If σ introduces variables, then the codomain of
the co-unit may be a variable renaming that is semantically the identity, e.g.
app(v/u:U) : Ω(v : U) ◦Π(u : U)⇒ Ω(v : U, u = v).

Example 7.4.14. If U is cartesian, then there is a diagonal substitution
(w/u,w/v) : (Ξ, w : U)→ (Ξ, u, v : U). Writing

α = idΠu ? idΠ v ? const(w,u=w,v=w),

this allows us to type the naïvely typed function λf.λw.f ww : (Πu.Π v.A)→
Πw.A[w/u,w/v] as

〈Π(u : U) |pu 〈Π(v : U) |pv A〉〉

→
〈
Π(w : U) |pw

〈
Ω(w : U, u = w, v = w) |o A[α↓pupvpwo ]

〉〉
.

Remark 7.4.15. The reframing of shape substitutions as a modality, has
the annoying consequence that substitution no longer reduces. However, both
〈Ωσ | xy〉 and modΩσ are semantically an ordinary substitution.8 Thus, we
could add computation rules such as:

〈Ωσ |o A×B〉 = 〈Ωσ |o A〉 × 〈Ωσ |o B〉, 〈Ωσ |o U〉 = U,
modo

Ωσ (a, b) = (modo
Ωσ a,modo

Ωσ b), modo
Ωσ A = 〈Ωσ |o A〉.

This is fine in an extensional type system, but would not play well with the
β-rule for modal types in an intensional system.

6By the second notation, we mean that we declare new variables (with their type if there
is space) and write u = t when we substitute t for u.

7This is because we defined the modality µ via
q
µµ

y
and only Ω is strictly functorial in

the model. However, Gratzer et al. [Gra+20a] have a strictification theorem for models of
MTT which can strictify the isomorphism.

8Not along σ : Ξ1 → Ξ2, but along σ.ηΣσaΩσ : Ξ1.Γ ∼= Ξ2.Σσ Γ, which happens to be an
isomorphism.
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7.4.5 Modalities for (Co)quantification

The fresh weakening functor `U : W → W/U generalizes to a functor `/ΞU :
W/Ξ → W/(Ξ n yU) between categories of elements. Assuming that the
multiplier is quantifiable,9 there is a left adjoint ∃/ΞU a `/ΞU [Nuy20]. These
two give rise to four adjoint functors ∃(u : U) a `(u : U) a ∀(u : U) a G(u : U)
between the presheaf categories. The latter three give rise to DRAs and can be
internalized as MTT modalities. We denote the units and co-units as

const(u:U) : id⇒ ∀(u : U) ◦ `(u : U) app(u:U) : `(u : U) ◦ ∀(u : U)⇒ id
reidx(u:U) : id⇒ G(u : U) ◦ ∀(u : U) unmerid(u:U) : ∀(u : U) ◦ G(u : U)⇒ id

Again, we also write app(v/u:U) : `(v : U) ◦ ∀(u : U) ⇒ Ω(v : U, u = v) and
reidx(v/u:U) : Ω(v : U, u = v) ⇒ G(v : U) ◦ ∀(u : U) to handle shape variable
renamings that are semantically the identity.

Theorem 7.4.16 (Quantification). [Nuy20] If the multiplier is

• cancellative and affine, then const(u:U) and unmerid(u:U) are natural
isomorphisms,

• semi-cartesian (so that Ω(u : U) and Π(u : U) exist), then we have
spoil(u:U) : `(u : U)⇒ Ω(u : U) and cospoil(u:U) : Π(u : U)⇒ ∀(u : U),

• cartesian, then we can soundly identify `(u : U) = Ω(u : U) and ∀(u : U) =
Π(u : U).

To understand the difference between `(u : U) and Ω(u : U), we can compare
to the naïve system (section 7.2) or Moulin et al.’s system [BCM15; Mou16].
There, shape variables u : U are part of the context, and variables to the left of
u are fresh for u. Here, shape variables are all in the shape context, but we use
`u and Ωu (as well as the semantically identical µ∀u and µΠu) to keep track of
whether or not other variables should be fresh for u. Thus, in terms of the naïve
system, ∀(u : U) introduces u at the end of Γ (marking all variables fresh with
µ∀u), and Π(u : U) introduces u in front of Γ (marking them non-fresh with
µΠu). The naïve system allows exchanging shape and other variables in one
direction only, which is represented here by the generally non-invertible 2-cells
spoil and cospoil. We emphasize that the word ‘fresh’ needs to be taken with
a grain of salt: only for cancellative and affine U does invertibility of constu
guarantee that something fresh for u does not depend on u.

Example 7.4.17. As an instance of proposition 7.3.3, we obtain prmod∀(v/u:U) :
(`(v : U) pf 〈∀(u : U) |a A〉) →

〈
Ω(v : U, u = v) |• A[appv/u↓fa• ]

〉
, which says

9We have not encountered any interesting examples where this is not the case.
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that a non-cartesian function g with naïve type g : ∀u.A can be applied to v : U
provided that g is fresh for v.
Example 7.4.18 (Higher-dimensional pattern matching). As in section 7.2,
we create a function f : 〈∀(u : U) |a A ]B〉 → 〈∀(u : U) |a A〉 ] 〈∀(u : U) |a B〉,
namely:

f ĉ = prmodGu ·
a case (prmod∀u ·

o (ĉ constu↓ao)) of{
inl a 7→ modt

Gu (inl (moda′
∀u (a reidxu↓ta′)))

inr b 7→ modt
Gu (inr (moda′

∀u (b reidxu↓ta′)))

}
.

We see that mod∀u and prmod∀u correspond to shape abstraction and
application in the naïve system, prmodGu to unmerid, and modGu to merid.
The annotation constu is an explicit weakening over u : U, whereas reidxu
replaces an explicit reindexing |u=u.

7.5 An Informal Notation for Human Readers

At this point, we can instantiate MTT with the mode theory defined in the
previous section 7.4. This is the type system that we will be working in, but
direct usage of the notations from MTT (section 5.3) will be a bit obscure. For
example, in section 7.2 we denoted quantification of a context using ∀. In the
MTT instance, we will instead use a lock for the right adjoint to ∀, i.e. we
will write µGu. Similarly, shape abstraction will not be denoted using a λ, but
instead as mod∀u a, and application will be denoted as prmod∀u f .

We will actually use these notations, with the intention of making clear which
MTT concepts we are using, because using an instance of MTT is precisely
our solution to the syntactic complications involved in creating a syntax more
similar to that of section 7.2. However, the MTT notation gets in the way of
intuition and even readability. For this reason, we additionally introduce an
alternative notation, which is purely informal (MTT being the formal notation).

Figure 7.3 lists the rule wdra:intro in formal and informal notation for
each of the available modalities, thus implicitly listing the informal notations
for locks (lock), modal types (weak DRAs, wdra) and their introduction
rules (wdra:intro). The introduction rule for ∀(u : U).A is in line with the
abstraction rule in fig. 7.1: the premise’s context is extended with a variable
u, and all other variables are taken to be fresh for u. In the naïve system, we
expressed this by putting u to the right of Γ; here, we wrap Γ in `u.

The modality Π(i = 0) abstracts over the assumption that i = 0. So inside it,
we get to use that assumption. By consequence, we no longer need i as it just
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Introduction rules for modal types:

Ξ | Γ,µf
`(u:U) ` a : A

Ξ, u : U | Γ ` modf
`u a :

〈
`u |f A

〉 ;
Ξ | ∃(u : U).Γ ` a : A
Ξ, u : U | Γ ` freshu a : `u.A

Ξ | Γ,µo
Ω(u:U) ` a : A

Ξ, u : U | Γ ` modo
Ωu a : 〈Ωu |o A〉

;
Ξ | Σ(u : U).Γ ` a : A
Ξ, u : U | Γ ` wknu a : Ωu.A

Ξ, i : I | Γ,µo
Ω(i=0) ` a : A

Ξ | Γ ` modo
Ω(i=0) a : 〈Ω(i = 0) |o A〉

;
Ξ, i : I | Σ(i = 0).Γ ` a : A
Ξ | Γ ` wkn (i = 0) a : Ω(i = 0).A

Ξ, u : U | Γ,µa
∀u ` a : A

Ξ | Γ ` moda
∀(u:U) a : 〈∀(u : U) |a A〉

;
Ξ, u : U | `u.Γ ` a : A
Ξ | Γ ` λu.a : ∀(u : U).A

Ξ, u : U | Γ,µp
Πu ` a : A

Ξ | Γ ` modp
Π(u:U) a : 〈Π(u : U) |p A〉

;
Ξ, u : U | Ωu.Γ ` a : A
Ξ | Γ ` λu.a : Π(u : U).A

Ξ | Γ,µp
Π(i=0) ` a : A

Ξ, i : I | Γ ` modp
Π(i=0) a

: 〈Π(i = 0) |p A〉

;
Ξ | Ω(i = 0).Γ ` a : A
Ξ, i : I | Γ ` λ_.a : Π(i = 0).A

Ξ | Γ,µt
G(u:U) ` a : A

Ξ, u : U | Γ ` modt
Gu a :

〈
Gu |t A

〉 ;
Ξ | ∀(u : U).Γ ` a : A
Ξ, u : U | Γ ` meridu a : Gu.A

Simplifications based on the quantification theorem 7.4.16:
Cancellative and affine multipliers:
• Write Γ,∃(u : U).∆ instead of ∃(u : U).(`u.Γ,∆),
• Write Γ,∀(u : U).∆ instead of ∀(u : U).(`u.Γ,∆).

Cartesian multipliers:
• Write Σ,Ω,Π instead of ∃, `,∀.

Usage of parentheses:
(Co)quantifiers range until the next comma, e.g. ∀(u : U).Γ, x : A means (∀(u :
U).Γ), x : A.

Figure 7.3: Informal notation for locks and modal types.
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means 0, so it disappears from the context. Its left adjoint Ω(i = 0) does the
converse: when entering that modality, we define i to be 0 and subsequently
forget that i = 0. Thus, within Ω(i = 0), we have i inscope; outside it, we do
not, as we can just use 0. The quantifier Σ(i = 0) retains this information so
that Γ still makes sense, but we do not have syntactic access to that information
anymore.

It should be noted that, since Σ does not preserve the empty context, Ω has
a different meaning when applied to contexts or to types. When applied to
a context, it is an actual substitution of the shape context. When applied
to a type, it is semantically still a substitution, but between two isomorphic
shape-and-type contexts (Ξ, u : U).Γ and Ξ.(Σ(u : U).Γ). A similar remark
holds for ∃(u : U) and `u, with the additional note that when we apply `u
to a type, we transfer the responsibility of asserting freshness for u from the
context (which hid u away via ∃u) to the type.

For cancellative and affine multipliers, we invoke the quantification theorem
7.4.16 to extract the fresh part of the context from the quantifier. Then the
introduction rule for Gu.A is in line with the meridian rule in fig. 7.1: u
disappears from the context and the non-fresh part of the context (in the naïve
system: the part to the right of u) is quantified over:

Ξ | Γ,µa
∀u,∆,µ

t
G(u:U) ` a : A

Ξ, u : U | Γ,µa
∀u,∆ ` modt

Gu a : 〈Gu |t A〉

;
Ξ | Γ,∀(u : U).∆ ` a : A
Ξ, u : U | `u.Γ,∆ ` meridu a : Gu.A

The introduction rule for `u.A looks similar, but uses existential quantification:

Ξ | Γ,µa
∀u,∆,µ

f
`(u:U) ` a : A

Ξ, u : U | Γ,µa
∀u,∆ ` modf

`u a :
〈
`u |f A

〉
;

Ξ | Γ,∃(u : U).∆ ` a : A
Ξ, u : U | `u.Γ,∆ ` freshu a : `u.A

The existential quantifier makes the variables in ∆ syntactically unavailable
(unless they bear a modal annotation `u), so a can really only depend on the
fresh parts of the context of freshu a.

For cartesian multipliers, we pretend that the isomorphisms given in the
quantification theorem 7.4.16 are equalities to further simplify the notation.

Figure 7.4 lists the informal notation for modal function application and for
projections out of the modal types (proposition 7.3.3). This is not particularly
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Modal function application:

f ·f`u a ; f a f ·a∀u a ; f (u.a) f ·tGu a ; f a

f ·oΩu a ; f a f ·pΠu a ; f (u.a)

f ·oΩ(i=0) a ; f (i.a) f ·pΠ(i=0) a ; f (_.a)

Modal projections:

prmod∀u ·
f
`u f ; f u prmodGu ·

a
∀u t ; unmerid (u.t)

prmodΠu ·
o
Ωu f ; f u

prmodΠ(i=0) ·
o
Ω(i=0) f ; f (i = 0)

Figure 7.4: Informal notation for modal functions.

exciting, we just need to make sure that we bind all the variables we introduce
in the context.

Figure 7.5 lists notations for substitutions arising from 2-cells of the mode
theory. We see that constu↓ (semantically the co-unit drop of ∃(u : U) a `u or
Σ(u : U) a Ωu) is akin to weakening: it discards the variable u : U which is the
first component of what can be thought of as a non-dependent pair type. In the
case of a cancellative and affine multiplier, this first component is completely
hidden, so forgetting it is an isomorphism. Conversely, appu↓ (semantically the
unit copy of ∃(u : U) a `u or Σ(u : U) a Ωu) is akin to contraction: it operates
in a shape context where u is available, and substitutes a copy of u for v.

The substitution reidxu↓ (semantically the co-unit app of `u a ∀(u : U) or
Ωu a Π(u : U)) operates in a shape context where u is available and applies the
affine function γ|v=xy : ∀ v.Γ, which is fresh for u, to u. Conversely, unmeridu↓
(semantically the unit const of `u a ∀(u : U) or Ωu a Π(u : U)) creates what
can be thought of as a non-dependent function, namely the constant one. In the
case of a cancellative and affine multiplier, the output of the function must be
completely fresh for the input, so constant functions are the only ones possible
and hence the operation is an isomorphism.

Finally, we treat spoilu↓ (semantically hide : Σ(u : U)→ ∃(u : U)) and cospoilu↓
(semantically spoil : `u→ Ωu) as implicit coercions.
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Units becoming co-units:

Ξ | constu↓•af : (Γ,µa
∀u,µ

f
`u) → Γ

; Ξ | () : ∃(u : U).`u.Γ → Γ

Ξ | constu↓•po : (Γ,µp
Πu,µ

o
Ωu) → Γ

; Ξ | () : Σ(u : U).Ωu.Γ → Γ

Ξ, i : I | const(i=0)↓•po : (Γ,µp
Π(i=0),µ

o
Ω(i=0)) → Γ

; Ξ, i : I | () : Σ(i = 0).Ω(j = 0).Γ[j/i] → Γ

Ξ, u : U | reidxu↓•ta : (Γ,µt
Gu,µ

a
∀u) → Γ

; Ξ, u : U | (γ|v=u/γ) : `u.∀(v : U).Γ → Γ[u/v]

Co-units becoming units:

Ξ, u : U | appu↓
fa
• : Γ → (Γ,µf

`u,µ
a
∀u)

; Ξ, u : U | (u/v) : Γ[u/v] → `u.∃(v : U).Γ

Ξ, u : U | appu↓
op
• : Γ → (Γ,µo

Ωu,µ
p
Πu)

; Ξ, u : U | (u/v) : Γ[u/v] → Ωu.Σ(v : U).Γ

Ξ | app(i=0)↓
op
• : Γ → (Γ,µo

Ω(i=0),µ
p
Π(i=0))

; Ξ | () : Γ → Ω(i = 0).Σ(i = 0).Γ

Ξ | unmeridu↓at• : Γ → (Γ,µa
∀u,µ

t
Gu)

; Ξ | (λ_.γ/γ|u=xy) : Γ → ∀(u : U).`u.Γ

Affine and cancellative multipliers:

Ξ | constu↓•af : (Γ,µa
∀u,µ

f
`u) ∼= Γ

; Ξ | () : Γ, ∃(u : U).() ∼= Γ

Ξ | unmeridu↓at• : Γ ∼= (Γ,µa
∀u,µ

t
Gu)

; Ξ | () : Γ ∼= Γ, ∀(u : U).()

Semicartesian multipliers:

Ξ | spoil↓fo : (Γ,µo
`u) → (Γ,µf

Ωu)
; Ξ | () : Σ(u : U).Γ → ∃(u : U).Γ

Ξ, u : U | cospoil↓pa : (Γ,µa
∀u) → (Γ,µp

Πu)
; Ξ, u : U | () : `u.Γ → Ωu.Γ

Figure 7.5: Informal notation for 2-cell substitutions.
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As an example, note that if we write example 7.4.18 in the informal notation,
then we get very close again to the function as defined in section 7.2.

7.6 Additional Typing Rules

In this section, we add a few extensions to MTT in order to reason about
boundaries (definition 7.4.3) in the type theory, rather than in the shape theory,
and in order to recover all known presheaf operators in section 7.8.

Basic presheaf operators We add propositions (figs. 6.1 and 6.2) and the
strictness type (fig. 6.7). Of course we take the extensional versions.

Boundary predicate We add a predicate Ξ, u : U | · ` (u ∈ ∂U) : Prop
corresponding in the model to the subobject (Ξ, u : ∂U) ⊆ (Ξ, u : U). A naïve
introduction rule would be Ξ, u : ∂U | · ` _ : 〈Ω(u ∈ ∂U) |o (u ∈ ∂U)〉. As all
our modalities are proper DRAs [Bir+20] as opposed to the weaker concepts
required by the general model of MTT, the modal introduction rule is invertible
in the model, so we may as well take Ξ, u : U | ·,µo

Ω(u∈∂U) ` on∂ ↓o : (u ∈ ∂U)
as an introduction rule. If we absorb a substitution into these rules, we get

boundary
Ξ, u : U | Γ ctx
Ξ, u : U | Γ ` (u ∈ ∂U) prop

,

boundary:intro
Ξ, u : U | Γ,∆ ctx α : Ω(u ∈ ∂U)⇒ locks(∆)
Ξ, u : U | Γ,∆ ` on∂ α↓ticks(∆) : [u ∈ ∂U]

.

An elimination rule could build a function (_ : u ∈ ∂U) → A_ from
Π(u ∈ ∂U) ◦ Ω(u ∈ ∂U) applied to A, but it is not clear how to formulate
the β-rule. Instead, we will eliminate to the transpension type (theorem 7.7.1).

7.7 Investigating the Transpension Type

In this section, we investigate the structure of the transpension type.

Our first observation is that on the boundary, the transpension type is trivial.
Let > : Ξ1 → Ξ2 be the modality, between any two shape contexts, which maps
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any presheaf to the terminal presheaf. We clearly have > ◦ µ = > for any µ, but
also µ ◦ > ∼= > because all internal modalities are right adjoints and therefore
preserve the terminal object.
Theorem 7.7.1 (Pole). We have Ω(u ∈ ∂U) ◦ G(u : U) ∼= >. We can thus
postulate a term (u ∈ ∂U) ` pole : 〈G(u : U) |t T 〉 for any T , with an η-rule
(u ∈ ∂U) ` t = pole : 〈G(u : U) |t T 〉.

Sketch of proof. The left adjoints ∀(u : U) ◦ Σ(u ∈ ∂U) and ⊥ are isomorphic
because ∀(u : U).(u ∈ ∂U) is false. We give a full proof in the technical report
[Nuy20].

Definition 7.4.3 of the boundary relied on the notion of dimensional splitness.
The following result shows that it was a good one: the transpension is only
trivial on the boundary:
Theorem 7.7.2. In the model, we have ·, u : U | Γ ` (u ∈ ∂U) ∼=
〈G(u : U) |t Empty〉. [Nuy20]

Meridians As all our modalities are proper DRAs [Bir+20], the modal
introduction rule is invertible in the model. This immediately shows that
sections10 of the transpension type Ξ | Γ ` f : 〈∀(u : U) |a 〈G(u : U) |t T 〉〉
(which we call meridians) are in 1-1 correspondence with terms Ξ |
Γ,µa

∀(u:U),µ
t
G(u:U) ` t : T . If it were not for the locking of the context, this

characterization in terms of poles and meridians would make the transpension
type look quite similar to a dependent version of the suspension type in HoTT
[Uni13], whence our choice of name. If U is cancellative and affine, then the
locks can actually be ignored (theorem 7.4.16). In any case, proposition 7.3.3
tells us that the let-rule for G(u : U) has the same power as

prmodG(u:U) : (∀(u : U) pa
〈
G(u : U) |t T

〉
)→ T [unmeridu↓at• ] (formal MTT)

unmerid : (∀(u : U) p Gu.T )→ T [λ_.γ/γ|u=xy] (informal)

which extracts meridians. If U is cancellative and affine, then unmeridu is
invertible (theorem 7.4.16) and we can also straightforwardly create meridians
from elements of T [unmeridu↓at• ].

Pattern matching The eliminator prmodG(u:U) is only capable of eliminating
sections of the transpension type. Sometimes we can eliminate locally by pattern
matching:

10By a section of a dependent type, we mean a dependent function with the same domain
as the type.
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In formal MTT syntax:

transp:elim
Ξ, u : U | Γ ctx
Ξ | Γ,µt

Gu
` A type

Ξ, u : U | Γ, r :
〈
Gu |t A

〉
` C type

Ξ, u : U | Γ, u ∈ ∂U ` cpole : C[pole/r]
Ξ, u : U | Γ,µt

Gu, x : A,µa
∀u ` cmerid : C[reidxu↓•ta]

[
modt′

Gu (x unmerid−1
u ↓at′)/r

]
Ξ, u : U | Γ,µt

Gu, x : A,µa
∀u, u ∈ ∂U `

cmerid = cpole[reidxu↓•ta] : C[reidxu↓•ta, pole/r]
Ξ, u : U | Γ ` t :

〈
Gu |

t A
〉

Ξ, u : U | Γ ` c := case t of
{

pole 7→ cpole | merid(t, x, a) 7→ cmerid
}

: C[t/r]
where c[pole/t] = cpole

(transp:elim:pole)
∆,µa′

∀u ` c = cmerid[prmodGu ·a (t[reidxu↓•ta])/x, ↓aa][(unmeridu ? id∀u)↓a
′

a′ta]
(transp:elim:section)

In informal notation:

Ξ, u : U | Γ ctx
Ξ | ∀(u : U).Γ ` A type
Ξ, u : U | Γ, r : Gu.A ` C type
Ξ, u : U | Γ, u ∈ ∂U ` cpole : C[pole/r]
Ξ, v : U | ` v.(∀(u : U).Γ, x : A) ` cmerid : C[γ|u=v/γ,merid v x/r]
Ξ, v : U | ` v.(∀(u : U).Γ, x : A), v ∈ ∂U `

cmerid = cpole[γ|u=v/γ] : C[γ|u=v/γ, pole/r]
Ξ, u : U | Γ ` t : Gu.A
Ξ, u : U | Γ ` c := case t of

{
pole 7→ cpole | merid v x 7→ cmerid

}
: C[t/r]

where c[pole/t] = cpole
`u.∆ ` c = cmerid[u/v, unmerid (w.t[γ|u=w/γ])/x]

Figure 7.6: Transpension elimination by pattern matching (sound if U is
cancellative, affine and connection-free).
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Theorem 7.7.3. If U is cancellative, affine and connection-free, then the rule
transp:elim in fig. 7.6 is sound [Nuy20].

We get a context Γ depending on u : U, a type A depending on sections of Γ
(recall that µGu is semantically ∀u), a type C depending on u and 〈Gu | A〉, and
an argument t of type 〈Gu | A〉. To obtain a value of type C, we need to give
an action cpole on the boundary, where t is necessarily pole (pole theorem 7.7.1),
and a compatible action on sections of the transpension type, i.e. meridians,
which are essentially elements of A (quantification theorem 7.4.16), to sections
of C (the quantifier has been brought to the left as µ∀u). Thanks to connection-
freedom, we know that everything that is not (degenerate on) a section, is
on the boundary, so this suffices. The computation rule for meridians is in a
non-general context and needs to be forcibly closed under substitution.

7.8 Recovering Known Operators

In this section, we explain how to recover the amazing right adjoint
√

[Lic+18],
Moulin et al.’s Φ and Ψ combinators [BCM15; Mou16] and Glue [Coh+17;
NVD17a], Weld [NVD17a] and mill [ND18b] from the transpension, the strictness
axiom [OP18] and certain pushouts.

The amazing right adjoint
√

Licata et al. [Lic+18] use presheaves over a
cartesian base category of cubes and introduce

√
as the right adjoint to the

non-dependent exponential I → xy. We generalize to semicartesian systems
and look for a right adjoint to U ( xy, which decomposes as substructural
quantification after cartesian weakening ∀(u : U) ◦ Ω(u : U). Then the right
adjoint is obviously

√
U := Π(u : U) ◦ G(u : U). The type constructor has type

〈
√

U | xy〉 : (
√

U pr U`)→ U` and the transposition rule is as in proposition 7.3.4.
This is an improvement in two ways: First, we have computation rules, so that
we do not need to postulate functoriality of

√
U and invertibility of transposition.

Secondly, we have no need for a global sections modality [. Instead, we use the
modality

√
U to escape Licata et al.’s no-go theorems. Our overly general mode

theory does contain [ : > → >, and Licata et al.’s formation and functoriality
axioms can be proven because [⇒

√
U. Their transposition rule is provable by

applying 〈[ | xy〉 to both sides of the isomorphism in proposition 7.3.4 and using
that [ ◦

√
U
∼= [, which follows from an isomorphism between their left adjoints

(I( xy) ◦ + ∼= +, where + a [ is the connected components functor.
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Binary and destrictified reformulation of Moulin et al.’s original Φ-rule:
[BCM15; Mou16]

∆, i : I ` B type
∆, i : I, y : B ` C type
∆, y : B[ε/i] ` cε : C[ε/i] (ε ∈ {0, 1})
∆, h : ∀(i : I).B, i : I ` c : C[h i/b]
∆, h : ∀(i : I).B ` c[ε/i] = cε[h ε/b] : C[h ε/b] (ε ∈ {0, 1})
∆, i : I ` b : B
∆, i : I ` Φi c0 c1 c b : C[b/y]
where Φε c0 c1 c b = cε (ε ∈ {0, 1})

Φi c0 c1 c b = c[λi.b/h]

In formal MTT syntax:

phi
Ξ, u : U | Γ ` B type
Ξ, u : U | Γ, y : B ` C type
Ξ, u : U | Γ, y : B, u ∈ ∂U ` c∂ : C
Ξ, u : U | Γ, y : B,µt

Gu,µ
a
∀u ` c : C[reidxu↓•ta]

Ξ, u : U | Γ, y : B,µt
Gu,µ

a
∀u, u ∈ ∂U ` c = c∂ [reidxu↓•ta] : C[reidxu↓•ta]

Ξ, u : U | Γ ` b : B
Ξ, u : U | Γ ` Φu (y.c∂) (y.t.a.c) b : C[b/y]
where Γ, u ∈ ∂U ` Φu (y.c∂) (y.t.a.c) b = c∂ [b/y]

(phi:boundary)
∆,µa′

∀u ` (Φu (y.c∂) (y.t.a.c) b) = c[b/y, ↓tata][(unmeridu ? id∀u)↓a
′ta

a′ ]
(phi:section)

In informal notation:

Ξ, u : U | Γ ` B type
Ξ, u : U | Γ, y : B ` C type
Ξ, u : U | Γ, y : B, u ∈ ∂U ` c∂ : C
Ξ, v : U | ` v.∀(u : U).(Γ, y : B) ` c : C[γ|u=v/γ, y|u=v/y]
Ξ, v : U | ` v.∀(u : U).(Γ, y : B), v ∈ ∂U `

c = c∂ [v/u, γ|u=v/γ, b|u=v/b] : C[γ|u=v/γ, y|u=v/y]
Ξ, u : U | Γ ` b : B
Ξ, u : U | Γ ` Φu (y.c∂) (y.v.c) b : C[b/y]
where Γ, u ∈ ∂U ` Φu (y.c∂) (y.v.c) b = c∂ [b/y]

`u.∆ ` Φu (y.c∂) (y.v.c) b = c[u/v, λ_.b/y|v=xy]

Figure 7.7: The Φ-rule for (y : B)→ C (sound if U is cancellative, affine
and connection-free).
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The Φ-combinator In fig. 7.7, we state Moulin et al.’s Φ-rule [BCM15; Mou16];
both a slight reformulation adapted to the naïve system (section 7.2) and the
rule phi adapted to the current system. For types B and C (depending on u : U),
the combinator allows us to define functions of naïve type ∀u.(y : B u)→ C uy
from an action c∂ on the boundary (in Moulin et al.’s work: on every endpoint
of the interval) and a compatible action c on sections ∀u.B u. Given a section
of B (recall that µGu is semantically ∀u), c provides a section of C (but the
quantification has been moved to the left as µ∀u), compatible with c∂ on the
boundary. The result is a term of type C which matches the given actions on
the boundary and on sections. Again, the computation rule for sections is in a
non-general context and needs to be forcibly closed under substitution.

The main difference with Moulin et al.’s formulation is that they require that
i : I be the last variable before y, i.e. it comes after Γ. Here, this would mean
that Γ is fresh for u : U, i.e. Γ = (∆,µ∀u) or informally Γ = `u.∆. In that case,
because Moulin et al.’s system is cancellative and affine, the informal notation
of the context of c then becomes ` v.(∆,∀(u : U).(y : B)), which corresponds
more closely to Moulin et al.’s rules. The greater generality of our Φ-rule means
that there is in fact no reason not to absorb B into Γ.

We remark that if C = 〈Gu |t D〉 and U is cancellative and affine, then the
Φ-rule follows from the introduction rule of the transpension type by pole
theorem 7.7.1 and quantification theorem 7.4.16. Indeed, we can then define:

Φu (y.c∂) (y.t.a.c) y := modt
Gu (prmodGu ·a c) :

〈
Gu |t D

〉
Φu (y.c∂) (y.v.c) y := meridu (unmerid (v.c)) : Gu.D.

Theorem 7.8.1. If U is cancellative, affine and connection-free, then the Φ-rule
phi in fig. 7.7 is derivable for all B and C.

Proof. Absorb B into Γ and use the case-eliminator for 〈Gu |t Unit〉 (theo-
rem 7.7.3):

Φu (y.c∂) (y.t.a.c) y := case (modt
Gu unit) of

{
pole 7→ c∂
merid(t,_, a) 7→ c

}

Φu (y.c∂) (y.v.c) y := case (meridu unit) of
{

pole 7→ c∂
merid v_ 7→ c

}

The Ψ-combinator Moulin et al.’s Ψ-combinator constructs an edge in the
universe with endpoints Aε from a relation R : ×εAε → U. In fig. 7.8, we
adapt the typing rules, replacing the concept of endpoints with the boundary.
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Binary and destrictified reformulation of Moulin et al.’s original Ψ-type:
[BCM15; Mou16]

∆ ` Aε type (ε ∈ {0, 1})
∆, x0 : A0, x1 : A1 ` R type
∆, i : I ` Ψi A0 A1 (x0.x1.R) type
where Ψε A0 A1 R = Aε (ε ∈ {0, 1})

∆ ` aε : Aε (ε ∈ {0, 1})
∆ ` r : R[a0/x0, a1/x1]
∆, i : I ` inΨi a0 a1 r : Ψi A0 A1 (x0.x1.R)
where inΨε a0 a1 r = aε (ε ∈ {0, 1})

q = inΨi a0 a1 (outΨ(j.q[j/i]))
∆, i : I ` q : Ψi A0 A1 (x0.x1.R)
∆ ` outΨ(i.q) : R[q[0/i]/x0, q[1/i]/x1]
where outΨ(i.inΨi a0 a1 r) = r

In formal MTT syntax:

psi
Ξ, u : U | Γ, u ∈ ∂U ` A type
Ξ | Γ, α : (_ : [u ∈ ∂U])→ A,µt

G(u:U) ` R type
Ξ, u : U | Γ ` Ψu A (α.t.R) type
where u ∈ ∂U ` Ψu A (α.t.R) = A (psi:boundary)

psi:intro
Ξ, u : U | Γ, u ∈ ∂U ` a : A
Ξ | Γ,µt

G(u:U) ` r : R[λ_.a/α, ↓tt]
Ξ, u : U | Γ ` inΨu a (t.r) : Ψu A (α.t.R)
where u ∈ ∂U ` inΨu a (t.r) = a (psi:intro:boundary)

q = inΨu q (t.outΨ ·a q[reidxu↓•ta]) (psi:beta)
psi:elim
Ξ, u : U | ∆,µa

∀(u:U) ` q : Ψu A (α.t.R)
Ξ | ∆ ` outΨ ·a q : R[λ_.q/α, ↓tt][unmeridu↓at• ]
where outΨ ·a inΨu a (t.r) = r[unmeridu↓at• ] (psi:eta)

In informal notation:
Ξ, u : U | Γ, u ∈ ∂U ` A type
Ξ | ∀(u : U).(Γ, α : (_ : [u ∈ ∂U])→ A) ` R type
Ξ, u : U | Γ ` Ψu A (α.R) type
where u ∈ ∂U ` Ψu A (α.R) = A

Ξ, u : U | Γ, u ∈ ∂U ` a : A
Ξ | ∀(u : U).Γ ` r : R[λu.λ_.q/α|u=xy]
Ξ, u : U | Γ ` inΨu a r : Ψu A (α.R)
where u ∈ ∂U ` inΨu a r = a

q = inΨu a (outΨ(v.q[v/u, γ|u=v/γ]))
Ξ, u : U | `u.∆ ` q : Ψu A (α.R)
Ξ | ∆ ` outΨ(u.q) : R[λ_.δ/δ|u=xy, λu.λ_.q/α|u=xy]
where outΨ(u.inΨu a r) = r[λ_.δ/δ|u=xy]

Figure 7.8: Typing rules for the Ψ-type.



210 TRANSPENSION: THE RIGHT ADJOINT TO THE Π-TYPE

The formation rule takes a type A that exists on the boundary, and a type
R depending on sections of A (with µGu being ∀u). It yields a Ψ-type which
equals A on the boundary. The introduction rule is only necessary when we are
not on the boundary (otherwise we can just coerce elements of A). It requires
an element of A on the boundary and, for every section of Γ (which need not
exist), a proof that the resulting boundary section satisfies R. The elimination
rule sends sections of the Ψ-type (the quantification has been brought to the
left as µ∀u) to proofs that the boundary part satisfies R. We have β- and
η-rules. In cancellative, affine and connection-free systems, the Φ-rule yields a
pattern-matching eliminator. Again, the main difference with Moulin et al. is
that Γ need not be fresh for u.

The Ψ-type can be implemented by strictifying the following using Strict:

ΨuA (α.t.R) :∼= (α : (_ : u ∈ ∂U)→ A)×
〈
Gu |t R

〉
,

The fact that it is isomorphic to A on the boundary follows from the pole
theorem 7.7.1.

Transpensivity The Φ-rule is extremely powerful but not available in all
systems. However, when the codomain C is a Ψ-type, then the inΨ-rule is
actually quite similar to the Φ-rule. As such, we take an interest in types that
are very Ψ-like. We have a monad (idempotent if U is cancellative and affine)

Ψ̄uA := ΨuA (α.t.〈∀u |a A ext{u ∈ ∂U ? α_}[reidxu↓•ta]〉)

Ψ̄uA := ΨuA (α.∀ v.A ext{u ∈ ∂U ? α_}[v/u, γ|u=v/γ])

where A ext{ϕ ? a} is the type of elements of A that are equal to a when ϕ
holds (fig. 6.6).

Definition 7.8.2. A type is transpensive over u if it is a monad-algebra for
Ψ̄u.

For cancellative, affine and connection-free multipliers, Φ entails that all types
are transpensive. For other systems, many interesting types will still be
transpensive, allowing to eliminate to them in a Φ-like way.

Glue, Weld, mill Glue{A← (ϕ ? T, f)} and Weld{A→ (ϕ ? T, g)} are similar
to Strict but extend unidirectional functions. As already discussed in section 6.3,
Orton and Pitts [OP18] show that Glue [Coh+17; NVD17a] can be implemented
by strictifying a pullback along A → (ϕ → A) [ND18b] which is definable
internally using a Σ-type. Dually, Weld [NVD17a] can be implemented if there
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is a type former for pushouts along ϕ×A→ A where ϕ : Prop [ND18b], which
is sound in all presheaf categories. Finally, mill [ND18b] states that ∀(u : U)
preserves Weld and is provable by higher-dimensional pattern matching.

Locally fresh names Nominal type theory is modelled in the Schanuel topos
[Pit14] which is a subcategory of Psh(0Cube2). As fibrancy is not considered
in this chapter, we will work directly in Psh(0Cube2). Names can be modelled
using the multiplier xy ∗ (i : I). Interestingly, the fresh weakening functor `(i:I)
is then inverse to its left adjoint ∃(i:I). By consequence, we get ∃ i ∼= ∀ i (the
fresh name quantifier) and ` i ∼= G i.

Moreover, by theorem 7.4.16, we have ∀ i ◦ ` i ∼= 1. An element of 〈∀ i ◦ ` i | A〉
is created by first abstracting over i, then making sure that the body is fresh
for i. This is exactly how locally fresh name abstraction ν(i : I) works, and the
fact that ∀ i ◦ ` i ∼= 1 allows us to use it anywhere.

Consider Pitts’s implementation of higher dimensional pattern matching [Pit14]:

f : (∀i.X ] Y )→ (∀i.X) ] (∀i.Y )

f ĉ = ν(i : I).case ĉ i of
{

inl a 7→ inl (λi.a)
inr b 7→ inr (λi.b)

}
The right to use ν is derived from the isomorphism ∀ i ◦ ` i ∼= 1. Recalling that
` i ∼= G i, this translates to unmerid. Then ν itself translates to abstraction over
i, and instead of making the body fresh for i, we can transpend over it, allowing
us to view a and b as functions, justifying the variable capture in nominal type
theory.

7.9 Conclusion

To summarize, the transpension type can be defined in a broad class of presheaf
models and generalizes previous internalization operators. For now, we only
present an extensional type system without an algorithmic typing judgement.
The major hurdles towards producing an intensional version with decidable
type-checking, are the following:

• We need to decide equality of 2-cells. Solutions may exist in the literature
on higher-dimensional rewriting.

• If we want the substitution modality to reduce (remark 7.4.15), we need
to solve the following problem: when â = modo

Ωσ a definitionally, then we
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need to infer a up to definitional equality from â in order to β-reduce the
let-rule for 〈Ωσ | A〉.

• We need a syntax-directed way to close the section computation rules of
Φ (fig. 7.7) and transpension elimination (section 7.7) under substitution.
• We need to decide whether a proposition is true. This problem has been

dealt with in special cases, e.g. in implementations of cubical type theory
[VMA19].



Chapter 8

Fibrancy

8.1 Introduction

As explained in section 1.6, many models of type theory restrict the semantics of
the type judgement Γ ` T type to fibrant types, which are those types Γ ` T type
such that the weakening substitution (Γ, x : T )→ Γ is a fibration, i.e. belongs
to the right class of an NWFS on the category of contexts (remark 2.4.12).
In order to carry out as much as possible of the construction of a model of
type theory internally – which helps abstracting away certain details about the
model and also makes feasible the use of a proof assistant – we wish to study
fibrancy internally. This chapter builds on the theory of factorization systems
in section 2.4.

As motivated in section 1.6, we have three concrete goals:

• To obtain an internal fibrant replacement monad on types. As an internal
operator, we want it to be stable under substitution.

• To obtain feasible conditions for the Π-type to be fibrant. In example
8.1.26, we will see that the conditions for the Π-type to be Kan fibrant
(necessary in models of HoTT) are stronger than one could expect, and in
example 8.1.27, we will see that that the conditions for the Π-type to be
Segal fibrant (which is at least desirable in directed type theory) are truly
problematic.

• To define internally a predicate Fib(T ) stating that the type T is fibrant.

We will introduce the robustness criterion for NWFSs and find that robust
NWFSs have a stable fibrant replacement and enjoy the property that the
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Π-type is fibrant if its codomain is. Moreover, we will find that, by moving to
contextual fibrancy, the robustness condition can be more easily satisfied. In
contextual fibrancy, types Γ,Θ ` T type are fibrant not over the entire context,
but only over a telescope Θ, while Γ is just the context in which we consider
fibrancy.

The fibrancy predicate can be defined either using the internal fibrant
replacement monad (section 8.6), or by exploiting knowledge about the specific
NWFS at hand, perhaps using the transpension type (section 8.7).

Overview In section 8.1.1, we define fibrancy for types and consider plenty
of examples. In section 8.1.2, we revisit these examples and consider whether
their fibrant replacement can be internalized as a type operator stable under
substitution. We informally introduce robustness and contextual fibrancy. In
section 8.1.3, we revisit the examples again and consider fibrancy of the Π-type.

In section 8.2, we generalize the theory on NWFSs from sections 2.4.5 and 2.4.6
to damped NWFSs, which is the categorical counterpart of contextual fibrancy.
In section 8.3, we define what we want to achieve: an NWFS is stable if
its right replacement monad behaves well w.r.t. pullbacks, which are the
semantic counterpart of substitution. In section 8.4, we introduce and study
the robustness condition. We prove that robustness guarantees stability and
fibrancy of the Π-type if its codomain is fibrant. In section 8.5, we present
typing rules that internalize both the right/fibrant replacement monad R and
the left coreplacement comonad L of a stable NWFS. In section 8.6, we use the
internal fibrant replacement monad to define fibrant types as those equipped
with an Eilenberg-Moore algebra structure for the fibrant replacement. In
section 8.7, we consider some examples – even non-stable ones – where we can
internally define fibrancy by exploiting knowledge about the precise notion of
fibrancy at hand.

Contributions We make the following contributions:

• We define damped NWFSs as a categorical foundation for contextual
fibrancy. Note that contextual fibrancy in itself is not novel [BT17].

• We define the robustness condition more precisely than I had done so far
[Nuy18b; Nuy18a].

• From the technical report of Degrees of Relatedness [Nuy18a], we polish
the proof of fibrancy of the Π-type and we strengthen the statement and
proof of stability of the fibrant replacement.
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• We present typing rules for internalizing a stable NWFS, and use these
to define fibrancy internally.

• We demonstrate how the transpension type can be used to define notions
of fibrancy internally where this was previously impossible.

How to read We recommend a prior lecture of section 1.6 and of section 2.4
with or without the proofs. After that, this introductory section is of course a
good start. The rest of the chapter may on a first lecture be read with special
focus on the case of non-damped NWFSs and non-contextual fibrancy.

8.1.1 Fibrant types

Definition 8.1.1. Given an NWFS on a CwF C, we say that a type Γ ` T type
is fibrant1 if π : Γ.T → Γ is a right map, i.e. it is equipped with an Eilenberg-
Moore algebra structure f for the right replacement monad R : C↑ → C↑.

Example 8.1.2 (Inhabitation). Continuing examples 2.4.11, 2.4.15, 2.4.22
and 2.4.28, a type Γ ` T type @ Set is called inhabited if Γ.T → Γ is surjective.

Example 8.1.3 (Subsingletons). Continuing examples 2.4.3 and 2.4.29, a type
Γ ` T type @ Psh(W) is called a subsingleton if Γ.T → Γ is injective.

Example 8.1.4 (Codiscrete graphs). Continuing examples 2.4.5 and 2.4.31,
a type Γ ` T type @ Psh(RG) is called codiscrete if Γ.T → Γ is a codiscrete
fibration. Recall from example 4.1.2 the meaning of the type judgement in the
CwF Psh(RG) of reflexive graphs. Codiscreteness of T means that, for any edge
γ : I⇒ Γ and every two nodes N � ts : T [γ ◦ s〉 and N � tt : T [γ ◦ t〉 above its
source and target, there is a unique edge I � t : T [γ〉 from ts to tt.

Example 8.1.5 (Discrete graphs). Continuing examples 2.4.6 and 2.4.32, a
type Γ ` T type @ Psh(RG) is called discrete if Γ.T → Γ is a discrete fibration.
Recall from example 4.1.2 that the nodes of T above a node γ : N⇒ Γ and the
edges above the reflexive edge γ ◦ r, together formed a graph. Discreteness of
T means that all such graphs are discrete, in the sense that all of their edges
are reflexive. Nevertheless, T may contain non-reflexive edges. These must be
heterogeneous, however, meaning that they live above a non-reflexive edge in
Γ.

1We may have special names for specific NWFSs, e.g. discrete instead of discrete fibrant.
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Example 8.1.6 (Clock-irrelevance). Continuing example 2.4.34, a type Γ `
T type @ Psh(Clock) is called clock-irrelevant if Γ.T → Γ is a clock-irrelevant
fibration. From the semantics of the Π-type, we see that clock-irrelevance
means exactly what we wanted it to, namely that �→ T is isomorphic to T .
Indeed, a cell W � λt : (�→ T )[γ〉 is a term yW.� ` t : T [π][γ+]. Now since
π ◦ (γ+) = γ ◦ π, and since � is closed so that yW.� = yW × �, this is a
diagram

yW ×�

π1

��

(γ◦π1,t) // Γ.T

π

��
yW

γ
//

66

Γ

whose lifting shows that t does not depend on the clock variable.

Example 8.1.7 (0-discrete depth cubical sets). Continuing examples 2.4.7
and 2.4.33, a type Γ ` T type @ Psh(DCubed) is called 0-discrete (or just
discrete) if Γ.T → Γ is a 0-discrete fibration. 0-discreteness for d ≥ 0 means that
all cubes of T are reflexive in all L0M-dimensions in which they are homogeneous,
i.e. in which the cube γ that they live above, is reflexive. Again, for d = −1
we are back at example 8.1.3 and then 0-discreteness just means that T is a
subsingleton.

Alternatively, by similar reasoning as in example 8.1.6, one can show that a
type T is 0-discrete precisely when all functions y(i : L0M)→ T are constant, or,
if d = −1, when all functions Bool→ T are constant.

Example 8.1.8 (Segal fibrancy). [From Nuy18b] Continuing example 2.4.35,
a type Γ ` T type @ Psh(Simplex) is called Segal fibrant or just Segal if
Γ.T → Γ is a Segal fibration. The meaning of Segal fibrancy is surprisingly
deep:

• The cells of T living above a point γ : [0] ⇒ Γ constitute a category
T [γ], i.e. there are identity morphisms (simply from the degeneracy maps)
and morphisms can be composed, and composition satisfies unit and
associativity laws.

• The cells of T living above a line γ : [1] ⇒ Γ are the elements of a
profunctor T [γ] between the categories T [γ0] and T [γ1] above the source
and target of γ, i.e. they can be seen as heterogeneous morphisms from
an object in T [γ0] to an object in T [γ1] which can be composed on either
side with homogeneous morphisms.

• The structure of T above a triangle γ : [2]⇒ Γ constitutes a morphism
of profunctors T [γ12] ◦ T [γ01]→ T [γ02] between the edges of γ. A cell t
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above a triangle γ witnesses that its sides t01 and t12 are sent to t02 by
the morphism.

• The structure of T above a higher simplex asserts that the faces of
the higher simplex constitute a commutative diagram of profunctor
morphisms.

Example 8.1.9 (Kan fibrancy). Continuing example 2.4.36, a cubical type
Γ ` T type is called Kan fibrant or just Kan if Γ.T → Γ is a Kan fibration.
Kan fibrant types are types that behave like proper HoTT types: their paths
can be composed and their elements can be transported along paths in the
context.

8.1.2 Stability of the Fibrant Replacement

The definition of an NWFS (definition 2.4.16) provides a right replacement
monad R. When we apply this to the arrow π : Γ.T → Γ, we get a morphism
rπ : Facπ → Γ. Assuming that the CwF we are working in is locally democratic
(definition 3.2.8), there is a type R T such that the slice rπ is isomorphic to the
slice π : Γ.R T → Γ. We call R T the fibrant replacement of T .

We would like to make the monad R available internal to the type theory.
However, it should then be stable under substitution, i.e. we want (R T )[σ] =
R(T [σ]). This turns out to be far from granted.

Example 8.1.10 (Inhabitation: Ë). Continuing examples 2.4.11, 2.4.15, 2.4.22,
2.4.28 and 8.1.2, the NWFS factors π : Γ.T → Γ over [π, id] : (Γ.T ) ] Γ → Γ,
which is isomorphic to π : Γ.(T ] Unit) → Γ. Thus, we see that the fibrant
replacement monad for inhabitation is the Maybe monad. This monad forces
a type to be inhabited by throwing in a new inhabitant. This monad acts
componentwise, in the sense that (W � (T ] Unit)[γ〉) ∼= (W � T [γ〉) ] {•}, so
it is stable under substitution.

Example 8.1.11 (Subsingletons: Ë). Continuing examples 2.4.3, 2.4.29
and 8.1.3, the OFS factors π : Γ.T → Γ over the image π(Γ.T )→ Γ, which is
isomorphic to π : Γ.R T → Γ where R T is the presheaf T (over W/Γ) divided
out by the equivalence relation ‘true’. This monad acts componentwise, so it is
stable under substitution.

Example 8.1.12 (Codiscrete graphs: Ë). Continuing examples 2.4.5, 2.4.31
and 8.1.4, the OFS factors π over a graph that has the nodes of Γ.T but the
edges of Γ. Thus, the codiscrete replacement R T has the nodes of T but a
unique edge above every edge of Γ. This is stable under substitution.
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Example 8.1.13 (Discrete graphs: é). Continuing examples 2.4.6, 2.4.32
and 8.1.5, the discrete replacement R T is the type T divided out by the least
restriction-respecting equivalence relation that identifies all homogeneous edges
of T with the reflexive edge on their source.2

This is not stable under substitution. Indeed, consider the closed type ` T type
which contains two distinct nodes t0, t1 and two edges d, e from t0 to t1. These
edges are homogeneous, as they live above the sole edge of the empty context,
which is reflexive. Therefore, the edges will be contracted in R T , which is then
the unit type / terminal graph. Substitution yI ` (R T )[()] type yields again
the unit type. However, if we first substitute yI ` T [()] type, then we get a type
T [()] that has two heterogeneous edges above id : I⇒ yI. These edges are not
identified by applying R.

Example 8.1.14 (0-discrete depth cubical sets: Ë). Continuing examples 2.4.7,
2.4.33 and 8.1.7, the 0-discrete replacement R T is the type T divided out by
the least restriction-respecting equivalence relation that identifies every cube
with the reflexive cube on their source in every L0M-dimension in which it is
homogeneous.

Interestingly, this operation does commute with substitution, as I have once
laboriously proven for bridge/path cubical sets [Nuy17] and as will follow more
straightforwardly from section 8.4. Consider the same closed type ` T type as in
the previous example 8.1.13, of course turning edges into L0M-edges and adding
the necessary degenerate cubes. We still have R T ∼= Unit, but we now also
have R(T [()]) ∼= Unit in context I. Indeed, we still have the two heterogeneous
edges over id : I⇒ yI, but these edges are now diagonals of squares:

t1 t1

t0

d

e

d

e

t0

d

e

The entire left hand of the above diagram lives above (0/i) : () ⇒ y(i : L0M),
whereas the right hand lives above (1/i). The squares live above (i/i) and
are thus heterogeneous in the horizontal dimension but homogeneous in the
front-to-back dimension. Therefore, they are flattened to a single horizontal
line by the discrete replacement:

• •

Both diagonals d and e then map to said line.
2Hence also with that on their target, as follows from restriction by t ◦ r.
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Example 8.1.15 (Segal fibrancy: é). Continuing examples 2.4.35 and 8.1.8,
the Segal replacement explicitly adds all composites and moreover identifies
everything it needs to identify in order to ensure uniqueness of these composites.

This is absolutely not stable under substitution: consider the inclusion ι : ∂[2]→
y[2] of the boundary of the triangle in the triangle. When we apply R in context
y[2], composites of edges above the triangle’s top sides will be added above the
bottom side. When we apply R in context ∂[2], this will not happen, as it is
the presence of the filler that requires existence of the composites in a Segal
type.

Example 8.1.16 (Kan fibrancy: é). A similar observation applies to Kan
fibrancy (examples 2.4.36 and 8.1.9).

Robustness In each of the above cases of failure, the situation is the same: a
lifting of a generating left map is explicitly added to R T , which is then pulled
back to something that is not a lifting of a left map:

g0

g↑

��

// Γ.T

id.η
��

Γ.R T

π

��

g0 ×Γ ∆

g↑×Γ∆

��

//

ii

∆.T [σ]

id.(η[σ])
��

jj

g1 //

==

Γ ∆.(R T )[σ]

π

��

jj

g1 ×Γ ∆ //

ii
88

∆

jj

Hence, it isn’t there in R(T [σ]). Conversely, every lifting problem for T [σ] is
obviously also a lifting problem for T (by composition with the right hand square
in the diagram above), so all the liftings added to R(T [σ]) can be mapped to
something in (R T )[σ]. Hence, we will always have R(T [σ]) → (R T )[σ] but
not necessarily the other way around.

The solution is to ask that pullbacks of generating left maps are again left
maps, which therefore have a lifting. Moreover, the pullback square should
be a morphism of left maps, in order to guarantee that the liftings match up.
NWFSs generated by a left class satisfying this property, will be called robust
(section 8.4). In the above examples, the ones that have a fibrant replacement
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monad R that is stable under substitution, are precisely the ones whose class
of generating left maps as presented in section 2.4.6 satisfies this criterion.

Naïvely, one might hope to ‘fix’ the other examples by explicitly adding all
pullbacks as generating left maps. A quick look at Kan fibrancy shows that this
is a rather detrimental idea:

Example 8.1.17 (Teleportation). Consider the generating left map

y(i : I).(i .= 0)→ y(i : I)

which includes the source endpoint into a path. The lifting operation against
this left map is a transport operation between path-equal types.

Taking the pullback along y(i : I).((i .= 0) ∨ (i .= 1))→ y(i : I) yields

y(i : I).(i .= 0)→ y(i : I).((i .= 0) ∨ (i .= 1)),

which includes a point in a set of two points. A lifting operation against
this map would be a teleport operation between arbitrary Kan types. Under
the Curry-Howard correspondence, this means that if something is true, then
everything must be true, which is clearly inconsistent.

Contextual fibrancy Instead, we can resort to Boulier and Tabareau’s notion
of contextual Kan fibrancy [BT17], which is inspired by Coquand, Huber,
and Mörtberg’s hcomp operation [CHM18]:

Example 8.1.18 (Contextual Kan fibrancy: Ë). As in example 2.4.36, we
introduce this notion only at a high level, as it may be defined slightly differently
in every of the many treatments of cubical HoTT. We call a type Γ.Θ ` T type
Kan fibrant over telescope Θ in context Γ if, for every cofibration yW.ϕ→ yW ,
the following diagram has a solution as depicted:

y(W, i : I).(ϕ ∨ (i .= 0)) //

��

Γ.Θ.T

��
y(W, i : I) //

��

66

Γ.Θ

��
yW // Γ.

In other words, T can only vary in the dimension of transport i through its
dependencies on Θ, while the variables in Γ are taken to be fresh for i.



INTRODUCTION 221

It turns out that a contextual fibrant replacement monad RΘ exists (section 8.2)
and that it is stable under substitutions σ : ∆ → Γ (section 8.4). It is still
unstable under substitutions Ξ → Θ, but still this allows for some internal
reasoning if we take the telescope to be a single type, which can be quantified
over. Example 8.1.17 no longer works as the pullback σ : ∆ → Γ can not
interrupt the interval in the dimension i of transport, as the variables in Γ are
fresh for i.

Note that in a type Γ.Θ ` T type that is Kan fibrant over Θ, we can still compose
paths as in example 2.4.36, but only the middle one can be heterogeneous w.r.t.
Γ. All three paths can still be heterogeneous w.r.t. Θ.

The above example inspires us to move to a theory of damped factorization
systems, where we work not in the category of arrows, but in the category of
damped arrows which have an additional damping morphism after the codomain.
It will turn out that the robustness condition is easier to satisfy for damped
NWFSs.

Example 8.1.19 (Contextual Segal fibrancy: Ë). [From Nuy18b] We can
similarly generalize Segal fibrancy (examples 2.4.35, 8.1.8 and 8.1.15). We
call a type Γ.Θ ` T type Segal fibrant over telescope Θ in context Γ if the
damped arrow Γ.Θ.T → Γ.Θ→ Γ uniquely lifts all damped arrows of the form
Λn → ∆n → ∆1 where, as in example 2.4.35, the map Λn → ∆n = y[n] includes
the Hamiltonian path of n consecutive edges into the n-simplex. The damping
∆n → ∆1 = y[1] can be any morphism; at most 1 arrow in the Hamiltonian
path will be mapped to the non-trivial arrow in ∆1; the others will all be
collapsed at the source/target of ∆1. The damping square of the lifting problem
just expresses that, of the n morphisms that we are trying to compose, at most
one is heterogeneous w.r.t. Γ. Moreover, we require that T lifts all pullbacks
of all damped arrows Λn → ∆n → ∆1. The meaning of contextual Segal
fibrancy is similar to that of Segal fibrancy example 8.1.8, but the structure of
T above a 2-simplex (γ, θ) : y[2] → Γ.Θ is now merely a ‘profunctor relation’
between T [γ12, θ12]◦T [γ01, θ01] and T [γ02, θ02], which need only be a profunctor
morphism if γ is in fact degenerate on a 1-simplex.

Note that example 8.1.15 no longer works as we are there talking about
composites of 2 morphisms that are both heterogeneous w.r.t. the part Γ
of the context that we are trying to be stable for.

8.1.3 Fibrancy of Π-types

In this section, we are concerned with the question: what does A need to satisfy
so that ΠAxy preserves fibrancy? The ideal answer is, of course, nothing, and
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we will see that this is sometimes but not always the case. Second best would
be that A needs to be fibrant, but even that is not granted.

Example 8.1.20 (Inhabitation: Ë). Continuing example 8.1.2, clearly ΠAB
is inhabited if B is.

Example 8.1.21 (Subsingletons: Ë). Continuing example 8.1.3, it follows
immediately from the presheaf construction of the Π-type (section 4.3.1) that
ΠAB is a subsingleton if B is.

Example 8.1.22 (Codiscrete graphs: Ë). Continuing example 8.1.4, in order
to prove codiscreteness of ΠAB, we need to show that, given cells N � f0 :
(ΠAB)[γ ◦ s〉 and N � f1 : (ΠAB)[γ ◦ t〉, there is a unique edge f from f0 to f1
above γ. Recall from example 4.3.2 that f consists of 5 actions: on nodes/edges
at the source/target of γ, and on edges above γ. The first 4 are fixed as f0 and
f1 are given. The fifth is unique by codiscreteness of B.

Example 8.1.23 (Discrete graphs: é). Continuing examples 2.4.6, 2.4.32,
8.1.5 and 8.1.13, we need to show that every homogeneous edge in ΠAB is
reflexive. So pick a homogeneous edge I � f : (ΠAB)[γ ◦ r〉 above the node
γ. If we can show that f〈s〉 = f〈t〉 then that’s a good start. Write f = λb, so
yI.A[γ ◦ r] ` b : B[(γ ◦ r)+]. For every node N � a : A[γ〉, we can apply f to
the reflexive edge a〈r〉 and get an edge I � b[id, a〈r〉〉 : B[γ ◦ r, a〈r〉〉. This edge
is homogeneous and therefore reflexive by discreteness of B, equating its source
b[s, a〉 and target b[t, a〉. But these are precisely the actions of f〈s〉 and f〈t〉
on a, so the source and target functions have the same action on nodes.

So far so good. In order to prove by the same reasoning that the source and
target functions have the same action on edges, we would like to apply f to the
reflexive square on a given edge. But reflexive graphs have no squares.

In fact, we can exploit this to give a counterexample. Consider the type
yI ` T type which has a single node N � t0 : T [s〉 above the source of yI and
a single node N � t1 : T [t〉 above the target, as well as three distinct edges
I � c, d, e : T [idI〉 from t0 to t1. This type is discrete: the only homogeneous
edges are t0〈r〉 and t1〈r〉, which are indeed reflexive.

We can then give two nodes N � fc, fe : (Π(yI)T )[()〉 which map the non-trivial
edge in yI to c and e respectively. An edge from fc to fe is an action on edges
in yI. The following is such an action:

s ◦ r 7→ t0〈r〉, t ◦ r 7→ t1〈r〉, idI 7→ d.

So we see that we are not only lacking a reflexive square on the non-trivial edge
idI of yI whose image would witness that c = e, we are also left to deal with a
dangling diagonal of that square whose image d can be yet another edge!
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Example 8.1.24 (0-discrete depth cubical sets: Ë). Continuing examples 2.4.7,
2.4.33, 8.1.7 and 8.1.14, in Psh(DCubed) for d ≥ 0 we can finish the reasoning
in the above example as we do have squares available. This shows that all
homogeneous edges in ΠAB are loops, but we still have to show that they
are reflexive. We know that the action of a cube (W, i : L0M) � f : (ΠAB)[γ〉
on cubes (W, i : L0M) � a : A[γ〉 sends them to cubes that are reflexive in
dimension i. However, we also have to take into account the action on cubes
(V, i : LkM) � a : A[γ ◦ (ϕ, i/i)〉 for all ϕ : (V, i : LkM)→W .3 But these must be
compatible with the action of f above γ and are therefore also reflexive.

We can diagrammatically summarize this reasoning very roughly as follows:
given an edge f in the Π-type, we need to prove that it is reflexive.

f0
f

f1 : a0 a
a1 7→ b0

b
b1

This means that it acts on cells the same way as f0〈r〉. So pick a (W, i : LkM)-cell
a0 = a1 on which f and f0〈r〉 may act. This cell has a reflexive edge a = a0〈r〉,
to which we apply f , yielding an edge b. This edge is homogeneous and therefore
reflexive by discreteness of B. This means that its source (which is f0〈r〉 applied
to a0) and its diagonal (which is f applied to a0) are equal.

Alternatively, we can use the criterion that ΠAB is 0-discrete if and only if
all functions y(i : L0M) → ΠAB are constant, which follows straightforwardly
from 0-discreteness of B by swapping arguments. However, the more low-level
approach allows a more interesting comparison with the other examples.

As usual, for d = −1, we are back in example 8.1.21.
Example 8.1.25 (Clock-irrelevance: Ë). Continuing examples 2.4.34 and 8.1.6,
the fact that ΠAB is clock-irrelevant if B is follows straightforwardly by
swapping the arguments of type A and �.
Example 8.1.26 (Kan fibrancy: if A is Kan). Continuing examples 2.4.36,
8.1.9 and 8.1.16, let us try to prove a corollary of Kan fibrancy: that ΠAB lifts
t → 2, where 2 = y(j : I, i : I) and t = 2.((j .= 0)∨ (j .= 1)∨ (i .= 0)). To this
end, pick a t-shape t ` ft : (ΠAB)[γt] which lives above the restriction γt of
γ : 2→ Γ and has sides f0/j , f0/i and f1/j . We will try to create a composite
f1/i:

•

f0/j

f1/i

// •

f1/j

•

a0/j

��

a1/i
•

a1/j

��

•

b0/j

b1/i

// •

b1/j

•
f0/i

•

:

•
a0/i
// •

7→

•
b0/i

•

3For morphisms that actually substitute 0/i or 1/i, we fall back to the actions of the
source and target of f which we already know are equal.
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This composite should act on edges a1/i living above γ1/i.

If we assume that A is also Kan, then we can transport a1/i the other way and
get a full square a which restricts to at. Applying ft to at yields bt, which
can be composed to b1/i by Kan fibrancy of B.

This reasoning is a simplification of how Kan fibrancy of the Π-type is proven
in (models of) cubical type theory [Coh+17].

Note that when we compare to category theory, it is in a way unexpected that
the domain needs to be Kan fibrant. Understanding Kan fibrancy as having
a composition operation, the categorical counterpart of a non-Kan type is a
symmetric reflexive graph. Now the collection of symmetric reflexive graph
morphisms H → G from an arbitrary symmetric reflexive graph H to a groupoid
G is already a groupoid; we have no need for a composition operation on H to
achieve this result.

Example 8.1.27 (Segal fibrancy: if A is Conduché). Continuing exam-
ples 2.4.35, 8.1.8 and 8.1.15, let us try to prove a corollary of Segal fibrancy: that
ΠAB lifts Λ2 → ∆2, i.e. has all composites of two heterogeneous morphisms.
To this end, pick two morphisms f01 and f12 above the top edges γ01 and γ12
of a triangle γ : ∆2 ⇒ Γ, we will try to create a composite f02:

•
f12

��

•
a12

��

•
b12

��
•

f01
??

f02 // •

:

•

a01

??

a02 // •

7→

•

b01

??

b02 // •

This composite needs to act on arrows a02 above γ02. If we can somehow factor
a02 into arrows a01 and a12 living above γ01 and γ12, then we can apply f01 and
f12 to those and obtain b01 and b12, which compose to b02 by Segal fibrancy of
B.

However, the factorization of a02 does not follow from Segal fibrancy. Instead,
the precise criterion that π : Γ.A→ Γ should satisfy is known as the Conduché
condition [Gir64; nLa20b]. Thus, we can conclude that ΠAB is Segal if A is
Conduché and B is Segal.

Unfortunately, the Conduché condition is rather bizarre and is likely invented
with the sole purpose of making the Π-type fibrant. As such, Conduché fibrancy
is not so much a solution as a precise description of the problem.

Again when we compare to category theory, a condition on the domain is in a
way unexpected. Since a category can be defined as a simplicial set satisfying
the Segal condition, the categorical counterpart of a non-Segal type is just a
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simplicial set. Now the collection of simplicial set morphisms D → C from an
arbitrary simplicial set D to a category C is already a category; we have no
need for a composition operation on D to achieve this result.
Example 8.1.28 (Contextual Kan fibrancy: Ë). Continuing example 8.1.18,
let us ask the question when Γ.Θ ` ΠAB type is Kan fibrant over Θ, assuming
that A only depends on Γ. In that case, we do not need Kan composition for A
as we can instead take a degenerate square:

•

f0/j

f1/i

// •

f1/j

•
a

• •

b0/j

b1/i

// •

b1/j

•
f0/i

•

:

•
a

•

7→

•
b0/i

•

Indeed, if a lives above the source edge of a degenerate square in Γ, than it also
lives above the target edge.
Example 8.1.29 (Contextual Segal fibrancy: Ë). Continuing example 8.1.18
and again assuming A depends only on Γ, we similarly do not need Conduché
fibrancy of A as we can simply take a degenerate triangle. Assume that of
the arrows f01 and f12 which we are trying to compose, f01 is the one that is
heterogeneous w.r.t. Γ. Then we can do:

•
f12

��

• •
b12

��
•

f01
??

f02 // •

:

•

a

??

a // •

7→

•

b01

??

b02 // •

We will see that the same robustness criterion from section 8.1.2 will ensure
that ΠA preserves fibrancy. Indeed, a lifting problem

g0

g↑

��

ϕ0=

(ϕ1g↑,λb)
// Γ.ΠAB

π

��
g1 ϕ1

//

77

Γ

can be written equivalently as:

g0.A[ϕ1g↑]

g↑+
��

((ϕ1g↑)+,b) // Γ.A.B

π

��
g1.A[ϕ1]

ϕ1+
//

66

Γ.A
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and the left arrow of the second problem is a pullback of ~g, so if that arrow too
is a left map, then there will be a lifting.

8.2 Damped Factorization Systems

In this section, we straightforwardly generalize the content of sections 2.4.5
and 2.4.6 to the damped situation, so that we can consider contextual fibrancy.
All proofs carry over from sections 2.4.5 and 2.4.6, as the dampings do not
interfere with the proofs given there, nor with the omitted duals of these
proofs (i.e. codampings do not interfere either). We refer to section 2.4 for the
motivation behind all these definitions and theorems.

Definition 8.2.1. The walking damped arrow ↑% is the category with three
objects 0, 1 and 2 and two non-identity morphisms 0→ 1→ 2.

Definition 8.2.2. The damped arrow category of C is defined to be the
functor category C↑%. It has as objects quintuples ~x = ((x0

x↑−→ x1
x%−−→ x2)) and

as morphisms natural transformations ~ϕ = (ϕ0, ϕ1, ϕ2). It is equipped with
obvious functors Dom,Cod,Dmp : C↑ → C and obvious natural transformations
mor : Dom→ Cod and dmp : Cod→ Dmp.

Definition 8.2.3. Two damped arrows ~̀, ~r ∈ C↑% have the left/right lifting
property w.r.t. each other (denoted ~̀ t ~r) if, for every lifting problem ~ϕ : ~̀→ ~r,
there exists some solution σ : `1 → r0 making the following diagram commute:

`0
ϕ0 //

`↑

��

r0

r↑

��
`1 ϕ1

//

`%

��

σ

??

r1

r%

��
`2 ϕ2

// r2

We also write ~̀ t ~r to denote the set of lifting operations producing such a
solution for every ~ϕ.

Definition 8.2.4. A damped NWFS on a category C consists of the following
data:

• A functor Fac : C↑% → C and natural transformations ` : Dom→ Fac and
r : Fac→ Cod such that r ◦ ` = mor.
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• Categories L and R of left/right maps.
• Two adjoint functors CL a UL where UL : L → C↑%.

If ´̀∈ L, then we write ~̀= (`0
`↑%−−→ `1

`%−→ `2) := UL ´̀.
We write L = ULCL for the composite left coreplacement comonad,
ήL : IdL → CLUL for the unit, and ~εL : L = ULCL → IdC↑ for the co-unit.
We require

L ~x = (x0
`~x−−→ Fac ~x x%◦r~x−−−−→ x2),

~εL
~x = (idx0 , r~x, idx2) : L ~x→ ~x,

UL ή
L
´̀ = (id`0 , ηL

´̀ , id`2) : ~̀→ L ~̀,

where ηL : CodUL → FacUL.
• Two adjoint functors UR a FR where UR : R → C↑.

If r̀ ∈ R, then we write ~r = (r0
r↑−→ r1

r%−→ r2) := UR r̀.
We write R = URFR for the composite right replacement monad,
~ηR : IdC↑% → URFR = R for the unit, and ὲR : FRUR → IdL for the
co-unit.
We require

R ~x = (Fac ~x r~x−→ x1
x%−−→ x2),

~ηR
~x = (`~x, idx1 , idx2) : ~x→ R ~x,

URR ὲ
R
r̀ = (εR

r̀ , idr1 , idr2) : R ~r → ~r,

where εR : FacUR → DomUR.

These must satisfy the following conditions:

• Left maps are precisely maps equipped with a natural lifting operation
w.r.t. all right maps and vice versa, in the following sense:4

L ∼=
∫
~x∈C↑%

∀(r̀ ∈ R).(~x t ~r),

R ∼=
∫
~x∈C↑%

∀(´̀∈ L).(~̀ t ~x),

4Recall that we take categories of elements over functors from the twisted arrow category
(definition 2.2.37).
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and in such a way that the operators associated to ´̀ and r̀ yield the same
element of ~̀ t ~r. Of course the carriers in the right-hand categories should
be obtained via UL and UR.

• For any ´̀∈ L, the canonical solution to the lifting problem ~ηR
UL ´̀ : UL ´̀→

RUL ´̀ is ηL
´̀ := Cod(UL ή

L
´̀ ) : `1 → Fac ~̀.

• For any r̀ ∈ R, the canonical solution to the lifting problem ~εL
URr̀

:
LURr̀ → UR r̀ is εR

r̀ := Dom(UR ὲR
r̀ ) : Fac~r → r0.

`0

`↑

��

`~̀ // Fac ~̀

r~̀
��

r0
id //

`~r
��

r0

r↑

��
`1 id

//

ηL
´̀

>>

`%

��

`1

`%

��

Fac~r r~r
//

εR
r̀

==

r%

��

r1

r%

��
`2 id

// `2 r2 id
// r2

Definition 8.2.5. Given a damped NWFS on a CwF C, we say that a type
Γ.Θ ` T type is contextually fibrant in context Γ if (Γ.Θ.T π−→ Γ.Θ π−→ Γ) is
a right map, i.e. it is equipped with an Eilenberg-Moore algebra structure f for
the right/fibrant replacement monad R : C↑% → C↑%.

If Θ is empty, we say that Γ ` T type is degenerately fibrant [BT17].

Lemma 8.2.6. The adjoint factorization R = URFR is isomorphic to the
adjoint factorization over the Eilenberg-Moore category EM(R). The dual
result holds for L.

Proof. See lemma 2.4.18.

Lemma 8.2.7. In a damped NWFS, the solution to a lifting problem ~ϕ :
UL ´̀→ URr̀ is given by εR

r̀ ◦ Fac ~ϕ ◦ ηL
´̀ .

Proof. See lemma 2.4.19.

Definition 8.2.8. A damped Grandis-Tholen NWFS consists of:

• A right replacement monad (R, ~ηR, ~µR) on C↑% which is trivial at
Cod,Dmp, dmp,

• A left coreplacement comonad (L, ~εL, ~δL) on C↑% which is trivial at
Dom,Dmp, dmp ◦mor,
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such that

• Dom R = Cod L =: Fac,
• mor L = Dom ~ηR =: ` : Dom→ Fac,
• mor R = Cod ~εL =: r : Fac→ Cod.

Theorem 8.2.9. A damped Grandis-Tholen NWFS determines a unique
damped NWFS (up to isomorphism).

Proof. See theorem 2.4.21. Again L = EM(L) and R = EM(R).

Proposition 8.2.10. A damped OFS (of which we omit the definition) can
be equivalently defined as an NWFS for which L and R are idempotent. The
classes of the NWFS are then automatically full subcategories of C↑%.

Proof. See proposition 2.4.23.

Theorem 8.2.11 (Small object argument). Write C = Psh(W). Assume given
a category G of generating left maps equipped with a functor UG : G → C↑%.
If g̈ ∈ G, we write ~g := UG g̈.

Then there exists a left generated damped NWFS on C such that

R =
∫
~x∈C↑%

∀g̈ ∈ G.~g t ~x,

L =
∫
~x∈C↑%

∀r̀ ∈ R.~x t ~r.

We write IG for the canonical functor G → L and ǵ := IG g̈. We have UL◦IG = UG .

Proof. See theorem 2.4.25.

Remark 8.2.12. If all the generating left maps are damped by the identity
g% = id : g1 → g2, then going through the proofs above, we find that we get
the exact same L and R as for the corresponding non-damped NWFS. Thus,
the left/right maps are the left/right maps of the non-damped NWFS, with
arbitrary dampings, since these dampings are immaterial when you’re trying to
be a (co)algebra for a (co)monad that ignores them.

In particular, for types, the position of the semicolon in Γ; Θ ` (T, f) fib becomes
immaterial.
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8.3 Stability

In this chapter, we are after a type operator

Γ.Θ ` T type
Γ.Θ ` R T type

(8.1)

where (Γ.Θ.RΘ T
π−→ Γ.Θ π−→ Γ) should be isomorphic to the fibrant replacement

R(Γ.Θ.T π−→ Γ.Θ π−→ Γ). (In the non-damped case, remove Θ.)

If R is to become an internal type operator, then we would like it to be stable
under substitution.

Proposition 8.3.1. In any (damped) NWFS, (contextual) fibrancy is preserved
under substitution (w.r.t. both parts of the context).

Note that non-fibrancy is not preserved.

Proof. Note that type substitution takes a pullback. The solution to the
following lifting problem factors through the pullback:

g0

��

// ∆.Ξ.T [σ.τ ] σ.τ+ //

π

��

Γ.Θ.T

π

��
g1

��

//

44

∆.Ξ σ.τ //

π

��

Γ.Θ

π

��
g2 // ∆

σ
// Γ

In non-damped NWFSs, the situation simplifies.

The above result implies that there will always be a function R(T [σ]) →
(R T )[σ], since we have ηR[σ] : T [σ] → (R T )[σ] and (R T )[σ] is fibrant. We
would like this function to be an isomorphism or, ideally, the identity.

Recall that C↑ and C↑% are functor categories. A cartesian natural transformation
(definition 2.2.24) is one whose naturality squares are pullback squares. As such,
a morphism in C↑ is a cartesian natural transformation if it is a pullback square,
whereas a morphism in C↑% is one if it is two pullback squares.
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Definition 8.3.2. We call a (damped) NWFS on C stable if the monad R
sends cartesian natural transformations to cartesian natural transformations.

If C is a CwF, we say that the (damped) NWFS is strictly stable if there is a
type operator as in eq. (8.1) such that (Γ.Θ.RΘ T

π−→ Γ.Θ π−→ Γ) ∼= R(Γ.Θ.T π−→
Γ.Θ π−→ Γ) (in the non-damped case, remove Θ) which preserves substitution on
the nose.

In the non-damped case, note that type substitution takes a pullback; hence if
R preserves pullbacks, it preserves type substitution at least up to isomorphism:

∆.T [σ] σ+ //

π

��

Γ.T

π

��
∆

σ
// Γ

∆.R (T [σ]) σ+ //

π

��

Γ.R T

π

��
∆

σ
// Γ

In damped NWFSs, we can read a damped arrow as a chain Γ.Θ.T → Γ.Θ→ Γ
and the stability condition only guarantees that substitutions in the first part
of the context are preserved:

∆.Θ[σ].T [σ+]σ++ //

π

��

Γ.Θ.T

π

��
∆.Θ[σ] σ+ //

π

��

Γ.Θ

π

��
∆

σ
// Γ

∆.Θ[σ].RΘ(T [σ])σ++ //

π

��

Γ.Θ.RΘT

π

��
∆.Θ[σ] σ+ //

π

��

Γ.Θ

π

��
∆

σ
// Γ

8.4 Robust NWFSs

Motivated by our findings in sections 8.1.2 and 8.1.3, we define robustness:

Definition 8.4.1. [Nuy18b] We call a (damped) NWFS over C = Psh(W)
robust if it is left generated by G and every cartesian natural transformation
~ϕ : ~x→ ~g to a generating left map g̈ ∈ G is itself a morphism of left maps (i.e.
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in the image of UL), and such that every square of natural transformations

~x
~ϕ

cart.
//

~χ

��

~g

~γ

��
~x′

~ϕ′

cart.
// ~g′

(8.2)

with right side γ̈ : g̈ → g̈′ a morphism of generating left maps, is correspondingly
a commutative square of left maps.

What this means in practice is that pullbacks of generating left maps will also
be lifted by fibrant types, and indeed naturally so.

8.4.1 Constructing Robust NWFSs

The following propositions provide two ways to obtain robust (damped) NWFSs.
We will never use the former but it seems worth mentioning.

Proposition 8.4.2. A (damped) NWFS is robust if every cartesian natural
transformation ϕ : ~x→ ~̀ to a left map ´̀∈ G is itself a morphism of left maps,
and similar for squares analogous to eq. (8.2).

Proof. It follows from the definition of a (damped) NWFS that it is trivially
generated by L. Thus, it satisfies the definition of robustness.

Proposition 8.4.3. A left generated (damped) NWFS over a presheaf category
is robust if every cartesian natural transformation ϕ : ~x → ~g to a generating
left map g̈ ∈ G with x1 (damped: x2) representable, is itself a morphism of
left maps, and similar for squares arising from a morphism between g̈’s and a
morphism in the base category.

Note that if xi (where i = 1 in the non-damped case and i = 2 in the damped
case) is representable, i.e. xi = yW , then ϕi : xi → gi is essentially a cell
W ⇒ gi. So the criterion says that pullbacks (not necessarily base pullbacks!)
of generating left maps along presheaf cells, should be left maps again.

Proof. We prove this for damped NWFSs. Pick an arbitrary cartesian natural
transformation ~ϕ : ~y → ~g. We have to show that ~y solves any lifting problem
~χ : ~y → ~r with r̀ ∈ R, i.e. we need to define σ : y1 → r0. For every cell
γ : W ⇒ y1, we get a morphism y% ◦ γ : yW → y2 along which we can take a
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pullback that we call ψ : ~z → ~y and, by the universal property of the pullback,
a cell ζ : W ⇒ z1 such that ψ1 ◦ ζ = γ. Now ~z is lifted by ~r, and naturally so in
(W,γ). This constitutes a presheaf morphism σ : y1 → r0. It is straightforward
to verify that σ is a solution to the lifting problem.

8.4.2 Robustness of Examples of NWFSs

Example 8.4.4 (Surjective functions: Ë). Continuing examples 2.4.22, 2.4.28,
8.1.2, 8.1.10 and 8.1.20, any pullback of the sole generating left map ∅→ {•}
(example 2.4.28) is again an injective function (i.e. left map) ∅ → X, and
moreover the pullback square is a morphism of left maps in the sense of
example 2.4.22. Thus, this NWFS is robust.

Example 8.4.5 (Injective presheaf morphisms: Ë). Continuing examples 2.4.3,
2.4.29, 8.1.3, 8.1.11 and 8.1.21, any pullback of a generating left map yW]yW →
yW (example 2.4.28) is again a surjective morphism (i.e. left map) Γ ] Γ→ Γ.
As we are dealing with an OFS, the pullback square is automatically a morphism
of left maps. Thus, this OFS is robust.

Example 8.4.6 (Codiscrete graphs: Ë). Continuing examples 2.4.5, 2.4.31,
8.1.4, 8.1.12 and 8.1.22, any pullback of the generating left map yN ] yN→ yI
(example 2.4.28) is again bijective on nodes, i.e. a left map. Thus, this OFS is
robust.

Example 8.4.7 (Discrete graphs: é). Continuing examples 2.4.6, 2.4.32, 8.1.5,
8.1.13 and 8.1.23, the pullback of the sole generating left map yr : yI → yN
along itself is π1 : yI× yI→ yI. This is not lifted by all discrete fibrations: it
contains three edges in the domain (two parallel sides and a diagonal) which are
not homogeneous (i.e. they are not mapped to reflexive edges in the codomain)
and therefore need not be reflexive in a discrete type. Thus, this is not a robust
way of generating an OFS. That does not mean that there is no other robust
way, but we know that there is not because the discrete replacement monad for
reflexive graphs is not stable under substitution.

Example 8.4.8 (Clock-irrelevance: Ë). Continuing examples 2.4.34, 8.1.6
and 8.1.25, the pullback of a generating left map yW × � → yW from a
representable object yV is again a (generating) left map yV ×�→ yV . Thus,
this OFS is robust by proposition 8.4.3.

Example 8.4.9 (0-discrete depth cubical sets: Ë). Continuing examples 2.4.6,
2.4.32, 8.1.5, 8.1.13 and 8.1.23, the pullback of a generating left map yW ×y(i :
L0M) → yW from a representable object yV is again a (generating) left map
yV × y(i : L0M)→ yV . Thus, this OFS is robust by proposition 8.4.3.
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Example 8.4.10 (Kan fibrancy: é). Continuing examples 2.4.36, 8.1.9, 8.1.16
and 8.1.26, it is clear from example 8.1.17 that the way we generated the Kan
NWFS was not robust.

Example 8.4.11 (Contextual Kan fibrancy: Ë). Continuing examples 8.1.18
and 8.1.28, the pullback of the damped arrow

y(W, i : I).(ϕ[y(i/�)] ∨ (i .= 0))→ y(W, i : I)→ yW

along yχ : yV → yW is the damped arrow

y(V, i : I).(ϕ[y(χ, i/�)] ∨ (i .= 0))→ y(V, i : I)→ yV

which is again a generating left map, so the damped Kan NWFS is robust by
proposition 8.4.3.

Example 8.4.12 (Segal fibrancy: é). Continuing examples 2.4.35, 8.1.8, 8.1.15
and 8.1.27, the pullback of the generating left map Λ2 → ∆2 along the inclusion
of the composite side in ∆2 is the endpoint inclusion in y[1]. This is not a
left map; indeed, if all Segal types would (uniquely5) lift this map, then they
would have codiscrete edges. Thus, the way we generated the Segal OFS was
not robust.

Example 8.4.13 (Contextual Segal fibrancy: Ë). Inspired by proposition 8.4.3,
we amend example 8.1.19: instead of explicitly adding all pullbacks of Λn →
∆n → ∆1 as generating left maps, we only add the pullbacks from representable
objects. Mindful of remark 2.4.27, we also add all pullbacks of ∆n ] Λn∆n →
∆n → ∆1 from representable objects. Still, the damped Segal OFS is robust.

8.4.3 Fibrancy of Π-types over a Robust NWFS

Theorem 8.4.14. [Nuy18a; Nuy18b] If Γ.A ` B type is fibrant w.r.t. a robust
NWFS, then Γ ` ΠAB is fibrant.

If Γ.A.Θ[π] ` B type is contextually fibrant in context Γ.A w.r.t. a robust
damped NWFS, then Γ.Θ ` Π(A[π])(B[swap]) type is contextually fibrant in
context Γ, where swap : Γ.Θ.A[π] ∼= Γ.A.Θ[π].

Proof. We only prove the damped statement, the other follows by simplifying
the proof or via remark 8.2.12.

5The unique-making construction in remark 2.4.27 is preserved by pullback, at least in
presheaf categories.
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Pick a lifting problem ~ϕ against a generating left map ~g:

g0

g↑

��

ϕ0=

(ϕ1g↑,λ(b[swap]))
// Γ.Θ.Π(A[π])(B[swap])

π

��
g1

g%

��

ϕ1
//

55

Γ.Θ

π

��
g2 ϕ2

// Γ

It can be written equivalently as:

g0.A[ϕ2g%g↑]

g↑+
��

((ϕ1g↑)+,b) // Γ.A.Θ[π].B

π

��
g1.A[ϕ2g%]

g%+
��

ϕ1+
//

55

Γ.A.Θ[π]

π

��
g2.A[ϕ2]

ϕ2+
// Γ.A

in the sense that there is a natural bijection between lifting solutions. But in
the lower problem, we are lifting against a map that is a pullback of ~g and
therefore a left map, so the problem has a solution.

We still have to show naturality of the solution. Naturality w.r.t. B is
straightforward. Naturality w.r.t. ~g follows from the square condition in
eq. (8.2) in the definition of robustness.

8.4.4 Stability of Robust NWFSs

Theorem 8.4.15. [Nuy18b] Robust (damped) presheaf CwFs are stable.

Proof. We prove this in the damped case; the non-damped case follows by
remark 8.2.12.

Pick a type Γ.Θ ` T type and a substitution σ : ∆ → Γ, and note that
stability does not only completely characterize R(T [σ+]) as (RT )[σ+]; it also
characterizes FR(T [σ+]) (which is an algebra over R(T [σ+])) as the contextual
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fibration which solves lifting problems as in the proof of proposition 8.3.1.
Indeed, the carrier of FR(T [σ+]) is fixed, while the lifting structure needs to
be respected by the pullback along σ since FR is a functor.

Because FR a UR, we know that FR ~x has the universal property that algebra
morphisms FR ~x → r̀ are in natural bijection with morphisms ~x → ~r = UR r̀.
We will prove that (R T )[σ+] with the pulled-back structure (together denoted
(FR T )[σ+], i.e. we apply the substitution to the algebra) satisfies the universal
property of FR(T [σ+]).

Since presheaf CwFs are locally democratic, we can assume without loss of
generality that r̀ is also a type. By the universal property of the pullback,
without loss of generality we can pull back r̀ to the same context ∆ and telescope
Θ, i.e. we can assume that we are dealing with a fibrant type ∆.Θ[σ] ` S type
with structure s, and we need to show that algebra morphisms ∆; Θ[σ] `
(FR T )[σ+] → (S, s) are in natural correspondence with functions ∆.Θ[σ] `
(T [σ+])→ S.

Again by local democracy, we can assume without loss of generality that
σ = π : ∆ = Γ.A→ Γ. Then we have

(Γ.A; Θ[π] ` (FR T )[π+]→ (S, s))

∼= (Γ; Θ ` FR T → (Π(A[π])(S[swap]), p))

∼= (Γ.Θ ` T → Π(A[π])(S[swap]))

∼= (Γ.A.Θ[π] ` T [π+]→ S).

In the first step, we use abstraction/application and the definition of the
standard fibrancy structure on Π-types (theorem 8.4.14). In the second step,
we use FR a UR (recall that UR forgets the structure). The third step is again
abstraction/application.

Lemma 8.4.16. Assume on a presheaf CwF a type operator E : Ty(Γ)→ Ty(Γ)
that preserves substitution up to isomorphism (i.e. it is a pseudonatural
transformation Ty → Ty). Then there is a naturally isomorphic operator F
that preserves substitution on the nose (i.e. it is a natural transformation
Ty→ Ty).

Proof. Take Γ ` T type. We need to define Γ ` FT type. Pick γ : W ⇒ Γ.
Then we need to define (W � (FT )[γ〉) which by theorem 4.1.4 is isomorphic
to (yW ` (FT )[γ]) = (yW ` F (T [γ])) ∼= (yW ` E(T [γ])). So we must (up to
isomorphism) define

(W � (FT )[γ〉) := (yW ` E(T [γ])).
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This respects substitution:

(W � (F (T [σ]))[γ〉) = (yW ` E(T [σγ])) = (W � (FT )[σ][γ〉),

and is clearly isomorphic to ET .

Corollary 8.4.17. Robust (damped) CwFs are strictly stable.

8.5 Internalizing Stable NWFSs

8.5.1 Extensional Typing Rules for the Fibrant Replacement

Figures 8.1 and 8.2 list typing rules that internalize the fibrant replacement of
a strictly stable (damped) NWFS. We do this only in an extensional setting.
The reason is that we want to remain agnostic as to which equalities hold
judgementally and which ones only propositionally. Indeed, in specific cases,
we might be able to implement the fibrant replacement operator and then the
computational behaviour may depend on the implementation.

Basically, we just internalize the fact that R is a monad on the category of (in
the non-damped case) types T or (in the damped case) types T depending on
another type D (which replaces the telescope Θ used in the previous sections).
Note that while a monad is just a functor equipped with well-behaved natural
transformations for unit and multiplication, the internalization in figs. 8.1 and 8.2
is completely different to what we saw for functors and natural transformations
in figs. 5.1 and 5.2. This is because those figures were about internalizing
functors between CwFs, whereas here we are internalizing functors between
categories of (dependent) types within a given CwF.

Theorem 8.5.1 (Soundness). The typing rules in fig. 8.1 (fig. 8.2) are sound
in a CwF equipped with a strictly stable (damped) NWFS.

Proof. We only prove the damped result.

The rule rr is derivable from

Γ, w : D ` T
Γ, w : D ` R(w.T )w

which is modelled by the operator assumed in definition 8.3.2.

The premises of the functoriality rule create a morphism of damped arrows, to
which we can apply the functorial action of the aforementioned operator.
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Prerequisites: DTT (fig. 3.2)
Formation:

rr
Γ ` T type
Γ ` R T type
where (R T )[σ] = R(T [σ])

Functoriality:

rr:fmap
Γ ` S, T type Γ ` f : S → T Γ ` s′ : R S

Γ ` R f s′ : R T
where s′ = R id s′ (rr:fmap:id)

R f2 (R f1 r
′) = R (f2 ◦ f1) r′ (rr:fmap:comp)

Monad structure:

rr:unit
Γ ` t : T
Γ ` ηR t : R T
where R f (ηR s) = ηR(f s) (rr:unit:nat)

rr:mult
Γ ` T type
Γ ` t′′ : R2 T

Γ ` µR t′′ : R T
where R f(µR s′′) = µR((R2 f) s′′) (rr:mult:nat)

µR(ηR t′) = t′ (rr:lunit)
µR(R ηR t′) = t′ (rr:runit)
µR(µR t′′′) = µR(R µR t′′′) (rr:assoc)

In case of an OFS: Postulate an inverse to µR.

Figure 8.1: Extensional typing rules for the fibrant replacement of a strictly
stable NWFS. Most substitution rules are omitted.
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Prerequisites: DTT (fig. 3.2)
Formation:

drr
Γ ` D type Γ ` d : D
Γ, w : D ` T type
Γ ` R(w.T ) d type
where (R(w.T ) d)[σ] = R(w.T [σ+w]) (d[σ])

Functoriality:

drr:fmap
Γ ` C type Γ, v : C ` S type
Γ ` D type Γ, w : D ` T type
Γ ` e : C → D Γ ` f : (v : C)→ S → T [e v/w]
Γ ` c : C Γ ` s′ : R(v.S) c
Γ ` R e f c s′ : R(w.T ) (e c)
where s′ = R id (λv.id) c s′ (drr:fmap:id)

R e2 f2 (e1 b) (R e1 f1 b r
′)

= R (e2 ◦ e1) (λu.f2 (e1 u) ◦ f1 u) b r′ (drr:fmap:comp)

Monad structure:

drr:unit
Γ, w : D ` T type Γ ` d : D
Γ ` t : T [d/w]
Γ ` ηR d t : R(w.T ) d
where R e f c (ηR c s) = ηR (e c) (f s) (drr:unit:nat)

drr:mult
Γ, w : D ` T type Γ ` d : D
Γ ` t′′ : R(v.R(w.T ) v) d
Γ ` µR d t′′ : R(w.T ) d
where R e f c (µR c s′′)) = µR (e c) (R e (R e f) c s′′) (drr:mult:nat)

µR d (ηR d t′) = t′ (drr:lunit)
µR d (R id ηR d t′) = t′ (drr:runit)
µR d (µR d t′′′) = µR d (R idµR d t′′′) (drr:assoc)

In case of a damped OFS: Postulate an inverse to µR d.

Figure 8.2: Extensional typing rules for the fibrant replacement of a strictly
stable damped NWFS. Most substitution rules are omitted. Removal of C,
D and e yields fig. 8.1.



240 FIBRANCY

This is, of course, known to be a monad by definition of a damped NWFS.

If the damped NWFS is a damped OFS (i.e. the monad and comonad are
idempotent) then an inverse to µR d is also sound.

8.5.2 Extensional Typing Rules for the Left Coreplacement

The previous section has a soundness result, but no completeness result. The
reason is obvious: a (damped) NWFS consists of not only a fibrant (right)
replacement monad R, but also a left coreplacement monad L. We internalize
that one in the current section.

Recall that in a strictly stable damped NWFS, we have

R(Γ.Θ.T π−→ Γ.Θ π−→ Γ) ∼= (Γ.Θ.RΘ T
π−→ Γ.Θ π−→ Γ).

(In the non-damped case, remove Θ.) Hence, we have

Fac(Γ.Θ.T π−→ Γ.Θ π−→ Γ) ∼= Γ.Θ.RΘ T,

and therefore

L(Γ.Θ.T π−→ Γ.Θ π−→ Γ) ∼= (Γ.Θ.T id.ηR

−−−→ Γ.Θ.RΘ T
π◦π−−→ Γ). (8.3)

All the constituents of the right hand of the above isomorphism have already
been internalized functorially, so L as a functor is already there. Moreover,
a natural co-unit ~εL : L ~x → ~x is constructed simply from the weakening
π : Γ.Θ.RΘ T → Γ.Θ which is the internalization of r~x : Fac ~x→ x1. So what
remains to be done is to internalize the comonadic duplication ~δL : L→ L2, its
naturality, and the comonad laws.

Instead, we will internalize the characterization of comonads using co-unit and
extend (proposition 2.2.47). Then we need to internalize extend, its naturality,
and the comonad laws. This is done in figs. 8.3 and 8.4. The idea of the
R′-operation (lc:extend, dlc:extend) is that it creates a lifting extend(~ϕ) :
L ~x → L ~y of a diagram ~ϕ : L ~x → ~y. By pullback, without loss of generality,
we can assume that the lowermost arrow of this diagram is the identity. Then
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Prerequisites: DTT (fig. 3.2), R (fig. 8.1)

lc:extend
Γ ` S type Γ, x′ : R S ` T type
Γ ` f : (x : S)→ T [ηR(x)/x′] Γ ` s′ : R S

Γ ` R′ f s′ : R T [s′/x′]
where R′ f2 (R f1) r′ = R′ (f2 ◦ f1) r′ (lc:extend:nat:dom)

R (f2 r
′) (R′ f1 r

′) = R′ (λx.f2 x (f1 x)) r′ (lc:extend:nat:cod)
R′ id s′ = s′ (lc:extend:rcounit)
R′ (f2 r

′) (R′ f1 r
′) = R′ (λx.f2 x (f1 x)) r′ (lc:extend:assoc)

R′ f (ηR s) = ηR(f s) (lc:extend:unit)
R′ f (µR s′′)

= µR (R′(x′′.R T [µR x′′/x′]) (R′ f) s′′) (lc:extend:mult)

In case of an OFS:

lc:extend:eta
Γ, x : S ` t : T
Γ, x′ : R S ` t′ : R T
Γ, x : S ` ηR t = t′[ηR x/x′] : R T [ηR x/x′]
Γ ` s′ : R S

Γ ` t′[s′/x′] = R′ (λx.t) s′ : R T [s′/x′]

Figure 8.3: Extensional typing rules for the left coreplacement of a strictly
stable NWFS. Substitution rules are omitted.

this is what they look like (non-damped on the left, damped on the right):

Γ.S

id.ηR

��

id.(ηR,f) // Γ.RS.T

id.ηR

��
Γ.RS

π

��

(id,R′ f) //

id
))

Γ.RS.RT

π

��
Γ Γ.RS

Γ.C.S

id.ηR

��

id.(e◦(id.ηR),f) // Γ.D.T

id.ηR

��
Γ.C.RC S

π

�� id.e
))

id.(e,R′ e f) // Γ.D.RD T

π

��
Γ.C

π

��

Γ.D

π

��
Γ

id
// Γ
(8.4)
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Prerequisites: DTT (fig. 3.2), damped R (fig. 8.2)

dlc:extend
Γ ` C type Γ, v : C ` S type
Γ ` D type Γ, w : D ` T type
Γ ` e : (v : C)→ R(v.S) v → D
Γ ` f : (v : C)→ (x : S)→ T [e v (ηR(x))/w]
Γ ` c : C Γ ` s′ : R(v.S) c
Γ ` R′ e f c s′ : R(w.T ) (e c s′)
where
R′ e2 f2 (e1 b) (R e1 f1 b r

′)
= R′ (λu.(e2 (e1 u)) ◦ (R e1 f1 u)) (λu.(f2 (e1 u)) ◦ (f1 u)) b r′
(dlc:extend:nat:dom)

R (e2 r
′) (f2 r

′) (e1 b r
′) (R′ e1 f1 b r

′)
= R′ (λu.λx′.e2 x

′ (e1 ux
′)) (λu.λx.f2 (ηR ux) (e1 u (ηR ux)) (f1 ux))

(dlc:extend:nat:cod)
s′ = R′ (λv.λx′.v) (λv.id) c s′

(dlc:extend:rcounit)
R′ (e2 r

′) (f2 r
′) (e1 b r

′) (R′ e1 f1 b r
′)

= R′ (λu.λx′.e2 x
′ (e1 ux

′) (R′ e1 f1 ux
′))

(λu.λx.f2 (ηR ux) (e1 u (ηR ux)) (f1 ux))
(dlc:extend:assoc)

R′ e f c (ηR c s) = ηR (e c (ηR c s)) (f c s)
(dlc:extend:unit)

R′ e f c (µR c s′′)
= µR (e c (µR c s′′)) (R′ (λv.λx′′.e v (µR v x′′)) (R′ e f) c s′′)
(dlc:extend:mult)

In case of a damped OFS:

dlc:extend:eta
Γ, v : C, x : S ` t : T [e v (ηR v x)/w]
Γ, v : C, x′ : R(v.S) v ` t′ : R(w.T ) (e v x′)
Γ, v : C, x : S ` ηR v x t = t′[e v (ηR v x)/w] : R(w.T ) (e v (ηR v x))
Γ ` c : C Γ ` s′ : R(v.S) c
Γ ` t′[c/v, s′/x′] = R′ e (λv.λx.t) c s′ : R(w.T ) (e c s′)

Figure 8.4: Extensional typing rules for the left coreplacement of a strictly
stable damped NWFS. Substitution rules are omitted. Removal of C,
setting D = R S and e = idR S yields fig. 8.3.
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The fact that the upper square commutes is not automatic and is internalized
using dlc:extend:unit. The left co-unit law (adding the co-unit on the right
of the diagram) is however automatic, as the co-unit is just weakening.

We choose the notation R′ because internally it behaves like a dependent func-
toriality operator. In fact it generalizes the non-dependent operator drr:fmap,
as is proven using dlc:extend:rcounit and dlc:extend:nat:dom:

R e f c s′ = (R′ (λw.λy′.w) (λw.id) (e c) ◦R e f c) s′ = R′ e f c s′.

Under this generalization, dlc:extend:nat:dom and dlc:extend:nat:cod
both generalize drr:fmap:comp and show that R preserves composition of
one dependent map with a non-dependent map. The rule dlc:extend:unit
generalizes drr:unit:nat. The rule dlc:extend:assoc is then the most
general composition rule and expresses that if you have two diagrams as in
eq. (8.4) juxtaposed, then it does not matter whether you take the lifting in
each diagram and then compose, or first lift the left diagram, then compose,
and then lift the entirety.

Theorem 8.5.2 (Soundness). The typing rules in fig. 8.3 (fig. 8.4) are sound
in a CwF equipped with a strictly stable (damped) NWFS.6

Proof. We only prove the damped result.

The rule dlc:extend is the lifting shown in eq. (8.4) and as such is modelled
by the extend operation of the comonad L. The rule dlc:extend:unit
expresses that the upper square in eq. (8.4) commutes, which is true. The
rule dlc:extend:mult is proven in lemma 8.A.1. The other rules are tedious
internalizations of the corresponding comonad laws.

Finally, if the model is an OFS, then postcomposition with ~εL is inverse to
applying extend. The premises of dlc:extend:eta constitute a morphism of
damped arrows such as those produced by dlc:extend. Recall that Cod~εL = r
is just weakening, i.e. forgetting t′. In other words, if we forget t′ and then
reconstruct a term of the same type using R′, then we should get the same
result, which is exactly what is expressed by dlc:extend:eta.

Theorem 8.5.3 (Completeness). A locally democratic7 CwF that models the
typing rules in figs. 8.1 and 8.3 (figs. 8.2 and 8.4), omitting those for OFSs, is
equipped with a strictly stable (damped) NWFS.

6In the case of lc:extend:unit, dlc:extend:unit, this is only true insofar as the proof of
lemma 8.A.1 is correct.

7To be pedantic, we need the CwF to be algebraically locally democratic, i.e. there is an
operator that elects a type Γ ` T type for any slice σ : ∆→ Γ, and moreover this operator
should be the identity on π : Γ.T ′ → Γ. This is unproblematic if we can use the axiom of
choice.



244 FIBRANCY

Proof. We construct a (damped) Grandis-Tholen NWFS (definitions 2.4.20
and 8.2.8). By local democracy, we can assume (up to isomorphism) that any
damped arrow ~x is of the form (Γ.T π−→ Γ) (or (Γ.C.T π−→ Γ.C π−→ Γ) in the
damped case).

The functor R is constructed from the interpretation of rr (drr). The other
rules in fig. 8.1 (fig. 8.2) state that this is a monad, and this monad is trivial at
the codomain (and damping) as required.

The functor L is then constructed as in eq. (8.3). The co-unit is obtained by
weakening.

The extend operation is not trivially obtained from lc:extend (dlc:extend)
as a general morphism ~ϕ : L ~x→ ~z may not satisfy ϕ1 = id (ϕ2 = id) so that
the context of T in that rule is insufficiently general.

However, any morphism ~ϕ : L ~x → ~z factors as ~ϕ = ~ψ ◦ ~χ where ψ : ~y → ~z is
the pullback of ~z along ϕ1 : Fac ~x→ y1 (ϕ2 : x2 → y2) and χ1 = id (χ2 = id).
Now extend(~χ) determines extend(~ϕ) by naturality and conversely extend(~ϕ)
determines extend(~χ) by the universal property of the pullback. Thus, without
loss of generality, we do get to assume that ϕ1 = id (ϕ2 = id), i.e. that the
context of T is as in lc:extend (dlc:extend).

Then we use that rule to construct the extend operation, which produces
morphisms of damped arrows by lc:extend:unit (dlc:extend:unit). Nat-
urality, associativity and the right co-unit law are assumed in the rules (again
making an assumption on the context of other morphisms involved, but this
is again justified via the pullback trick). The left co-unit law follows from the
structural rules of DTT.

Finally, the NWFS is strictly stable by construction.

Strangely, we did not need dlc:extend:mult.

8.6 Internal Fibrancy via Eilenberg-Moore Algebras

We would like to define fibrancy internally. There are two ways to go about this:
we can either define fibrant types to be Eilenberg-Moore algebras for the fibrant
replacement (this section), or we can seek to generalize the approach by Licata
et al. [Lic+18] and use the right adjoint to the function type, implemented via
the transpension type (section 8.7).
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8.6.1 Definition

Here, given Γ, w : D ` T type, we define Fib(w.T ) to be the type of Eilenberg-
Moore algebra structures on w.T , i.e. it is a record type containing the following
fields:

f : (w : D)→ R(w.T )w → T,

_ : (w : D)→ f w ◦ ηR w ≡ id,

_ : (w : D)→ f w ◦ µR w ≡ f w ◦R id f w.

We can thus define an (a priori) non-fibrant universe of fibrant types:

UNFF
` (D) := (T : D → U`)× Fib(w.T w). (8.5)

Of course, for non-contextual fibrancy w.r.t. a non-damped NWFS, we suppress
D and we get:

UNFF
` := (T : U`)× Fib(T ). (8.6)

8.6.2 Fibrant Replacement Elimination

Theorem 8.6.1. The type R(w.A)w behaves like the inductive type family
with constructors ηR : (w : D) → Aw → R(w.A)w and (µR,_) :
Fib(w.R(w.A)w) in the sense that the following typing rule holds:

drr:elim
Γ, w : D ` A type
Γ, w : D,x′ : R(w.A)w ` T type
Γ ` τ : Fib((w, x′).T )
Γ, w : D,x : A ` tη : T [ηR w x/x′]
Γ ` d : D
Γ ` a′ : R(w.A) d
Γ ` t := case (d, a′) of

{
(w, ηR w x) 7→ tη | τ

}
: T [d/w, a′/x′]

where t[ηR d a/a′] = tη[d/w, a/x] (drr:unit:beta)
t[µR d a′′/a′] = τ (d, µR d a′′)(

R′ (λv.λx′′.(v, µR v x′′)) (λv.λx′.t[v/d, x′/a′]) d a
)

(drr:mult:beta)
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In the non-damped case, this simplifies to:

rr:elim
Γ ` A type
Γ, x′ : RA ` T type
Γ ` τ : Fib(T )
Γ, x : A ` tη : T [ηR x/x′]
Γ ` a′ : RA

Γ ` t := case a′ of
{
ηR x 7→ tη | τ

}
: T [a′/x′]

where t[ηR a/a′] = tη[a/x] (rr:unit:beta)
t[µR a′′/a′] = τ

(
R′x′′.T [µR x′′/x′] (λx′.t[x′/a′]) a′′

)
(rr:mult:beta)

Proof. We prove the damped statement. Thanks to the fibrancy structure τ , it
is sufficient to construct t′ : R((w, x′).T ) (d, a′). This can be defined as

t′ := R′ (λw.λx′.(w, x′)) (λw.λx.tη) d a′.

Then for drr:unit:beta indeed we have t′[ηR d a/a′] = ηR (d, ηR d a) tη[d/w, a/x]
which, after applying τ , yields t[ηR d a/a′] = tη[d/w, a/x] by the Eilenberg-
Moore laws.

For drr:mult:beta we have

t′[µR d a′′/a′]

= µR (d, µR d a′′)
(
R′ (λv.λx′′.(v, µR v x′′)) (λv.λx′.t′[v/d, x′/a′]) d a′′

)
which, after applying τ , yields

(λv.τ v ◦R id τ v) (d, µR d a′′)(
R′ (λv.λx′′.(v, µR v x′′)) (λv.λx′.t′[v/d, x′/a′]) d a′′

)
= τ (d, µR d a′′)

(
R′ (λv.λx′′.(v, µR v x′′)) (λv.λx′.t[v/d, x′/a′]) d a

)
.

This completes the proof

8.6.3 Fibrancy of Type Formers

In this section, we prove fibrancy of some type formers internally in the sense
of section 8.6. We take the liberty to use a single notation for both fibrancy
structures and their underlying operation.
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Π-types

Proposition 8.6.2. We can prove:

pi:fib
Γ ` A type Γ, x : A,w : D ` B type Γ, x : A ` β : Fib(w.B)
Γ ` ψ : Fib(w.(x : A)→ B)

The following proof is an internalization of the proof of theorem 8.4.14.

Proof. We define

ψ : (w : D)→ R(w.(x : A)→ B)w → (x : A)→ B

ψw f ′ x = β w (R id (λw.evx)w f ′),

where evx f := f x. The algebra laws are satisfied:

ψw (ηR w f)

= λx.β w (R id (λw.evx)w (ηR w f)) by def. ψ,

= λx.β w (ηR w ((λw.evx)w f)) drr:unit:nat

= λx.(λw.evx)w f = f. algebra law.

ψw (µR w f ′′)

= λx.β w (R id (λw.evx)w (µR w f ′′)) by def. ψ,

= λx.β w (µR w ((R id)2 (λw.evx)w f ′′)) drr:mult:nat

= λx.β w (R idβ w ((R id)2 (λw.evx)w f ′′)) algebra law.

= λx.β w (R id (λw.λf ′.β w (R id (λw.evx)w f ′))w f ′′) drr:fmap:comp

= λx.β w (R id (λw.λf ′.ψ w f ′ x)w f ′′) by def. ψ,

= λx.β w (R id (λw.evx ◦ ψw)w f ′′) by def. ev,

= λx.β w (R id (λw.evx)w (R idψw f ′′)) drr:fmap:comp

= ψw (R idψw f ′′). by def. ψ.

This ends the proof.
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Σ-types

Proposition 8.6.3. We can prove:

sigma:fib
Γ, w : D ` A type Γ, w : D,x : A ` B type
Γ ` α : Fib(w.A) Γ ` β : Fib((w, x).B)
Γ ` σ : Fib(w.(x : A)×B)

Proof. We define

σ : (w : D)→ R(w.(x : A)×B)w → (x : A)×B

fst (σ w z′) = αw (R id (λw.fst)w z′) : A

snd (σ w z′) = β (w, fst (σ w z′))

(R′ (λw.λz′.(w, fst (σ w z′))) (λw.snd) z′)

: B[fst (σ w z′)/x]

One can verify that this is an algebra structure.

Identity types

Proposition 8.6.4. Using the rules internalizing an OFS, we can prove:

id:fib
Γ, w : D ` A type Γ ` α : Fib(w.A)
Γ, w : D ` a, b : A
Γ ` δ : Fib(w.a ≡A b)

Proof. We need to create a function δ : (w : D) → R(w.a ≡A b)w → a ≡A b.
In other words, we need to prove

λw.λi′.a = λw.λi′.b : (w : D)→ R(w.a ≡A b)w → A.

First of all, from the algebra laws, we know that a = αw (ηR w a) and similar
for b. So it suffices to prove

λw.λi′.ηR w a = λw.λi′.ηR w b : (w : D)→ R(w.a ≡A b)w → R(w.A)w.
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Now, since we know that R′ generalizes R, we get from dlc:extend:eta that
we can replace both hands with the judgementally equal terms

R id (λw.λi.a) = R id (λw.λi.b) : (w : D)→ R(w.a ≡A b)w → R(w.A)w.

Now this equation would follow from

λw.λi.a = λw.λi.b : (w : D)→ (a ≡A b)→ A,

and that is just true by the reflection rule.

We do not need to prove algebra laws as we can rely on id:uip

Strictness type

Proposition 8.6.5. We can prove

strict:fib
Γ, w : D ` A type Γ ` α : Fib(w.A)
Γ, ϕ ` T type
Γ, ϕ ` i : T ∼= A

Γ ` σ : Fib(w.Strict{A ∼= (ϕ ? T, i)})

Proof. Fibrancy is obviously preserved by isomorphism.

Glue type

Proposition 8.6.6. We can prove

glue:fib
Γ, w : D ` A type Γ ` α : Fib(w.A)
Γ, w : D,ϕ ` T type Γ ` τ : Fib((w, p : [ϕ]).T ) type
Γ, w : D,ϕ ` f : T → A Γ, w : D,ϕ ` f ◦ τ (w, tt)

= αw ◦R id (λw.f)w : R((w, p).T ) (w, tt)
Γ ` γ : Fib(Glue{A← (ϕ ? T, f)})

Proof. We define

γ : (w : D)→ R(w.Glue{A← (ϕ ? T, f)})w → Glue{A← (ϕ ? T, f)}

γ w g′ = glue{αw (R id (λw.unglue{ϕ ? f}) g′)← [ (ϕ ? τ (w, tt) g′)}.

One can verify that this is well-defined and an algebra structure.
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Weld type and coproduct

Being a right map is not preserved by colimits. Consider the example of
codiscrete reflexive graphs. The Unit type is codiscrete, but Unit ] Unit is not,
and neither is

i : I `Weld{[i .=I 0]→ (i .=I 1 ? Unit,_)}.

(where I is modelled as yI) despite [i .=I 0] and Unit being codiscrete and _
(vacuously) preserving the codiscrete structure. Indeed, the Weld-type contains
an element weld{⊥ ? _} tt if i = 0 and unit if i = 1, but there is no edge
connecting these.

Universe

Few would probably expect the universe of all types to be fibrant for arbitrary
notions of fibrancy. It is more interesting to look at the (a priori) non-fibrant
universe of fibrant types UNFF. Consider again the example of codiscrete reflexive
graphs. There, the nodes of UNFF are codiscrete reflexive graphs, whereas an
edge from S to T is a proof-relevant relation between the nodes of S and T and
codiscreteness requires that this proof-relevant relation is always uniquely true.
This means that the relation itself is unique up to isomorphism, which simply
is not good enough. We refer to Xu and Escardó [XE16] for further discussion.

8.7 Internal Fibrancy, Directly

Much of the discussion in the previous sections was related to internalizing the
fibrant replacement operation. However, even in systems where this operation
may be unstable under substitution and therefore not even axiomatizable as
a type operator, proposition 8.3.1 tells us that we can still try to internalize
the notion of being fibrant. An opaque way to do so is by having a judgement
Γ ` T fib or, for contextual fibrancy, Γ; Θ ` T fib, or perhaps by axiomatizing a
type Fib(T ).

However, in some systems, this type Fib(T ) can actually be defined:

Example 8.7.1 (Clock-irrelevance). Continuing examples 2.4.34, 8.1.6
and 8.1.25, a type Γ ` T type is clock-irrelevant if all functions � → T are
constant. This is definable internally.

Example 8.7.2 (0-discrete depth cubical sets). Continuing examples 2.4.6,
2.4.32, 8.1.5, 8.1.13 and 8.1.23, a type Γ ` T type is 0-discrete if all functions
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yL0M→ T are constant. This is definable internally:

Fib(T ) := (f : yL0M→ T )→ (f ≡yL0M→T λ_.f 0).

For other systems, this is not so easy, since we need to be able to quantify
functions to the context:
Example 8.7.3 (Kan fibrancy). Continuing examples 2.4.36, 8.1.9, 8.1.16
and 8.1.26, a type Γ ` T type is Kan if, for every substitution from the interval
γ : (i : I)→ Γ, there is a Kan composition structure over (i : I) ` T [γ]. Because
the quantification over γ cannot be expressed internally in context Γ, Orton and
Pitts [OP18; Ort18] go for a meta-internal approach: they define Kan fibrancy
internal to some type system, but not internal to cubical HoTT itself. Indeed,
in between cubical HoTT and the type system they use (the internal language
of a topos) is a translation that promotes the context Γ to a type.

However, recall that the context (Γ,µG(i:I)), denoted Π(i : I).Γ in the internal
language of section 7.5 (note that i : I is interpreted by a cartesian multiplier),
is semantically a Π-type over Γ. Instead, we need a non-dependent function
type, which is given by (Γ,µΠ i,µG(i:I)), written Π(i : I).Ω i.Γ in the informal
notation. Thus, we can define (in formal MTT and informal notation resp.):

Γ ` Fib(T ) :=
〈

Π(i : I) |p
〈
G i |t KanComp ·p

′o
Π(i:I)◦Ω i T [consti↓•to][↓pp, reidxi↓•tp′ , ↓

o
o]
〉〉

Γ ` Fib(T ) := Π(i : I).G i.KanComp(j.T [γ|i=j/γ])

Then we can define UNFF as in eq. (8.6). Note that this is not a violation of
Licata et al.’s no-go theorem [Lic+18]: for them, Γ is a type which lives in a
context, and their no-go theorem tries to define a fibrant universe with type
encoding and decoding operations which are stable w.r.t. the context of Γ. Here,
Γ is itself a context, hence closed, so we are inherently working globally.
Example 8.7.4 (Segal fibrancy). Continuing examples 2.4.35, 8.1.8, 8.1.15
and 8.1.27, we would like to define Segal fibrancy by similar reasoning. However,
it is not immediately clear what multiplier we should transpend over. Perhaps
Pinyo and Kraus’s twisted prism functor (example 7.4.11) [PK19] can come to
the rescue.
Example 8.7.5 (Contextual Kan fibrancy). Continuing examples 8.1.18
and 8.1.28, to contextual Kan fibrancy of Γ; Θ ` T type internally, we have two
options.

We can either require that Θ consist of a single type D, so that we can quantify
over functions I→ D internally and simply define

Fib((w : D).A) = (δ : I→ D)→ KanComp(i.A[δ i/w]).
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Again, we can then define UNFF(D) as in eq. (8.5).

Alternatively, we can leave Θ in the context and look for a modality whose
left adjoint sends Γ; Θ to Γ; I → Θ. This is the intention of the examples on
embargoes in the technical report of chapter 7 [Nuy20]. There, we turn the
semicolon (;) into a variable of the embargo shape (with Γ fresh for that variable)
and the multiplier for I is lifted to a multiplier that only affects the part Θ
under the embargo.8

Appendices

8.A Semantics of Extend after Multiplication

Lemma 8.A.1. The typing rule lc:extend:mult in fig. 8.3 (dlc:extend:mult
in fig. 8.4) is sound in a CwF equipped with a strictly stable (damped) NWFS.9

Proof. We prove the damped statement.

Write ~s = (Γ.C.S π−→ Γ.C π−→ Γ) and ~t = (Γ.D.T π−→ Γ.D π−→ Γ). The input to
dlc:extend is a morphism ~ϕ = (id.(e ◦ (id.ηR), f), id.e, id) : L~s→ ~t.

Consider the diagram in fig. 8.5.

The right10 surface of the cuboid has as vertical edges the factorizations of ~s
and ~t and the three black arrows are the components of ~ϕ. The middle arrow is
slanted, because ~ϕ has L applied to the domain but not the codomain.

The extend operation of the comonad L produces the dashed arrow, which
is extend(~ϕ)1. Together with the upper and lower black arrows, this forms
extend(~ϕ) : L~s→ L~t

As we know, extend(~ϕ) = L ~ϕ◦~δL
~s : L~s→ L~t. Now ~δL

~s : L~s→ L2 ~s has as middle
arrow the dotted arrow δL

~s : Γ.C.RC S → Φ where Φ = Fac L~s. As the comonad
L is trivial on the domain and the damping, we have ~δL

~s = (idΓ.C.S , δ
L
~s , idΓ).

The dashed arrow Φ → Γ.D.RD T is then (L ~ϕ)1 = Fac ~ϕ. The dashed arrow
Γ.C.S → Φ is `L~s.

The left surface has as vertical edges the factorizations of R ~s and R~t. The
three horizontal black arrows form a morphism ~ψ : L R ~s→ R~t. We define it to

8In a preprint of the technical report, the word ‘signpost’ was used instead of ‘embargo’.
9This lemma and proof are provided “as is” and without warranty.

10After turning your page/head so you can read the diagram, that is.
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Figure 8.5: Semantics of lc:extend:mult.
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be ~ψ = (extend(~ϕ)1, ϕ1 ◦ (id.µR), id). The upper trapezium commutes because
id.µR ◦ id.ηR = id. Again we obtain the dashed arrow extend(~ψ)1 which factors
over Ψ = Fac LRR~s.

The middle vertical surface is a hybrid from the two sides: the upper line is
taken from the right, the lower trapezium is taken from the left. This constitutes
a morphism θ : ~k → ~t from some damped arrow

~k = (Γ.C.S id.(ηR◦ηR)−−−−−−−→ Γ.C.R2
C S

π◦π−−→ Γ).

which is not in the image of L. It is still a left map, however (since ηR = `
is a left map and left maps are closed under composition as is clear from the
characterization as maps lifting right maps) so it still has an algebra structure
κ : `→ L ` with κ1 : Γ.C.R2

C S → Θ = Fac ~̀.

We complete the front and back surfaces with obvious choices of identities,
units and multiplications. These diagrams commute by the monad laws. The
diagrams in the back are moreover morphisms of left arrows, as can be seen
by the fact that they lift right arrows compatibly. On the left, this follows
immediately from the fact that the middle arrow is a composite. On the right,
it follows from being a composite in combination with a monad law.

Functoriality of Fac yields arrows Θ → Ψ, Θ → Φ, and the fact that the
diagrams in the back are morphisms of left arrows, means that the morphisms
from Θ will respect the algebra structures.

Thus, everything commutes.

Then we see that

extend(~ϕ)1 ◦ (id.µR) = Fac ~θ ◦ κ1,

(id.R ηR) ◦ Fac ~θ ◦ κ1 = extend(~ψ)1.

Postcomposing the second line with id.µR, we get

extend(~ϕ)1 ◦ (id.µR) = Fac ~θ ◦ κ1 = id.µR ◦ extend(~ψ)1.

Translating to type theory, the left hand side becomes

extend(~ϕ)1 ◦ (id.µR) ; (c, s′′) 7→ R′ e f c (µR c s′′).

Then extend(~ψ)1 becomes

extend(~ψ)1 ; (c, s′′) 7→ R′ (λu.λx′′.e u (µR ux′′)) (R′ e f) c s′′.



SEMANTICS OF EXTEND AFTER MULTIPLICATION 255

Then the second line becomes

id.µR ◦ extend(~ψ)1 ; (c, s′′) 7→

µR (e c (µR c s′′))
(
R′ (λu.λx′′.e u (µR ux′′)) (R′ e f) c s′′

)
.

This proves the rule dlc:extend:mult.

The rule lc:extend:mult is proven analogously but should be simpler.





Chapter 9

Degrees of Relatedness

Preamble In this chapter, we discuss the work

[ND18a] A. Nuyts and D. Devriese. “Degrees of Relatedness:
A Unified Framework for Parametricity, Irrelevance, Ad Hoc
Polymorphism, Intersections, Unions and Algebra in Dependent
Type Theory”. In: Logic in Computer Science (LICS) 2018, Oxford,
UK, July 09-12, 2018. 2018, pp. 779–788. doi: 10.1145/3209108.
3209119. url: https://doi.org/10.1145/3209108.3209119

which presents a type system that we will refer to as RelDTT for short. This
work builds on prior work

[NVD17a] A. Nuyts, A. Vezzosi, and D. Devriese. “Parametric
quantifiers for dependent type theory”. In: PACMPL 1.ICFP (2017),
32:1–32:29. doi: 10.1145/3110276. url: http://doi.acm.org/
10.1145/3110276

which presents the type system ParamDTT and which we consider to be largely
superseded by RelDTT. ParamDTT was accompanied by a technical report
[Nuy17] which was extended to become a technical report of RelDTT [Nuy18a].

Instead of including here the full papers themselves, I will include an application
section, written by myself, from the technical report on MTT:

[Gra+20a] D. Gratzer, A. Kavvos, A. Nuyts, and L. Birkedal. “Type
Theory à la Mode”. Pre-print. 2020. url: https://anuyts.
github.io/files/mtt-techreport.pdf
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which discusses at a high level the motivation behind and the model of these two
papers, and also puts them in a more ‘contemporary’ perspective by explaining
how they are (almost) instances of MTT. The text is taken almost verbatim,
only theorems 9.2.7 and 9.3.6 and their proofs have been slightly integrated
with the content of chapters 6 and 8.

In an additional section 9.5, which is written on the occasion of this thesis, I
discuss a number of parametricity features and what their requirements are in
terms of complexity of the type system and its model. In particular, I want
to waylay the misconception that I seem to have created over the past few
years through imprudent communication, that dependently typed parametricity
would always require modalities. This is not the case: a parametricity modality
is only needed if we want identity extension for large types.

Personal contributions In ParamDTT [NVD17a], Andrea Vezzosi contributed
important insights regarding the open problems in Atkey et al.’s work [AGJ14]
and some cornerstone ideas to model an improved system, the idea to use Glue
as a parametricity operator, the implementation of agda-parametric, and
everything related to the application to sized types. Dominique Devriese’s
contributions are limited to indispensable general supervision and writing
support. I contributed in particular the precise type system, the results on
Church encoding and the fully elaborated model [Nuy17]. In RelDTT [ND18a],
again, Devriese’s contributions are in the area of general supervision and writing.
Additional insights in this section are entirely my contribution.

Introduction Of all type systems present in the literature, the most similar to
MTT is probably that of Degrees of Relatedness [ND18a]. In section 9.1,
we discuss at a conceptual level how Reynolds’ original formulation of
parametricity [Rey83] was gradually generalized to dependent types. In
section 9.2, we explain how modalities can help to validate the identity
extension lemma for large types [NVD17a]. In section 9.3, we discuss Degrees of
Relatedness proper, and in section 9.4, we consider how MTT can serve as an
internal language in which one could build a model of Degrees of Relatedness.

9.1 Parametricity, from System F to DTT

We discuss parametricity in System F [Rey83], System Fω [Atk12], and
dependent type theory [AGJ14; BCM15; Mou16].
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9.1.1 System F

System F is relationally parametric [Rey83]. If we think of proof-irrelevant
relations R : Rel(A,B) as notions of heterogeneous equality between elements
of A and elements of B, and write a �R b for R(a, b) in order to emphasize
this perspective, then we can conceptually describe proof-relevant relational
parametricity as follows:

• Type-level operations F : ∗ → ∗ preserve (meta-theoretical) equality,1

• Type-level operations F : ∗ → ∗ preserve relations,
– sending the equality relation on X to the equality relation on FX
(this is the identity extension lemma),

• Parametric functions f : ∀X.FX send relations to proofs of heterogeneous
equality,

• Term-level operations hX : FX → GX preserve heterogeneous equality.

The identity extension lemma asserts that our use of the name ‘heterogeneous
equality’ is sensible: in the homogeneous case, it boils down to mathematical
equality.

We can represent this diagrammatically as follows:

A = B
F= //

Eq
��

FA = FB

Eq
��

Rel(A,B)
FRel

// Rel(FA,FB)

A = B

Eq
��

fA �FRelR fB

R : Rel(A,B)

fRel

66

a �FRelR b hRelR
// hAa �GRelR hBb

These diagrams are a bit awkward in the sense that some of their nodes are
meta-theoretic propositions whereas others are meta-theoretic sets. For example,

1A sane meta-theory will not allow the creation of anything that doesn’t.
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the arrow Eq : A = B → Rel(A,B) is to be read as: if A and B are really the
same thing, then Eq will pick out a relation EqA between A and B, namely the
identity relation. Set theorists who do not balk at dealing with large objects,
may prefer to write this as Eq ∈

∏
A Rel(A,A). Commutativity of the diagram

simply means that FRelEqA = EqFA.

The arrow fRel : (R : Rel(A,B)) → fA �FRelR fB means: for any relation
R : Rel(A,B), the relation FRelR will relate fA and fB. This would be more
typically written as ∀(R ∈ Rel(A,B)).(fA, fB) ∈ FRelR.

An alternative way to make sense of the diagram is by translating every
proposition P to the subsingleton {∗|P}.

9.1.2 System Fω

Atkey [Atk12] extends Reynolds’ ideas to System Fω. Every kind κ is equipped
with a ‘native’ proof-relevant relation _κ : κ× κ→ Set, such that _∗ = Rel.2
We say that K1,K2 : κ are related if we can give an element of K1 _κ K2.3
Similarly, for every K : κ, we get a proof refl(K) : K _κ K such that for X : ∗
we get refl(X) = EqX : Rel(X,X). We can then generalize our description of
relational parametricity:

• Type-level operations F : θ → κ preserve equality,
• Type-level operations F : θ → κ preserve relatedness,

– sending refl(X) to refl(FX) (this is the identity extension lemma),
• Parametric functions f : ∀(X : κ).FX send related types to heteroge-
neously equal terms,

• Term-level operations hX : FX → GX preserve heterogeneous equality.
2We ignore size issues in this introductory exposition.
3Note that any two types T1, T2 : ∗ are related. However, as_∗ is a proof-relevant relation,

we care not only for the truth value (whether types are related) but also for the particular
proof we choose to give (the relation R : T1 _∗ T2 that we consider between T1 and T2).
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Diagrammatically (the same interpretation remarks apply as for the System F
diagrams above):

A =θ B
F= //

refl
��

FA =κ FB

refl
��

A _θ B
F_

// FA _κ FB

A =κ B

refl
��

fA �F_R fB

R : A _κ B

f_

66

a �F_R b h_R
// hAa �G_R hBb

Following Robinson and Rosolini [RR94] and Hasegawa [Has94a; Has94b],
Atkey structured all of this in a reflexive graph model. A reflexive graph Γ
is a (contravariant) presheaf over the category RG generated by the following
diagram, subject to the following equations:4

N
s
&&

t
88 Iroo r ◦ s = 1N,

r ◦ t = 1N.

The idea is that N⇒ Γ is the set of nodes, I⇒ Γ is the set of edges, and that
(xy ◦ s), (xy ◦ t) : (I⇒ Γ)→ (N⇒ Γ) extract the source and target of an edge,
whereas (xy ◦ r) : (N ⇒ Γ) → (I ⇒ Γ) produces the reflexive edge on a node.
The equations assert that the edge γ ◦ r really goes from γ to γ.

In this reflexive graph model, kinds κ are interpreted as large reflexive graphs
JκK. The nodes in N⇒ JκK are the semantic elements of κ, whereas the edges in
I⇒ JκK can be seen as a triple of two elements K1,K2 : κ wrapped up with a
proof of K1 _κ K2. The kind ∗ specifically is interpreted as the reflexive graph
J∗K whose nodes are small sets and whose edges are proof-irrelevant relations,
the reflexive edges being the equality relations. An open type Γ ` K : κ is then
a reflexive graph morphism (i.e. a presheaf morphism) JKK : JΓK→ JκK. The

4Readers who expected the opposite of RG are likely thinking of covariant functors to Set,
whereas we take presheaves to be contravariant functors to Set.
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fact that these preserve reflexive edges (for ∗ this means the equality relation),
expresses the identity extension lemma.

This means that a closed type · ` T : ∗ is essentially a small discrete reflexive
graph, i.e. a small reflexive graph whose only edges are the reflexive ones. To
see this, note that the empty context is interpreted as the terminal reflexive
graph J·K, having a single node () and a single reflexive edge () ◦ r. This node
() is then mapped to a small set JT K ◦ (), and the edge () ◦ r to a relation
JT K ◦ (() ◦ r) on that set. However, since graph morphisms map reflexive edges
to reflexive edges, and reflexive edges in J∗K are the equality relations, we see
that

JT K ◦ (() ◦ r) = (JT K ◦ ()) ◦ r = EqJT K◦()

i.e. JT K is a set equipped with its equality relation.

A general (open) type Γ ` T : ∗ can be reorganized to be seen as a reflexive
graph JΓ|T K→ JΓK over JΓK that lifts reflexive edges (i.e. edges over reflexive
edges are reflexive, this is again the identity extension lemma; see example 8.1.5),
and equality of edges (i.e. edges over the same edge in JΓK are necessarily equal,
expressing proof irrelevance). A term Γ | Θ ` t : T is then interpreted as a
morphism from JΓ|ΘK → JΓ|T K in the slice category over JΓK; in particular a
closed term Γ | · ` t : T is a section of JT K.

9.1.3 Dependent Type Theory

As dependent type theory is not just a programming language but also a logic,
we can distinguish three approaches to parametricity:

• In the external approach, we state and prove parametricity theorems in
the meta-theory. This is the only possible approach in System F and Fω.

• In the admissible approach, we state the parametricity theorems in some
very similar (ideally the same) type system, and we give a metatheoretic
proof that every program is parametric. That is, we give a meta-theoretic
function that maps program derivation trees to derivation trees of proofs
of the statement that the program is parametric.

• In the internal approach, we have an internal operator that essentially
inhabits the theorem “every program is parametric”. This operator will
again have type dependencies, and self-application should prove that it
is parametric. This phenomenon is called iterated parametricity, and
generally needs to be modelled in higher-dimensional reflexive graphs, i.e.
cubical sets.
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External parametricity, with identity extension only for small types Atkey,
Ghani, and Johann [AGJ14] have reorganized Atkey’s model [Atk12] to a model
of dependent type theory. Essentially, they start from the standard presheaf
model of dependent type theory in reflexive graphs [Hof97, Ch. 4] (chapter 4).
The idea is that nodes of large types (kinds) represent their elements, whereas
edges represent proofs of relatedness (_κ). For small types, nodes are again
elements, but edges should be proofs of heterogeneous equality (�R, where R is
the corresponding edge between the types).

The desired identity extension lemma can now be rephrased as: homogeneous
edges (edges living above reflexive edges in the context) should be reflexive. In
order to validate this lemma, we could naively require all internal types to be
discrete, i.e. to satisfy this condition. However, the problem is that the universe
does not satisfy it. Indeed, a homogeneous edge in the universe is like a proof
of A _∗ B in System Fω, which is essentially a relation between A and B.
Surely, the existence of a relation R : Rel(A,B) does not imply that A = B and
R = EqA. So the universe is not discrete as it has non-reflexive homogeneous
edges.

For this reason, Atkey, Ghani, and Johann [AGJ14] only adapt the Hofmann-
Streicher universe of small types [HS97] by restricting it to small discrete
proof-irrelevant5 types. Types in general are allowed to be non-discrete, and
hence identity extension is only proven for small types. Proof-irrelevance is
required in order to model function types: for function types to be discrete, we
either need to work in proof-irrelevant graphs, or we need higher-dimensional
structure (cubical sets) in order to reason about equality of functions’ actions
on edges.

Writing e : x ÷A y for a homogeneous edge in type A (which generalizes
both e : x _A y and e : x �A y), and e : x ÷R y for a heterogeneous edge
where R : A ÷U B, we can summarize the behaviour of dependent functions
f : (x : A)→ B(x) in Atkey, Ghani, and Johann [AGJ14] in a single diagram:6

x =A y
f= //

xy〈r〉

��

f(x) =B(x) f(y)

xy〈r〉
��

e : x ÷A y
f÷

// f(x) ÷B÷(e) f(y)

5In the sense of Atkey, Ghani, and Johann [AGJ14]: having a proof-irrelevant edge relation.
6The bottom arrow in this diagram can be generalized to act on heterogeneous edges (by

replacing A with an edge in the universe); however then the left side of the diagram would be
ill-typed. Dependent diagrams are always a bit awkward.
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In this diagram, =A denotes mathematical equality. E.g. the arrow (xy〈r〉) :
x =A y → x ÷A y means: if x and y are really the same node of A, then x〈r〉 is
an edge of A whose source x〈r〉〈s〉 equals x and whose target x〈r〉〈t〉 equals y.

Admissible parametricity The work on admissible parametricity generally
uses different techniques and is in this sense much less relevant in this historical
resume. We cite some important works for completeness:

• Takeuti [Tak01] gives a parametric translation from every system in
the Lambda Cube to a richer system in the Lambda Cube, and proves
soundness of identity extension (calling it the “axiom of parametricity”)
for small types.

• Bernardy, Jansson, and Paterson [BJP12] give a parametric translation
from a general pure type system to (in general) a different pure type
system. Identity extension is not considered.

• Keller and Lasson [KL12] give a parametric translation from a variation
of the calculus of inductive constructions to itself. They use this as a basis
to implement the ParamCoq plugin for Coq [Kel+]. Identity extension is
not considered.

Internal parametricity, without identity extension Bernardy, Coquand, and
Moulin [BCM15] and Moulin [Mou16] have introduced internal operators that
allow the creation of proof terms for parametricity theorems, and provide a
model in (unary) cubical sets.

Their system is about unary parametricity and hence cannot feature identity
extension, but it can be converted to a binary system straightforwardly in which
we could either postulate the identity extension lemma for small types as an
axiom7, or create a universe of types that satisfy the lemma and is closed under
small type formers.

(Binary) cubical sets can be seen as higher-dimensional graphs, which feature
not just nodes and edges, but also squares, cubes, and higher-dimensional cubes.
This higher-dimensional structure is necessary to model iterated parametricity
(see above), as well as to prove the identity extension lemma for the function
type if you want to allow parametricity to be applied to proof-relevant relations.

7This axiom would be partly justified by a cubical generalization of Atkey, Ghani,
and Johann’s model [AGJ14], but Moulin’s model [Mou16] is more subtle in that it uses
refined presheaves (based on I-sets) to strictify certain isomorphisms related to the internal
parametricity operators. To our knowledge no one has created a refined presheaf model of
identity extension.
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9.2 Parametric Quantifiers: Internal Parametricity
with Identity Extension

9.2.1 Motivation

In order to validate the identity extension lemma for all types, rather than
just small types, Nuyts, Vezzosi, and Devriese [NVD17a] create a type system
ParamDTT that uses modalities to distinguish between parametric, continuous
and pointwise functions. These modalities differ in how they act on different
flavours of edges:

• Paths p : x � y generalize equality of types and heterogeneous equality
of terms in System Fω,

• Bridges b : x _ y generalize relatedness of types.

One might hope to give a model in bridge/path reflexive graphs, which would
be presheaves over the category BPRG generated by the following diagram and
equations:

N

s

##

t

;;Proo Buoo r ◦ u ◦ s = 1N,
r ◦ u ◦ t = 1N.

Here, r expresses that every node is path-equal to itself, u expresses that when
things are path-equal, they are also bridge-related, and s and t extract source
and target from a bridge. By composing with u, we can extract source and
target of a path, or obtain reflexive bridges.

However, because the bridges in the universe — which will be relations between
types — are inherently proof-relevant, we need a model that accommodates
proof-relevant parametricity. Furthermore, because the aim is to provide internal
parametricity operators, it is desirable to accommodate iterated parametricity.
For these two reasons, we need a cubical model. Indeed, ParamDTT is modelled
in bridge/path cubical sets, which are presheaves over the category BPCube
which is the free cartesian monoidal category over BPRG with the same terminal
object N. In other words, the objects of BPCube are finite products of B and
P and the morphisms are generated by weakening (r : P → ()), exchange
(v × w → w × v), contraction (w → w × w) and u : B→ P.

Functions f : (x : A) → B(x) in ParamDTT are then classified according to
how they act on bridges and paths (fig. 9.1).
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ptw : x � y //

xy〈u〉

��

f(x) � f(y)

xy〈u〉
��

x _ y f(x) _ f(y)

con : x � y //

xy〈u〉

��

f(x) � f(y)

xy〈u〉
��

x _ y // f(x) _ f(y)

par : x � y

xy〈u〉

��

f(x) � f(y)

xy〈u〉
��

x _ y

99

f(x) _ f(y)

Figure 9.1: Action of modalities in ParamDTT: pointwise (ptw), continuity
(con) and parametricity (par).

A pointwise function f : (ptw p x : A) → B(x) maps path-connected inputs
p : x � y to path-connected outputs f�(p) : f(x) � f(y), witnessing that
it preserves heterogeneous equality. However, it has no action on bridges
b : x _ y, meaning that bridge-related inputs may be mapped to arbitrary
outputs. In particular, pointwise quantification over types has no action on
relations between types. The only way to assert bridge-connected outputs from
a pointwise function, is by feeding it path-connected inputs; then f�(p)〈u〉 is
the desired bridge. The pointwise modality may be used to soundly assume the
law of excluded middle:

(ptw p X : U)→ X ] (X → Empty).

Stating it with the parametric modality would imply that either all types are
inhabited or all types are empty.
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A continuous function f : (con p x : A)→ B(x) sends path-connected inputs
p : x � y to path-connected outputs f�(p) : f(x) � f(y), and bridge-connected
inputs b : x _ y to bridge-connected outputs f_(b) : f(x) _ f(y). Thus,
it preserves heterogeneous equality and relatedness. This corresponds to the
behaviour of a type-level operation in System Fω.

A parametric function f : (par p x : A)→ B(x) sends bridge-connected inputs
b : x _ y to path-connected outputs f_(b) : f(x) � f(y). Hence, it also sends
paths p : x � y to paths f_(p〈u〉) : f(x) � f(y) and bridges b : x _ y to bridges
f_(b)u : f(x) _ f(y). In particular, a function f : (ptw p X : U) → T (X)
sends a relation B : X _ Y to a proof f_(B) : f(X) � f(Y ) that the
instantiations f(X) and f(Y ) are heterogeneously equal according to the relation
T_(B) : T (X) _ T (Y ).8

Remark 9.2.1. We remark that Vezzosi’s ParamDTT implementation
agda-parametric [NVD17a] features three additional and at the time
experimental modalities, for which we need to include a trivially satisfied
relation sending x and y to the singleton > (fig. 9.2): irrelevance (irr), shape-
irrelevance (shi) [AVW17], and the join of shape-irrelevance and parametricity
(shi ∨ par).

9.2.2 The Mode Theory and the Corresponding Instance of
MTT

Definition 9.2.2. The mode theory for ParamDTT is the poset-enriched
category

• that has a single object ∗,
• such that Hom(∗, ∗) = {ptw < con < par},
• where con is the identity and composition is given by

↓ ◦ → ptw con par
ptw ptw ptw par
con ptw con par
par ptw par par.

It is clear that the identity function is continuous. The modality of a composite
function, can be found by pasting together the above diagrams, which yields
the above composition table.

8The codomain T is required to be continuous for the parametric function type to be
well-formed.



268 DEGREES OF RELATEDNESS

irr : x � y

xy〈u〉

��

f(x) � f(y)

xy〈u〉
��

x _ y

��

f(x) _ f(y)

��
>

BB

>

shi : x � y //

xy〈u〉

��

f(x) � f(y)

xy〈u〉
��

x _ y

��

f(x) _ f(y)

��
>

88

>

shi ∨ par : x � y

xy〈u〉

��

f(x) � f(y)

xy〈u〉
��

x _ y

��

99

f(x) _ f(y)

��
>

88

>

Figure 9.2: Action of additional modalities in Agda-parametric: irrelevance
(irr), shape-irrelevance (shi) and its join with parametricity (shi ∨ par).
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Note also that, using xy〈u〉, we can prove that all parametric functions are
continuous. All continuous functions are clearly also pointwise (as we can forget
the action on bridges), which confirms the postulated order on modalities.

Theorem 9.2.3. The instantiation of MTT with the mode theory for
ParamDTT yields a type system ParamMTT which can be modelled in the
category Psh(BPCube) as an instance of theorem 5.3.3. ParamMTT is not the
system ParamDTT [NVD17a].

Remark 9.2.4. ParamDTT deviates from MTT in two important respects:

• It uses eager left division µ \ Γ, rather than lazy locks Γ,µµ (see
section 5.3.7),

• It features a parametric type decoding rule

par \ Γ ` T : U
Γ ` T type

(9.1)

which has the effect of making variables available in a term and its type
(or more precisely its type’s code) by a different modality (e.g. parametric
functions have continuous type).

Furthermore, ParamMTT lacks all system-specific features, such as internal
parametricity operators.

Lemma 9.2.5. We have three adjoint functors + a [ a ] : BPCube→ BPCube
which are the cartesian monoidal functors such that:

+P = (), [P = B, ]P = P,
+B = B, [B = B, ]B = P.

Proof. Left as an exercise to the reader, but note that these functors are
definable on BPRG and that the adjunctions can be proven there and carry
over.

Proof of theorem 9.2.3. We need to find a strict 2-functor J :M→ Cat where
M is the mode theory for ParamDTT, such that J(µ)∗ is a good interpretation
of the dependent right adjoint. Indeed, then the locks are interpreted by
J(µ)∗ which will also be a strict 2-functor M → Cat. Clearly, we will take
J(∗) = BPCube.

Before we define the action of J on morphisms, we will define K :Mcoop → Cat,
and then we will construct J so that J(µ) a K(µ). This means that K(µ)∗
will be naturally isomorphic to J(µ)∗. Of course all of this is only well typed
assuming we take K(∗) = J(∗) = BPCube.



270 DEGREES OF RELATEDNESS

In general, K(µ)B should be the weakest relation (represented by an object
of BPCube) such that a µ-modal function will send K(µ)B-related inputs to
bridge-related outputs. Similarly, K(µ)P should be the weakest relation such
that a µ-modal function will send K(µ)P-related inputs to path-equal outputs.

For con, which is the identity modality, this means K(con) = 1. For
parametricity, a bridge in the domain is sufficient to guarantee either a path
or a bridge in the codomain, so we take K(par) = [. For pointwise functions,
we need a path in the domain to guarantee either a path or a bridge in the
codomain, so we take K(ptw) = ]. This is immediately seen to reverse 2-cells.

For J then, we simply take the left adjoints:

J(con) = 1, J(par) = +, J(ptw) = [.

Let us now map concepts from System Fω to those of ParamDTT by looking
for similarities between the corresponding diagrams. Type level operators in Fω
become continuous functions in ParamDTT. Parametric functions in System
Fω become parametric functions in ParamDTT. One can imagine a modal
extension of System Fω that allows ad hoc polymorphism, so that we can have
a typecase operator or postulate a non-parametric law of excluded middle. The
latter is sound in ParamDTT.

When we consider term level functions in System Fω, we notice an awkward
aspect of the model of ParamDTT, namely that small types, too, come equipped
with a path (�) and a bridge (_) relation. In System Fω on the other
hand, we could only consider heterogeneous equality (�) for elements of small
types. In fact, we have no need for these two relations, and unless we allow
HITs with bridge constructors, all small closed types will be bridge-discrete,
meaning essentially that xy〈u〉 is an isomorphism. An immediate consequence
is that if a function’s domain is a small closed type, then its modality does not
matter. However, the type system does distinguish between the corresponding
function types and has no way of coercing upstream against the order on the
modality monoid. This shortcoming is addressed in Nuyts and Devriese [ND18a]
(section 9.3) by having a separate mode for types that have no bridge relation,
thus conflating the different modalities.

Remark 9.2.6. If we add shi, irr and shi ∨ par (remark 9.2.1), then the
inequality relation is given by

ptw < con <
par
shi < (shi ∨ par) < irr, (9.2)
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and shi and par are incomparable. Composition is given by

↓ ◦ → ptw con par shi shi ∨ par irr
ptw ptw ptw par ptw par irr
con ptw con par shi shi ∨ par irr
par ptw par par irr irr irr
shi shi shi shi ∨ par shi shi ∨ par irr

shi ∨ par shi shi ∨ par shi ∨ par irr irr irr
irr irr irr irr irr irr irr

Since ptw ◦ shi = ptw < con and con < shi = shi ◦ ptw, we see that
ptw a shi. Furthermore, shi ∨ par = shi ◦ par and irr = par ◦ shi. These
observations inspire us to extend the semantics from theorem 9.2.3 with:

J(shi) = ], J(shi ∨ par) = ] ◦ +, J(irr) = + ◦ ].

Together, these are all 6 ‘relation shifting’ modalities whose modal functions
still preserve path-equality. If we want to also classify functions that do not
preserve path-equality, then we get 4 more modalities, but their locks cannot
be interpreted as central liftings (rather they are left liftings, which do not
constitute a strict 2-functor), so we would have to rely on our strictification
theorem [Gra+20a] to build a model.

9.2.3 Extending the MTT instance to ParamDTTµ

While ParamMTT is not ParamDTT, we can extend it soundly and come pretty
close. The main remaining differences will be:

• The use of locks,
• That face restrictions on the context will have a modality annotation and
be subject to locks (see section 6.5), which we consider an improvement
over ParamDTT proper.

Theorem 9.2.7. We can soundly extend ParamMTT to a system ParamDTTµ

by adding:

1. Bridge interval variables, face propositions, Glue- and Weld-types
[NVD17a],

2. A judgement form for discrete types Γ ` T dtype` @ ∗ which is closed
under discreteness-preserving type formers with modality annotations as
in MTT and such that

Γ ` T dtype` @ ∗
Γ ` T type` @ ∗

(9.3)
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3. The degeneracy axiom, stating that homogeneous paths in discrete types
are constant,9

4. Parametric existential quantifiers,
5. A universe ` UDD

` dtype`+1 @ ∗ which is closed under discreteness-
preserving type formers with modality annotations as in ParamDTT,
which features a parametric decoding rule

Γ,µpar ` T : UDD
` @ ∗

Γ ` ElT type` @ ∗
. (9.4)

Note that discreteness-preserving type formers most notably exclude the
Hofmann-Streicher universe and 〈par | xy〉,10 which is why parametric exis-
tentials are explicitly listed as a separate addition.

Proof. 1. The bridge interval is simply interpreted by y(B). Glue and Weld
exist in any presheaf category. We refer to the original work [NVD17a;
Nuy18a] for details, to example 6.1.6 for a sketch of how to type-check
and to section 6.5 for the interaction with modalities.

2. The semantics of this judgement is simply a type which satisfies the
degeneracy axiom.
Alternatively, we may observe that discreteness is the right class of a
robust non-damped OFS [Nuy18a], internalize the (idempotent) discrete
replacement monad +◦ (rr), and define a discrete type to be an algebra
for +◦ (section 8.6), i.e. a type T ∼= +◦T .

3. This is then trivial (using the first option in the previous point) or follows
if we postulate the degeneracy axiom for the discrete replacement.

4. We can simply take the Σ-type over 〈par | A〉 and then take the discrete
replacement of that.

5. Using standard techniques, either in the model or as an instance of
UNFF (section 8.6), we obtain a closed type UNDD that is a classifier for
the discrete typing judgement but is itself not discrete and still has a
continuous decoding rule [Nuy18a]. It’s symbol stands for ‘non-discrete
universe of discrete types’. Then we define UDD := (]+)∗UNDD, as motivated
below.

Remark 9.2.8 (Construction of UDD). The non-discrete universe UNDD behaves
like the Hofmann-Streicher universe, only it classifies discrete types.

9This is the internalization of the identity extension lemma.
10as well as 〈shi | xy〉, 〈shi ∨ par | xy〉 and 〈irr | xy〉.
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A bridge B : X _UNDD Y then encodes a notion of heterogeneous bridges
(x : X) _B (y : Y ), and path P : X �UNDD Y encodes notions of paths
(x : X) �P (y : Y ) and also a notion of bridges (x : X) _P 〈u〉 (y : Y ). The
latter is inevitable, as P must contain all information needed to form the bridge
P 〈u〉 : X _UNDD Y . It is immediately clear that the existence of a P does not
assert that X = Y , i.e. UNDD is not itself discrete.

In the desired discrete universe of discrete types UDD, all paths are reflexive, i.e.
we would like to have (P � UDD[_〉) = (() � UNDD[_〉).

Meanwhile, we want to model the parametric decoding rule by making sure
that there exists a function El :

〈
par | UDD〉 → UNDD. This means that a

bridge in UDD must be (at least) a path in UNDD. We can achieve this if
(B � UDD[_〉) = (P � UNDD[_〉):

X �UDD Y

xy〈u〉
��

X =UNDD Y

xy〈r〉
��

X �UNDD Y

xy〈u〉
��

X _UDD Y X �UNDD Y

El_
88

par
X _UNDD Y

Both equations are satisfied by taking UDD = (]+)∗UNDD, since

]+P = ]() = (), ]+B = ]B = P, (9.5)

(and ]+ is the unique cartesian monoidal functor respecting these equations).

The attentive reader might wonder why we found it appropriate to discard
the bridge relation _UNDD when building UDD. The unsatisfactory answer is
that the path relation �UNDD contains more information and that we ran out
of slots so we had to discard something. An issue that can be traced back to
this discarding, is that the internal parametricity operators of ParamDTT have
an extremely contagious pointwise dependency that essentially renders proofs
of parametricity theorems non-parametric themselves, getting in the way of
iterated parametricity despite having a cubical model.

9.2.4 Wrapping up

In ParamDTT, ParamMTT and ParamDTTµ, we see two important causes
of discomfort: we have too many relation slots in small types (which feature
an unnecessary bridge relation), and we have one too few in the universe. In
Degrees of Relatedness (section 9.3), small types are equipped with just a single
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relation, and every universe has one relation slot more than the types that it
classifies.

9.3 Degrees of Relatedness

In comparison to ParamDTT [NVD17a], the type system RelDTT [ND18a]
makes two improvements:

• It officially contains modalities that interact with the trivially and uniquely
provable relation > (which were already available in agda-parametric
but not in ParamDTT or its model),

• It addresses the aforementioned shortcomings of ParamDTT by moving
to a multimode system in which types come equipped with a different
number of relations, depending on their mode.

We focus on the second improvement. The modes of RelDTT (called depths)
are integers starting from −1 and types of mode m are equipped with m+ 1
relations called _0 through _m. The mode m segment of the type system is
modelled in ‘depth m cubical sets’, which are presheaves over DCubem, the free
cartesian monoidal category (with same terminal object) over RGm, which is
generated by:

N

s

##

t

;;
L0Mroo L1M

u1
0oo · · ·

u2
1oo LdM

umm−1oo

r ◦ u1
0 ◦ . . . ◦ umm−1 ◦ s = 1N,

r ◦ u1
0 ◦ . . . ◦ umm−1 ◦ t = 1N.

By convention, DCube−1 is the point category.

The modalities µ : m → n will be, essentially, all diagrams from m ordered
relations (and >) to n ordered relations (and >) such that a 0-edge in the
domain always gives rise to a 0-edge in the codomain, and such that we can
also map from > to >.

A succinct way to denote such a diagram is by answering, for all i = 0 . . . n,
the question: how related do the arguments need to be, if I want the results to
be i-related? This gives rise to a nondecreasing function {0 < 1 < . . . < n} →
{0 < 1 < . . . < m < >}. Hence, we define:
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Definition 9.3.1. The mode theory for RelDTT is the poset-enriched category

• whose objects are integers starting from −1,
• such that Hom(m,n) is the set of nondecreasing functions

µ : {0 < 1 < . . . < n} → {0 < 1 < . . . < m < >} : i 7→ i · µ,

also denoted 〈0 · µ, . . . , n · µ〉,
• where the identity modality con is given by i · con = i and composition
is given by

i · (ν ◦ µ) =
{

(i · ν) · µ if i · ν 6= >,
> if i · ν = >,

where µ ≤ ν whenever i · µ ≤ i · ν for all i.

Example 9.3.2. We refer to Nuyts and Devriese [ND18a] for a compendium
of interesting modalities. Here, we just mention parametricity par : m+ 1→ m
for which i ·par = i+1 and its right adjoint structurality str : m→ m+1 for
which 0 · str = 0 and (i+ 1) · str = i. Their action is depicted diagrammatically
in fig. 9.3.

Theorem 9.3.3. The instantiation of MTT with the mode theory for RelDTT
yields a type system RelMTT which can be modelled in the categories
Psh(DCubem) as an instance of theorem 5.3.3. RelMTT is not the system
RelDTT [ND18a].

Remark 9.2.4 applies also for RelMTT vs. RelDTT.

Lemma 9.3.4. The modalities µ : m→ n are, by Galois connection (κ a µ),
in 1-1 correspondence with nondecreasing functions

κ : {0 < 1 < . . . < m} → {(=) < 0 < 1 < . . . < n} : j 7→ j · κ,

which are called contramodalities.

Proof of theorem 9.3.3. We define the 2-functor J :M→ Cat that sends modes
to base categories. Of course, we need J(m) = DCubem. In order to define
J(µ), let κ a µ be the corresponding contramodality. Since J(µ)∗ is going to be
the interpretation of the DRA of µ, we can think of J(µ)∗ as the interpretation
of κ. Hence, we define J(µ) to be the cartesian monoidal functor that sends LiM
to Li · κM if i · κ 6= (=), and to the terminal object otherwise.
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Figure 9.3: Action of parametricity (par : m+ 1→ m) and structurality
(str : m→ m+ 1).

Proposition 9.3.5. ParamMTT is a subsystem of RelMTT with the same
semantics. Concretely, we have a functor I : MParamDTT → MRelDTT,
invertible on Hom-posets, from the mode theory of ParamDTT to the mode
theory of RelDTT such that the following diagram commutes if we identify
BPCube = DCube1:

MParamDTT
I //

J
''

MRelDTT

J

��
Cat

This still works if we include the modalities from remark 9.2.6.
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Proof. The following definition of I does the job:

I(∗) = 1

I(ptw) = 〈0, 0〉 , I(con) = 〈0, 1〉 , I(par) = 〈1, 1〉 ,
I(shi) = 〈0,>〉 , I(shi ∨ par) = 〈1,>〉 , I(irr) = 〈>,>〉 .

Again, we can extend RelMTT to something that differs from RelDTT mainly
in the use of locks vs. left division:

Theorem 9.3.6. We can soundly extend RelMTT to a system RelDTTµ by
adding:

1. Interval variables, face propositions, Glue- and Weld-types,
2. A judgement form for discrete types Γ ` T dtype` @ m which is closed

under discreteness-preserving type formers with modality annotations as
in MTT and such that

Γ ` T dtype` @ m

Γ ` T type` @ m
(9.6)

3. The degeneracy axiom, stating that homogeneous 0-edges in discrete types
are constant,11 or at mode −1 that elements of the same discrete type
are equal,

4. Modal existential quantifiers for modalities µ such that 0 · µ 6= 0,
5. A universe ` UDD

` dtype`+1 @ m+ 1 which is closed under discreteness-
preserving type formers with modality annotations as in RelDTT, which
features a parametric decoding rule

Γ,µpar ` T : UDD
` @ m+ 1

Γ ` ElT dtype` @ m
. (9.7)

Note that discreteness-preserving type-formers most notably exclude the
Hofmann-Streicher universe and 〈µ | xy〉 when 0 ·µ 6= 0, which is why existentials
for those modalities are explicitly listed as a separate addition.

Proof. All points but the last are proved as in theorem 9.2.7.

Using standard techniques, we obtain a non-discrete universe of discrete types
UNDD
` at every mode m. Then we define UDD

` := J(par)∗UNDD
` (where J is

defined as in the proof of theorem 9.2.3), which lives at mode m + 1. Note
11This is the internalization of the identity extension lemma.
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that J(par) is the interpretation of µpar and sends L0M to the terminal object
and Li+ 1M to LiM. Hence, the 0-edges of UDD

` are the points of UNDD
` (so it is

discrete) and we shove aside all other relations so that the (i+ 1)-edges of UDD
`

are the i-edges of UNDD
` . This indexation shift allows for a parametric function〈

par | UDD
`

〉
→ UNDD

` .

In this system, we can think of terms at mode −1 as proofs, at mode 0 as
programs, at mode 1 as types, at mode 2 as kinds, etc.

9.4 MTT as an Internal Language of the Model

As mentioned, neither ParamDTT nor RelDTT are themselves instances of
MTT, their most stark deviation being the parametric type decoding rule which
causes both systems to enforce different modalities for terms and their types
(e.g. parametric functions have continuous types and irrelevant functions have
shape-irrelevant types).

Fleshing out the semantics of both systems was a major effort and produced a
technical report [Nuy18a], some parts of which could be classified as ‘write-only’.
It would have been desirable to carry out these proofs in a proof-assistant, i.e.
internal to another type system. For the authors, this has the advantage that
a lot of tedious bookkeeping could be done automatically, and RelDTT’s end
users would of course have more confidence in the system.

As both models start with an instantiation of theorem 5.3.3, MTT seems quite
well-suited as a metatheory in which discreteness, UNDD and UDD could be
defined, and ParamDTT and RelDTT could be shallowly embedded. This is in
fact one of the central motivations behind the Menkar project [Nuy19].

There is one important difficulty, namely that the creation of UDD out of
UNDD needs to insert an equality relation in relation slot 0, which the internal
modalities of ParamDTT and RelDTT are unable to do. A contramodality
κ a µ has the capacity to do so, however. If in the above construction, we set
JµκK = J(µ)!, then an i-edge in 〈κ | A〉 is an (i · κ)-edge in A, or an equality
proof if i · κ = (=).

On the other hand, modalities such as irrelevance and shape-irrelevance interact
with > and as such are not contramodalities. So an ideal metatheory in which
to embed RelDTT, has as its weak DRAs both central and right liftings of base
category functors, which may compose to weak DRAs that are neither. As
such, it becomes difficult to provide semantics that are strictly functorial on
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locks, and we need to invoke our strictification theorem [Gra+20a] to model an
appropriate metatheory.

Definition 9.4.1. The mode theory for the model of RelDTT is the poset-
enriched category

• whose objects are integers starting from −1,
• such that Hom(m,n) is the set of nondecreasing functions

µ : {0 < 1 < . . . < n} → {(=) < 0 < 1 < . . . < m < >} : i 7→ i · µ,

• where the identity modality con is given by i · con = i and composition
is given by

i · (ν ◦ µ) =

 (i · ν) · µ if i · ν 6∈ {=,>},
(=) if i · ν = (=),
> if i · ν = >,

where µ ≤ ν whenever i · µ ≤ i · ν for all i.

Theorem 9.4.2. There is a model in categories equivalent to DCubem for MTT
over the mode theory for the model of RelDTT.

Proof. Every modality of this mode theory can be written as a composite of a
modality µ of RelDTT and a contramodality κ of RelDTT. We can interpret
JµµK = J(µ)∗ and JµκK = J(ν)! where κ a ν. One can show that this constitutes
a pseudofunctor.12 As central and right liftings are always DRAs, we can invoke
the MTT strictification theorem [Gra+20a].

9.5 Parametricity Features and their Requirements

In this section, we discuss a number of parametricity features and what their
requirements are in terms of complexity of the type system and its model.

Parametricity of System F Parametricity of (predicative [Lei91]) System F
can be modelled using Reynolds’ original set model [Rey83], which consists
of an object interpretation and a relational interpretation relating 2 (or n)
instances of the object interpretation. Reflexivity and the identity extension
lemma are proven a posteriori by induction on the type.

12E.g. by building a pseudonaturally equivalent strict 2-functor sending modes to categories
of presheaves valued not in Set but in the category of setoids and functions on equivalence
classes. This is possible because the locks for contramodalities are always quotients of central
liftings.
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Parametricity of System Fω As already mentioned in section 9.1.2, Reynolds’
model can be structured as a reflexive graph model, which allows straight-
forward generalization to a model of (predicative) System Fω [Atk12]. Reflexivity
is now built into the model, and identity extension follows from the fact that
type operators preserve reflexivity (and that reflexivity in the kind ∗ of types
sends a node/type T to the edge/relation EqT ).

Dependently typed parametricity Proof-irrelevant parametricity (rela-
tional parametricity w.r.t. proof-irrelevant relations) can again be proven by
a reflexive graph model [AGJ14], which is mostly an instance of the general
presheaf model of DTT (chapter 4). Identity extension does however not hold
for the universe, or for most types built using the universe. So we only get
identity extension for small types.

Proof-relevant parametricity In proof-relevant parametricity, we allow the
use of proof-relevant relations. This can no longer be modelled in a reflexive
graph model, as it does not validate identity extension for Π-types. Indeed,
identity extension requires that two functions f, g : (x : A)→ B(x) are related
if and only if they are equal. But equality implies that f and g have the same
action on edges. In proof-irrelevant parametricity, this is automatic, because
proof-irrelevance requires that there is always at most one well-typed edge.
In proof-relevant parametricity, it is instead required that ‘relatedness’ of f
and g says something about their action on edges. Thus, we do not only need
edges to talk about how points are related, but also squares to talk about
how edges are related. Introducing squares, creates a need for cubes to talk
about how squares are related (unless we require proof-irrelevance at the square
level), which requires 4-cubes, etc. Thus, proof-relevant parametricity with
identity extension for small types, should be modelled in a cubical set
model, which is again an instance of a presheaf model of DTT (chapter 4). We
are unaware of a paper that actually does precisely that, but such a model
would be a simplification of that of ParamDTT [NVD17a], a straightforward
generalization of that of Atkey, Ghani, and Johann [AGJ14], or just the binary
version of the model of Moulin [Mou16] and Bernardy, Coquand, and Moulin
[BCM15] on which we actually still have to prove that discrete types are closed
under small type formers.

Internal/iterated parametricity In type systems with internal parametricity,
there is typically a type x _T y of proofs that x and y are related. Typically,
the internal parametricity operators can be applied to the above type (unless the
type system takes special measures to prevent it, such as including a pointwise
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modality in ParamDTT [NVD17a], which we consider a flaw and not a feature
and which we rectified in RelDTT [ND18a]), allowing internal reasoning about
relatedness of proofs of relatedness. We call this iterated parametricity.

Actually, internal or iterated parametricity does not add much to the concerns
already mentioned: the type x _T y brings the same challenges as the type
(x : A) → B(x) when A has a non-trivial edge. As such, internal/iterated
parametricity requires a cubical model if you also want it to be proof-relevant,
but not otherwise.

Identity extension for large types If we want to attain identity extension
for large types in DTT, a deep intervention in how the type system works is
appropriate. In order to see why, we consider a simple example. In System
F, the type ∀X.B (with B closed) only contains constant functions. This is a
parametricity result. In DTT, this type translates to (X : U`)→ B. Now if we
instantiate B := U`, then we can inhabit the type with the identity function
λ(X : U).X, which is not constant.

There are several perspectives to understand this problem. A first perspective
is by observing that the Π-types of DTT generalize both the parametric ∀-
type former from System F (which forbids its inhabiting functions to inspect
their argument) and the non-parametric type/kind former → (which allows its
inhabiting functions to inspect their arguments). As such, the Π-type has non-
parametric inhabitants coming from the arrow type, violating the parametricity
results that held for the ∀-type. In ParamDTT [NVD17a], we rectified this by
reintroducing a parametric function type (par p x : A)→ B(x) containing only
parametric functions.

Alternatively, we may consider types’ levels. Concretely, we expect inhabitants
of (X : U`)→ B (with B closed) to be constant assuming that B has level `, thus
ruling out B = U` which has level `+ 1. This would follow from a generalization
of Atkey, Ghani, and Johann’s result [AGJ14], which asserts identity extension
for small types. However, if we inspect their model, it turns out that smallness
is not really the property they rely on; rather, they rely on the fact that discrete
types satisfy identity extension and that discrete types are closed under small
type formers. It is to be expected that future work on parametricity, which may
feature relational higher inductive types (see the HoTT-book for HITs [Uni13]),
will provide small type formers which do not preserve discreteness. Thus, it
seems wise to distinguish a type’s level (a stratification useful for guaranteeing
predicativity) from its depth [ND18a] (i.e. its relational complexity).

RelDTT [ND18a] cleanly unifies these two perspectives: the function type
(µ p x : A) → B(x) gets annotated with a modality µ. The choice of possible
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modalities µ : m→ n depends on the depths m of A and n of B. If A and B
have the same depth, then continuity con : m→ m becomes an option and we
can consider functions that inspect their argument. If B has depth n = m− 1,
then we can form the type (par p x : A) → B(x) whose elements satisfy free
theorems [Wad89], but thanks to the wealth of modalities in RelDTT we can
still consider ad hoc polymorphic functions (hoc p x : A)→ B(x) allowing e.g.
postulation of the law of excluded middle (hoc p X : U)→ X ] (X → Empty)
without breaking parametricity in general.

In summary, if we care for dependently typed parametricity with identity
extension even for large types, then we should be looking towards modalities
or at least a stratification of types based on their relational complexity (which
may or may not be decoupled from the level). I would argue that RelDTT
is so general that such modal or stratified systems should be almost always
explicable as a subsystem of RelDTT, e.g.:

Theorem 9.5.1. There exists a non-trivial model of DTT with Agda-style
cumulativity13, in which any function f : U` → A where A : U`, is constant.

Proof. DTT translates to a subsystem of RelDTT where types of level `
automatically also have depth ` and all functions are mediated by park : m+k →
m or strk : m→ m+ k or con : m→ m, and where LiftX := 〈str | X〉.

Under this translation, f ends up having type (par p U`) → A. Now we can
build a 1-edge between any two types in U` (e.g. by welding over the empty
type), yielding a 0-edge in A, which is constant by the degeneracy axiom of
RelDTT [ND18a].

I hope that this exposition makes it clear that, in general, dependently typed
parametricity does not require modalities, even if we require identity extension
for small types.

13i.e. if X : U` then LiftX : U`+1 and LiftX ∼= X.



Chapter 10

Conclusion

In this conclusive chapter, we discuss possible future work, the practical
implications of this thesis, and a philosophical question that may have arisen.

10.1 Future Work

In section 10.1.1, we discuss how, using the contributions from this thesis,
we may proceed to develop a higher-dimensional directed type theory. In
section 10.1.2, we address our disregard for syntactical aspects of type theory
in the rest of the thesis.

10.1.1 Towards Higher Directed Type Theory

As mentioned in the introductory chapter 1, the common motivation for all
contributions in this thesis was the preparation of a higher directed type system
with interacting modalities for functoriality and naturality. In this section, I will
sketch how such a type system is now starting to take shape, without getting
too specific for reasons of space and time.

Modes In RelDTT [ND18a], we have abandoned the idea that types and their
kinds should be the same thing, and instead used a multimode system [LS16]
to embrace the diversity. This still applies – and perhaps in a more familiar
way – to a directed system. There, we may still be concerned with types that
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are essentially sets, such as Bool or N, and it will be pointless to consider the
variance of functions to or from such types. On the other hand, a universe
of such sets is of course a category, or indeed a pro-arrow equipped category
[nLa20a]. A universe of (pro-arrow equipped) categories, is then a 2-category, or
indeed a suitable 2-dimensional generalization of a pro-arrow equipped category.
On a 2-category C, we can reverse 1-arrows (yielding Cop) or 2-arrows (yielding
Cco), so that we clearly need more modalities for variance of functors between
2-categories than between 1-categories. A multimode type system instantiating
MTT is an excellent answer to this phenomenon.

Pro-arrows In ParamDTT [NVD17a], we considered bridges and paths, and
a bridge between types holds a notion of heterogeneous paths between their
elements. This was generalized in RelDTT [ND18a], where we considered i-
edges, and an (i+ 1)-edge between types holds a notion of i-edges between their
elements. In category theory, a profunctor between categories can be regarded
as holding a notion of heterogeneous morphisms between their objects. These
profunctors are abstracted as pro-arrows in the pro-arrow equipped category
of categories Cat. I believe that a directification of Degrees of Relatedness
can lead to an interesting theory of higher-dimensional pro-arrow equipments
(which to my knowledge is presently non-existent), which seems an excellent
setting for combining parametricity, naturality and functoriality in a single
system. Interestingly, the existence of companions and conjoints and their
associated squares could be asserted by the presheaf structure via negation-like
and connection-like operations.

Hom-abstraction In cubical homotopy type theory [e.g. Coh+17], the path
type PathA a b is typically implemented or at least modelled via an extension
type:

PathA a b := (i : I)→ A ext{i .=I 0 ? a | i .=I 1 ? b},
so that a path is a function from the interval that equals a at the source and b
at the target. In directed type theory, this is difficult, because the Hom-type
is contravariant in the source and covariant in the target, so that application
to 0 of functions over the interval would have to have different variance than
application to 1. Strikingly, the multiplier given by Pinyo and Kraus’s twisted
prism functor [PK19] (example 7.4.11) gives us exactly that: it comes with
natural transformations (idW , 0) : W op → W n I and (idW , 1) : W → W n I.
Specifically, it looks like we can implement HomA a b as the subtype of elements
of 〈∀(i : I) | 〈Ω i | A〉〉 that match the endpoints. Since the twisted prism functor
is not semicartesian, the weakening modality Ω i can only be used in the empty
shape context, as weakening from the empty context is always possible. Another
thing to take into account is that an arrow in the above modal type is a
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twisted square in A, which should not be a heterogeneous morphism between
elements of HomA, but instead a heterogeneous equality, so we need to throw in a
parametric/natural modality and take a subtype of 〈par | 〈∀(i : I) | 〈Ω i | A〉〉〉.

Internal naturality Generalizing internal parametricity operators, we would
like internal operators that allow us to inhabit naturality squares simply from
the knowledge that a function type-checks as natural. From chapter 7, we know
that the transpension type and the strictness axiom together give us all the
wealth of currently known presheaf operators, which is encouraging.

Fibrancy We are interested in covariant types, which have a mapping like
functors do, and Segal types, in which morphisms can be composed. We hope
that Segal fibrancy can be defined as covariance of the Hom-type. As these
notions of fibrancy are not closed under all the type formers that one would
wish, it is recommendable to have a type system that also includes non-fibrant
types, and to deal with fibrancy maximally internally. Neither notion of fibrancy
is robust, but our findings in Chapter 8 tell us that there is hope for an internal
treatment if we consider these notions contextually.

10.1.2 Good Syntax

Most contributions in this thesis were primarily focused on creating interesting
extensions of DTT that are sound. The only place where we prove a syntactic
well-behavedness result is in section 5.3: MTT satisfies a canonicity result1

[Gra+20b]. Here, we highlight where such results are missing and discuss how
we could proceed.

Degrees of Relatedness In chapter 9, we explained how ParamDTT [NVD17a]
and RelDTT [ND18a] are almost instances of MTT, for which we have a
canonicity result. Hence, the primary threat to canonicity is in the extensions.
The cubical Glue type is known to be unproblematic [Hub19] and we expect
similar for Weld. The modal Σ-types behave essentially like the weak DRAs
in MTT, and are therefore also expected to be unproblematic. Then the main
problems are function extensionality and the degeneracy axiom that internalizes
the identity extension lemma. Function extensionality can perhaps be handled
in the style of Sterling et al.’s XTT [SAG19]. Meanwhile, the degeneracy
axiom can likely be made computable in a similar fashion that Kan composition
is computable in cubical HoTT [Coh+17; Hub19]: it is ‘implementable’ by

1by the co-authors.
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induction on the type, where ‘implementable’ is between quotes because there
is no such thing as internal type induction.

Transpension The type system of chapter 7 is not ready for practical use. In
section 7.9 we listed the main challenges that we are still facing.

10.2 Implications in Practice

In this section, we try to answer the question: What are the implications of
this thesis for the development of programming languages in the (far) future?
Let us (pretend to) take for granted that the increasing importance of software
verification will naturally lead to the adoption dependently typed languages as
combined programming languages and proof assistants.

Multimode languages A type system like RelDTT [ND18a], with infinitely
many modes and modalities, is at first sight likely unappetizing to the practical
programmer, even when they are familiar with DTT. However, note how a few
modes already appear in a language like Haskell, with programs living at mode
0, types at mode 1 and kinds at mode 2. Adding a mode −1 for proofs does not
seem outrageous. As shown in the original paper [ND18a, fig. 2], all modalities
up to mode 1 can be expressed in terms of modalities that were known prior to
RelDTT and/or structurality, the novel modality by which algebras depend on
their structure [ND18a].

Haskell unfortunately has completely different languages at mode 0 and 1. A
general theory of relational modalities may advise more consistent development
in the future. And while full RelDTT provides ω modes, most non-logicians
will only need the lowest few which are in fact relatively familiar, and need not
be hampered by the existence of others.

An understandable concern is that programming becomes ‘very complicated’
if we have to constantly think about which modality we should annotate our
functions with. I suggest to look at this from a different angle. Supposing one
needs to rely on a ‘free’ parametricity theorem, would programmers rather go
back to all code they have been relying on and recursively prove that it satisfies
its parametricity predicate2, or would they rather put a few modalities here and
there to point out to the type-checker that, by non-violation, their program is

2This can of course be automatized [KL12; Kel+; BJP12], but drawbacks remain, such as
the impossibility to obtain a parametricity proof for a client-provided function.
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parametric? Those who have no need for parametricity theorems, are welcome
to annotate all functions as ad hoc polymorphic.

Transpension Work like XTT [SAG19] shows how ideas from cubical type
theory involving shape variable abstraction are useful even for users who are
not interested in parametricity or HoTT, but maybe are in computational
function extensionality. With a transpension type, arcane though it may be,
these users can use higher-dimensional pattern matching to find that equal
terms in a coproduct type come from the same side. For those interested in
internal parametricity, a transpension type can be used in the background to
implement Moulin et al.’s parametricity operators [BCM15; Mou16].

Internal fibrancy As mentioned in section 10.1.2, internal fibrancy is useful
when trying to give certain axioms – such as Kan composition [Coh+17], the
degeneracy axiom (identity extension) [ND18a] and clock-irrelevance [BM18] –
computational behaviour. Here, too, the transpension type can occasionally be
helpful as argued in section 8.7.

Directed type theory Directed type theory, to which everything in this thesis is
relevant as discussed in section 10.1.1, in turn could have an impact on everyday
program verification by providing smoothly interacting functoriality-for-free
and naturality-by-construction with free naturality theorems.

10.3 Is Information Presheavoidal?

The fact that presheaf models have been successful in modelling so many
interesting properties of type theory, may prompt the question whether
information is fundamentally presheavoidal and if so, why the base category
keeps changing with the application and whether there is something like an
‘ultimate base category’.

I would argue that we have to regard presheaves the same way we should regard
complex numbers: they are a useful reasoning tool, but never themselves the
object of practical interest. Ultimately, we are interested in the output of a
computer program for a specific given input, and this output will not be cell of
a presheaf but an element of the set of possible outputs, living at RelDTT mode
0. Even when the program takes inputs and we can start drawing commutative
diagrams, each side of a diagram is a concrete program of the same type. In
the case of RelDTT, it is worth mentioning that closed 0-discrete types of
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mode 0 really are modelled by sets. In guarded type theory, if we consider
not clock-irrelevance but �k-irrelevance as in the semantics by Bizjak and
Møgelberg [BM18], then closed types are again just sets. In the approach to
guarded type theory in section 5.3.6.a, we only briefly visited the topos of trees
to construct objects modelled in the category of sets. For HoTT, of course, the
situation is different, but HoTT is programming language theory applied to
abstract homotopy theory; if it were the other way around, then we would use
a multimode theory with a mode n for n-groupoids.

In summary, in each of the practical applications, we may take journeys through
the world of presheaves in the middle of an argument, but the start and end of
our journey should always be in the world of sets.
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List of Mathematical Symbols

For abbreviations in text, we refer to the
index.

xy A gap, e.g. f(xy) means f .

Delimiters

〈. . .〉 Angular brackets can mean:
t〈ϕ〉 Restriction of a type cell W � t :

T by a morphism ϕ : V →W in
the base category (section 4.1.2).

i〈ϕ〉 Contravariant morphism applica-
tion in a base category such as
Cube or Clock.

〈R | T 〉 Application of the DRA R to
the type T (definition 5.2.1, dra).
If R is actually a right adjoint
CwF morphism, then this means
(RT )[η] (lemma 5.2.3).

〈µ |m T 〉 Weak DRA (wdra), which
binds a tick m.

[. . .] Brackets can mean:
T [σ] Type substitution (see (. . .) for

the substitution itself) (ty:sub).
t[σ] Term substitution (see (. . .) for

the substitution itself) (tm:sub).
[f1, . . . , fn] Morphism out of a coprod-

uct or colimit.
[ϕ] Proof type (proof).
[n] n-dimensional simplex object in

Simplex.
[. . .〉 A ket can mean:

t[γ〉 Action of the semantic term Γ `
t : T on a cell γ : W ⇒ Γ
(section 4.1.2).

T [γ〉 See � at Judgements/Turnstiles.
J. . .K Interpretation in a model.
{. . .} Curly braces can mean:

{a1, . . . , an} Set containing a1, . . . ,
an.

{x |P (x)} Set containing all x satisfy-
ing P (x).

{ϕ ? t1 | χ ? t2} Eliminator of a
proposition (falsehood:elim,
or:elim, eq:j, notation 6.1.5).

(. . .) Parentheses can mean:
(. . .) Overrides precedence rules.
f(x) Sometimes used for function

application, especially in set
theory, although we also use
juxtaposition (see there).

(f1, . . . , fn) Morphism to a product or
limit.

(a, b) Pair constructor of the Σ-type.
(a1, . . . , an) Element of a product or

limit in Set, i.e. a tuple.
() can mean:

() Empty context.
() Substitution to the empty

context.
()F Substitution to the image

F () of the empty context
under a weak CwF mor-
phism F .

(ϕ, χ) Morphism in the (twisted)
arrow category.
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(σ, t) Substitution to an extended con-
text (in variable-free notation)
(ctx-ext:intro).

(σ, t/x) Idem (in variable notation).
(σ, t)F Substitution to the image

F (Γ.T ) of an extended context
(in variable-free notation) un-
der a weak CwF morphism F
(img:ctx-ext:intro).

(σ, t/Fx)F Idem (in variable nota-
tion).

(σ, ok) Substitution to a restricted
context (ctx-restr:intro).

(σ, α↓mn ) Functorial action of µ, ap-
plied to σ : Γ→ Γ′ (covariantly)
and α : µ⇒ ν (contravariantly),
see lock:fmap.

(σ, ↓mn ) Short for (id, 1↓mn ).
(∈ Γ) See ‘element’.

L`M `-edge interval in DCubed.
p. . .q Encode; turn a type/proposition into

an element of a universe.
p . . . q Identity function Ty`(yW ) → (W �

U`).

Arrows
→ can mean:

A→ B Set of functions from A to B.
A→ B Type of non-dependent func-

tions (of identity modality) from
A to B.

(x : A)→ B Type of dependent func-
tions (of identity modality).

a→ b Set of morphisms from a to b
(definition 2.2.1).

F → G Set of natural transformations
from F to G (definition 2.2.6).

(x ϕ−→ y) Object of the arrow category
C↑.

(x ϕ−→ y) Object of the twisted ar-
row category Tw(C) (defini-
tion 2.2.16).

σ : Γ→ ∆ Substitution judgement.
σ : Σ→ Σ′ Substitution metajudge-

ment (definition 3.1.8).
↑ The walking arrow.

C↑ Arrow category of C.
↑% The walking damped arrow.
C↑% Damped arrow category of C.

x↑ Morphism of ~x = (x0
x↑−−→ x1) ∈ C↑

or ~x = (x0
x↑−−→ x1

x%−−→ x2) ∈
C↑%.

x% Damping of ~x = (x0
x↑−−→ x1

x%−−→
x2) ∈ C↑%.

~x See ‘vec’.
xα↓m The variable x whose usage

under µm
µ is justified by 2-cell α

(ctx-modext:var).
x ↓m Short for x 1↓m.
α↓mn Short for (id, α↓mn ), see (. . .) at

Delimiters.
↓mn Short for (id, ↓mn ), see (. . .) at

Delimiters.
⇒ can mean:

P ⇒ Q P implies Q.
W ⇒ Γ Application of presheaf Γ

to base category object W
(notation 2.3.2).

�ji The unique morphism i → j in a poset
used as a category.

x 7→ a x maps to a.
� See ] (‘uplus’).

Judgements/Turnstiles
a See ‘dashv’.
⊥ See ‘bot’.
> See ‘top’.

 Metajudgement, i.e. judgement in a GAT

(definition 3.1.8).
Σ 
 S sort Expression S is a sort in

metacontext Σ.
Σ 
 t : S Expression t is a term of sort

S in metacontext Σ.
` Judgement:

J jud J is a judgement form (sec-
tion 3.1.5).

Γ ctx Γ is a context (jud:ctx).
Γ ` T type T is a type in context Γ

(jud:ty).
Γ ` T type` T is a type of size ` in

context Γ.
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Γ ` t : T t is a term of type T in
context Γ (jud:tm).

Γ ` T The set {t |Γ ` t : T}.
Γ ` ϕ prop ϕ is a proposition in con-

text Γ (jud:prop).
Γ ` ϕ Proposition ϕ holds in context

Γ (jud:assert).
� can mean:

W � T [γ〉 Set of presheaf cells over
γ of the semantic type T
(section 4.1.2).

W � t : T [γ〉 means t ∈ (W � T [γ〉).

Greek Letters
The alphabet: αβγδεζηθικλµνξoπρστυϕχψω.

β can mean:
β Some morphism or natural transfor-

mation, defined locally.
β-rule See the index.

δ can mean:
δ Comonadic duplication (defini-

tion 2.2.46).
δ Some morphism or natural transfor-

mation, defined locally.
~δL Comonadic duplication of L.
δL Codomain of ~δL = (id, δL)

∆ can mean:
∆ Some presheaf or context, defined

locally.
∆n Synonym for y[n], the n-

dimensional simplex.
ε can mean:

ε Unit of an adjunction (defini-
tion 2.2.41).

ε Unit of a monad (definition 2.2.46).
ε Some morphism or natural transfor-

mation, defined locally.
~εL Co-unit of UL a CL; hence of L.
ὲR Co-unit of FR a UR.
εR Domain of URὲ

R = (εR, id).
η can mean:

η Co-unit of an adjunction (defini-
tion 2.2.41).

η Co-unit of a comonad (defini-
tion 2.2.46).

η Some morphism or natural transfor-
mation, defined locally.

η-rule See the index.
ήL Unit of UL a CL.
ηL Codomain of ULή

L = (id, ηL).
~ηR Unit of FR a UR; hence of R.

λ can mean:
λ(x : A).b λ-abstraction.
λx.b λ-abstraction (with domain an-

notation suppressed).
λb λ-abstraction in variable-free nota-

tion.
λu.a Informal notation for mod∀u a or

modΠu a (section 7.5).
Λ can mean:

Λ Some presheaf or context, defined
locally.

Λn A simplicial set consisting of n
composable arrows; the sub-
presheaf of y[n] containing just
the Hamiltonian path.

ΛX.t Type abstraction in System F or
Fω.

µ can mean:
µ Monadic multiplication (defini-

tion 2.2.46).
µ Some morphism or natural transfor-

mation, defined locally.
~µR Comonadic duplication of R.
µR Codomain of ~µR = (id, µR)

ξ Last variable (in variable-free notation).
π can mean:

π Weakening by the last variable
(in variable-free notation) (ctx-
ext:wkn).

πx Weakening by variable x (in vari-
able notation) (ctx-ext:wkn).

π Weakening by the last proposition
(ctx-restr:wkn).

πi The ith projection from a cartesian
product.

Π can mean:
ΠAB Π-type in variable-free notation.
Π(u : U, i = 0) Π-modality, right ad-

joint to Ω(u : U, i = 0)
(section 7.4.4).

Πσ Π-modality, right adjoint to Ωσ
(section 7.4.4).

Πu Shorthand for Π(u : U).
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Π(u : U, i = 0).A Informal notation
for 〈Π(u : U, i = 0) | A〉
(section 7.5).∏

Cartesian product.∐
Coproduct.

Σ can mean:
ΣAB Σ-type in variable-free notation.
ΣU Forgetful functor from

the slice category W/U
(definition 2.2.36).

ΣΓ Forgetful functor from the cate-
gory of elements W/Γ (defini-
tion 2.2.37).

Σ/υ Functorial action of the slice
category (definition 2.2.36).

Σ/σ Functorial action of the category
of elements (definition 2.2.37).

Σu Shorthand for Σ(u : U).
Σ(u : U, i = 0).Γ Informal notation for

Γ,µΩ(u:U,i=0) (section 7.5).
τ can mean:

τ Representable morphism τ : T̃y →
Ty of a natural model.

τ Some substitution.
Φ The Φ-rule (phi) [BCM15; Mou16], a.k.a.

extent [CH20].
Ψ The Ψ-type (psi) [BCM15; Mou16], a.k.a.

Gel [CH20].
Ω can mean:

Ω(u : U, i = 0) Weakening/substitution
modality, in this case it weakens
over u while substituting 0/i
(section 7.4.4).

Ωσ Weakening/substitution modality
(section 7.4.4).

Ωu Shorthand for Ω(u : U).
Ω(u : U, i = 0).A Informal notation

for 〈Ω(u : U, i = 0) | A〉
(section 7.5).

Ω(u : U, i = 0).Γ Informal notation for
Γ,µΠ(u:U,i=0) (section 7.5).

Numbers
0 Zero constructor of Nat.
0 Domain object of the walking (damped)

arrow.

x0 Domain of ~x = (x0
x↑−−→ x1) ∈ C↑ or

~x = (x0
x↑−−→ x1

x%−−→ x2) ∈ C↑%.
1 Codomain object of the walking (damped)

arrow.
1 Identity modality or 2-cell.
x1 Domain of ~x = (x0

x↑−−→ x1) ∈ C↑ or
~x = (x0

x↑−−→ x1
x%−−→ x2) ∈ C↑%.

2 Damping object of the walking damped
arrow.

x2 Damping object of ~x = (x0
x↑−−→ x1

x%−−→
x2) ∈ C↑%.

Alphabetically
We order other symbols alphabetically by
plausible pronuncations and/or by their LATEX
command.

A
∀ can mean:

∀x.P (x) For all x, P (x) holds.
∀i.F (i, i) End of the functor F (defi-

nition 2.2.26).

∀i.F (i id−→ i) Dependent end of the
functor F (definition 2.2.31).

∀X.A Type quantification in System
F or Fω.

∀(u : U) ∀-modality (section 7.4.5).
∀u Shorthand for ∀(u : U).
∀(u : U).A Informal notation for

〈∀(u : U) | A〉 (section 7.5).
∀(u : U).Γ Informal notation for

Γ,µG(u:U) (section 7.5).
Γ, ∀(u : U).∆ Informal notation for

Γ,µ∀(u:U),∆,µG(u:U) when U is
cancellative and affine (sec-
tion 7.5).

´̀ can mean:
´̀ Object of L, the category of left

maps.
ǵ Shorthand for IG g̈.

λ́ Morphism of L, the category of left maps.
A can mean:

A Default symbol for transposition
(definition 2.2.41).
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A The identity function (LyW `
T [σ]) → (W � (RT )[A(σ)〉) for
the adjunction A : L a R.

AF Transposition for F! a F ∗.
AF The identity function (FV ⇒

Γ)→ (V ⇒ F ∗Γ).
AF The identity function (FV �

T [γ〉)→ (V � (F ∗T )[AF (γ)〉).
∧ See ‘wedge’.
appu Co-unit of `u a ∀u (section 7.4.5) or

of Ωu a Πu (section 7.4.4).
∗ The kind of types in System Fω.
~ Applicative functor application, especially

for weak DRAs (section 5.3.3.a).
@ can mean:

@ C This judgement takes place in the
CwF C.

@ p This judgement takes place at
mode p.

B
B can mean:

B Transposition for some adjunction.
BF Transposition for F ∗ a F∗.
BF The identity function (F ∗yW →

Γ)→ (W ⇒ F∗Γ).
BF The identity function (F ∗yW `

T [σ])→ (W � (F∗T )[BF (σ)〉).
B Bridge interval.
G See ‘transpension’.
Bool Type of booleans.
⊥ can mean:

⊥ Initial object.
⊥ Logical falsehood.
λ ⊥ ρ Orthogonality of morphisms

(definition 2.4.1).
∂ can mean:

∂U Boundary of a shape (defini-
tion 7.4.3).

∂U Boundary of U (definition 7.4.3).
xy n ∂U Boundary of a multiplier

(definition 7.4.3).
u ∈ ∂U Boundary predicate (bound-

ary).
2 Marks the end of a proof or of a proposition

whose proof is left to the reader.

BPCube Category of bridge/path cubes.
Essentially DCube1.

_ See ‘frown’.
• Empty string as a tick for the identity

modality.

C
C can mean:

CK Cofree Eilenberg-Moore coalgebra
functor for the comonad K
(proposition 2.2.50).

CL Cofree left map functor in an
NWFS.

case An eliminator. Look up the pattern that
is matched against.

Cat Category or 2-category of (small) cate-
gories.

CCHM Category of CCHM cubes.
◦ can mean:

g ◦ f Composition of functions.
G ◦ F Composition of functors.
β ◦ α Composition of natural transfor-

mations.
χ ◦ ϕ Composition of morphisms.
γ ◦ ϕ Restriction of presheaf cell γ :

W ⇒ Γ by base morphism ϕ :
V →W (notation 2.3.2).

σ ◦ γ Application of presheaf mor-
phism σ : Γ → ∆ to presheaf
cell γ : W ⇒ Γ (notation 2.3.2).

Clock Category of clocks.
� Clock object, � = colim` y(i : �`)

(example 2.3.16).
�` Clock of longevity `.
Cco The 2-category C with 2-cells reversed.
Cod Codomain functor from the (twisted)

arrow category.
colim Colimit (definition 2.2.19).
x : A Term x has type A. Occasionally also:

x is an element of set A, especially
for sets of functions, morphisms or
presheaf cells.

x :: A Term x has pseudotype A.
:= See ‘equals’.
, can mean:

Γ, x : T Context extension (in variable
notation) (ctx-ext).

Γ, ϕ Context restriction (in variable
notation) (ctx-restr).
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. . . See the surrounding delimiters at
Delimiters.

con Continuous modality.
∼= See ‘isomorphic’.
constu Unit of `u a ∀u (section 7.4.5) or of

Ωu a Πu (section 7.4.4).
Ccoop The 2-category C with 1- and 2-cells

reversed.∐
See Greek letter π.

cospoilu Restricts to fresh stuff: cospoilu :
Πu⇒ ∀u.

ctx See ` at Judgements/Turnstiles.
Cube can mean:

aCube Category of a-ary cartesian
cubes. Default: a = 2.

Cube2 Category of affine cubes.
Cube¬ Category of cubes with an edge

involution.
cutϕ Constructor of the extension type

(extension:intro).

D
L a R L is left adjoint to R (2.2.41).
DCubed Category of depth d cubes.
÷ can mean:

a ÷A b Type/set of edges from a to b
in type A.

a ÷R b Type/set of bridges from a to
b along edge R.

/ See ‘slash’.
g̈ Object of G, the category of generating left

maps.
Dom Domain functor from the (twisted)

arrow category.
. can mean:

Γ.T Context extension (in variable-
free notation) (ctx-ext).

σ.f Functorial action of context ex-
tension in variable-free notation,
applied to a substitution σ : Γ→
Γ′ and a function Γ ` f : T →
T ′[σ] or similar.

Γ.ϕ Context restriction (in variable-
free notation) (ctx-restr).

f ·m a Modal function application
(modpi:elim), which binds a tick m
in the argument. Written f a for non-
modal functions.

• See ‘bullet’.

E
∃ can mean:

∃x.P (x) There exists some x such that
P (x) holds.

∃i.F (i, i) Co-end of the functor F
(definition 2.2.26).

∃i.F (i id−→ i) Dependent co-end of the
functor F (definition 2.2.32).

∃X.A Type quantification in System
F or Fω.

∀u Shorthand for ∃(u : U).
∃(u : U).Γ Informal notation for

Γ,µ`(u:U) (section 7.5).

Γ, ∃(u : U).∆ Informal notation for
Γ,µ∀(u:U),∆,µ`(u:U) when U is
cancellative and affine (sec-
tion 7.5).

El Decode; promote universe element to a
type/proposition.

El Identity function (W � U`)→ Ty`(yW ).
EM can mean:

EM(M) Eilenberg-Moore category for
the monad M .

EM(K) Eilenberg-Moore category for
the comonad K.

Empty Empty type.
∈ can mean:

x ∈ A x is an element of set A.
x ∈ C x is an object of category C.
(∈ Γ′) Proposition (or morphism to

Prop) corresponding to the sub-
object Γ′ ⊆ Γ (definition 2.2.58).

(∈Υ) Cell of Prop (the subobject
classifier of a presheaf category)
corresponding to the subobject
Υ ⊆ yW (proposition 2.3.25).

= can mean:
a = b Judgemental equality.
a = b Set theoretic equality.

a
.=A b Equality proposition (eq). The

subscript may be omitted.
:= can mean:

not := def Notation not is defined as
def .
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x := b Pattern match on an assertion
of the equality proposition (eq:j,
notation 6.1.5).

∼= See ‘isomorphic’.
a ≡A b Propositional equality, i.e. identity

type (id). The subscript may be
omitted.

� can mean:
a �A b Type/set of paths (or proofs

of heterogeneous equality) from
a to b in type A.

a �R b Type/set of paths (or proofs
of heterogeneous equality) from
a to b along bridge/relation R.

A ext{ϕ ? a} Extension type (extension).
extent See Φ in Greek Letters.

F
F can mean:

FM Free Eilenberg-Moore algebra
functor for the monadM (propo-
sition 2.2.50).

FR Free right map functor in an
NWFS.

` can mean:
`(u : U) Fresh weakening modality

(section 7.4.5).
`u Shorthand for `(u : U).
`(u : U).A Informal notation for

〈`(u : U) | A〉 (section 7.5).
`(u : U).Γ Informal notation for

Γ,µ∀(u:U) (section 7.5).
Fac Factorization functor in an FWFS or

NWFS.
false Constructor of Bool.
Fib can mean:

Fib(T ) Type of internal fibrancy struc-
tures for T over an NWFS.

Fib(w.T ) Type of internal contextual
fibrancy structures for T over a
damped NWFS.

∀ See ‘A’.
freshu a Informal notation for mod`u a (sec-

tion 7.5).
_ can mean:

a _A b Type/set of bridges from a to
b in type A.

S _κ T Type/set of edges from a to
b in kind κ.

a _R b Type/set of bridges from a to
b along bridge/relation R.

fst First projection from Σ-type.
funext Function extensionality axiom.

G
G Category of generating left maps.
Gα The αth Grothendieck universe, the set

of α-sized things (definition 2.1.3).
Gel See Ψ in Greek Letters.
Glue Glue type (glue).
glue Constructor of the Glue type

(glue:intro).
r̀ Object of R, the category of right maps.
ρ̀ Morphism of R, the category of right maps.

H
2 See ‘box’.
� See Arrows.
hoc Ad hoc polymorphism.
Hom(x, y) Set of morphisms from x to y

(definition 2.2.1).

I
I can mean:

I Edge object in e.g. RG.
I Edge interval in a category of cubes.
I Interval shape/type in a cubical type

theory.
id Identity morphism.
idx Identity morphism at x.
Id Identity functor.
IG Inclusion IG : G → L of generating left

maps in left maps.
∈ See ‘element’.
inl Left constructor of the coproduct type.
inr Right constructor of the coproduct type.∫
c∈C F (c idc−−→ c) Category of elements of F

(definition 2.2.37).
irr Irrelevance modality.
A ∼= B A is isomorphic to B. As a type: the

type of isomorphisms.
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J
jud See ` at Judgements/Turnstiles.
juxtaposition can mean:

f x Function application.
f u Informal notation for prmod∀u · f

or prmodΠu · f (section 7.5).
Fx Application of functor F to object

x.
Fϕ Application of functor F to

morphism ϕ.
Fα Whiskering of functor F and natu-

ral transformation α (essentially
application).

αF Whiskering of natural transforma-
tion α and functor F .

nm Concatenated string as a tick for
a composite modality.

. . . Anything also denoted by ◦, see
‘circ’.

L
L Category or class of left maps.
L Left coreplacement functor/comonad.
` Natural transformation Dom→ Fac.
let An eliminator. Look up the pattern that

is matched against.
letnν Amodal eliminator. Look up the pattern

that is matched against.
t See ‘pitchfork’.
lim Limit (definition 2.2.19).
µm
µ Lock (lock), conceptually the left adjoint

to µ, which binds a tick m.
locks(Θ) Composite of all the modalities on

locks in telescope Θ (fig. 5.5).
n See ‘times’.

M
meridu a Informal notation for modGu a

(section 7.5).
mill A primitive we once proposed that swaps

∀(u : U) and Weld [ND18b].
modm

µ x Constructor of the weak DRA
(wdra:intro), which binds a tick m.

mor The natural transformation mor :
Dom→ Cod.

N
N Set of natural numbers, including 0.
N Node object e.g. RG.
Nat Type of natural numbers.

O
0 See ‘0’ at Numbers.
~ See ‘asterisk’.
Obj(C) Set of objects of category C (defini-

tion 2.2.1).
(σ, ok) See (. . .) at Delimiters.
1 See ‘1’ at Numbers.
Cop Opposite category of C.
F op Opposite functor of F .
∨ See ‘vee’.
⊥ See ‘bot’.

P
P Path interval for bridge/path cubes.
paste{ϕ ? a | e} Eliminator of the extension

type (extension:elim).
� See ‘equals’.
par Parametric modality.
∂ See ‘boundary’.
⊥ See ‘bot’.
p can mean:

µ p x :m A Modal variable declaration
(ctx-modext, modpi).

µ p x Idem, omitting the type
µ pm A Similar, but non-dependent.

| can mean:
Ξ | Γ Separates the shape context

(technically the MTT mode)
Ξ from the context Γ (sec-
tion 7.4.1).

γ|u=v Reindexing (sections 7.2
and 7.5).

{x |P (x)} See {. . .} at Delimiters.
{ϕ ? t1 | χ ? t2} See {. . .} at Delim-

iters.
〈R | A〉 See 〈. . .〉 at Delimiters.

~̀ t ~r can mean:
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~̀ t ~r ~̀ and ~r satisfy the lifting
property.

~̀ t ~r Set of lifting operators of ~̀

against ~r.
σ+ The substitution (σ ◦ π, ξ) : ∆.T [σ] →

Γ.T , where σ : ∆→ Γ.
prmodµ Projection from 〈µ | A〉 (proposi-

tion 7.3.3).∏
See Greek letter π.

Prop Subobject classifier; universe of propo-
sitions.

prop See Judgements/Turnstiles.
Psh(W) Category of presheaves over W

(definition 2.3.1).
ptw Pointwise modality.

Q
ϕ ? t Proposition equivalent of (p : [ϕ]) 7→ t.

R
R Category or class of right maps.
R can mean:

R Right replacement functor/monad
of a (damped) NWFS.

R T Internal fibrant replacement over
an NWFS (fig. 8.1).

R f Functorial action of the above
(fig. 8.1).

R′ f Dependent functorial action of
the above (fig. 8.3).

R(w.T ) d Internal contextual fibrant
replacement over a damped
NWFS (fig. 8.2).

R e f Functorial action of the above
(fig. 8.2).

R′ e f Dependent functorial action of
the above (fig. 8.4).

r Natural transformation Fac→ Cod.
r Reflexivity map in e.g. RG.
refla Reflexivity constructor of the identity

type. The subscript may be omitted.
reidxu Unit of ∀u a Gu (section 7.4.5).
� See Arrows.
aRG Base category of a-ary reflexive graphs.

Default: a = 2.
RG¬ Base category of undirected (binary)

reflexive graphs.

S
s Source map in e.g. RG.

Set Category of (small) sets.

shi Shape-irrelevance modality.

Simplex Category of simplices.

/ can mean:

U/W Coslice category (defini-
tion 2.2.36).

W/U Slice category (defini-
tion 2.2.36).

C/Γ Category of elements of the
presheaf Γ (definition 2.2.37).

a/x Shorthand for (id, a/x), see (. . .)
at Delimiters.

(σ, a/x) See (. . .) at Delimiters.

i/� Emphasizes that a weakening is
happening.

snd Second projection from Σ-type.

xy A gap, e.g. f(xy) means f .

spoilu Forgets freshness: spoilu : `u⇒ Ωu.

2 See ‘box’.
√

The amazing right adjoint.

? can mean:

β ? α Whiskering of natural transfor-
mations (definition 2.2.6).

α ? ϕ Application of natural trans-
formation α to morphism ϕ
(definition 2.2.6).

∗ See ‘asterisk’.

~ See ‘asterisk’.

str Structural modality.

Strict Strictness type (strict).

strict Strictness isomorphism (strict:iso).

⊆ can mean:

A ⊆ B A is a subset of B.

Γ ⊆ ∆ Γ is a subpresheaf (objectwise
subset) of ∆.

suc Successor constructor of Nat.



304 LIST OF FIGURES

T
⊥ See ‘bot’.
t Target map in e.g. RG.
ticks(Θ) Concatenation of all the ticks on

locks in telescope Θ (fig. 5.5).
× can mean:

A×B Binary cartesian product.
A×B Type of non-dependent pairs.
(x : A)×B Type of dependent pairs

(of identity modality).
A×C B Pullback.
∆×Γ W Base pullback (defini-

tion 2.3.29).
W n U The multiplier xy n U applied to W .
Tm Presheaf of terms in a CwF.
> can mean:

> Terminal object.
> Logical truth.

G can mean:
G(u : U) Transpension modality (sec-

tion 7.4.5).
Gu Shorthand for G(u : U).
G(u : U).A Informal notation for

〈G(u : U) | A〉 (section 7.5).
g̈ See ‘ddot’.
� See Judgements/Turnstiles.
t See ‘pitchfork’.
true Constructor of Bool.
tt Constructor of the proof type

(proof:intro).
Tw(C) Twisted arrow category of C (defini-

tion 2.2.16).
2 See ‘2’ at Numbers.
Ty Presheaf of types in a CwF or natural

model.
T̃y Presheaf of typed terms in a natural

model.
type See Judgements/Turnstiles.

U
U can mean:

U` Universe of level ` types.
U Universe of unspecified level.
UDD
` Discrete universe of discrete

types.

UNDD
` Non-discrete universe of discrete

types.
UNFF
` Non-fibrant universe of fibrant

types.
U can mean:

UM Forgetful functor UM :
EM(M) → C for the monad
M : C → C (proposition 2.2.50).

UK Forgetful functor UK : EM(K)→
C for the comonad K : C → C
(proposition 2.2.50).

UL Forgetful functor L → C↑ in a
(damped) NWFS.

UR Forgetful functor R → C↑ in a
(damped) NWFS.

UG Forgetful functor UG = ULIG :
G → C↑ in a left generated
(damped) NWFS.

xy n U Some multiplier, defined lo-
cally.

U Some shape.
g̈ See ‘ddot’.
unglue Eliminator of the Glue type

(glue:elim).
Unit Unit type.
unit Constructor of the Unit type.
unλx Inverse operation to λ-abstraction over

x (proposition 3.2.13).
unmerid can mean:

unmerid(u.t) Informal notation for
prmodGu · t (section 7.5).

unmeridu Unit of ∀u a Gu (sec-
tion 7.4.5).

] can mean:
A ]B Binary coproduct.
A ]C B Pushout.
A ] (y : B � {ϕ ? a}) Pushout type

(pushout).

V
` See Judgements/Turnstiles.

 See Judgements/Turnstiles.
~x can mean:

~x Object of the (twisted/damped)
arrow category.

~ϕ Morphism of the (twisted/damped)
arrow category.

~g Shorthand for UL ǵ = UG g̈.
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~̀ Shorthand for UL ´̀.
~r Shorthand for UR r̀.

∨ can mean:
P ∨Q Logical disjunction.
i ∨ j Connection in CCHM.

W
∧ can mean:

P ∧Q Logical conjunction.
i ∧ j Connection in CCHM.

Weld Weld type (weld).
weld Constructor of the Weld type

(weld:intro).

where Used in figures of typing rules to save
space. What follows are associated
rules whose premises are omitted.

wknu a Informal notation for modΩu a (sec-
tion 7.5).

Y
y Yoneda-embedding (definition 2.3.3).

Z
0 See ‘0’ at Numbers.
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2-category, 37
2-cell, 129, 192
2-functor, 37

abstraction, 86
acyclic, 56
adj:lrl, 120
adj:rlr, 120
adjoint, 29, 119, 124
adjunction, see adjoint

internal, 149
laws, 29
walking, 150

affine
cubical set, see cubical set, affine
multiplier, 192

algebra
Eilenberg-Moore, 33
for a functor, 31
for a monad, see algebra, Eilenberg-

Moore
for a pointed functor, 33
linear, see vector space
of an algebraic theory, 73, 75, 76

algebraic
weak factorization system, see factor-

ization system, weak, algebraic
algebraic theory, see theory, algebraic
amazing right adjoint, 206
and, see also logical conjunction
and, 162
and:elim:fst, 162
and:elim:snd, 162
and:red:fst, 162
and:red:snd, 162
anonymous

function, see abstraction
application, 86
arity

in an algebraic theory, 73, 75, 76
arrow

category, 23
damped, 226

walking, see walking arrow, see
walking arrow

assert:sub, 159
auto-internal, 185
axiom

degeneracy, 272, 277, 282
K, see uniqueness of identity proofs,

see functor, applicative
of choice, 20
of function extensionality, see func-

tion extensionality
of strictness, see strictness type
of universes, 20

base
pullback, see pullback, base

base category, 37
β-reduction, see rule, β
β-rule, see rule, β
booleans, 93
boundary, 193

predicate, 203
boundary, 203
boundary:intro, 203
bridge, 10, 265
bridge/path cubical set, see cubical set,

bridge/path

cancellative
multiplier, 192

canonicity, 93, 286
cartesian

cubical set, see cubical set, cartesian
multiplier, 192
natural transformation, 25

307
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product, see product, cartesian
case, 89
category, 21

arrow, see arrow category, see arrow
category

base category, see base category
discrete, 25
Eilenberg-Moore, 33
model, see model category
of clocks, 43
of coslices, see coslice category
of functors, see functor category
of presheaves, see presheaf, category
of slices, see slice category
opposite, see opposite category
simplex, 40
sub-, see subcategory
theory, 76
twisted arrow, see twisted arrow

category
under, see coslice category
with families, 81, 82

morphism of, see CwF morphism
category, 2-, see 2-category
CCHM cubical set, see cubical set, CCHM
cell

of a presheaf, 37, 100
central

lifting, see lifting, central
choice, see axiom of choice, 98
classifier

subobject, see subobject classifier
clock category, see category of clocks
clock-irrelevant, 69, 216, 223, 233, 250
co-end, 26

dependent, 27
co-inductive type, see type, codata
co-unit

of a comonad, 31
of an adjunction, 29

co-Yoneda lemma, see Yoneda, co-Yoneda
lemma

dependent, see Yoneda, co-Yoneda
lemma, dependent

coalgebra
Eilenberg-Moore, 33
for a comonad, see coalgebra,

Eilenberg-Moore
for a copointed functor, 33
for a functor, 31

codata type, see type, codata
codiscrete, 53, 68, 215, 217, 222, 233
coequalizer, 25

cofibration, 56
colimit, 24
comonad, 31

coalgebra, see coalgebra, Eilenberg-
Moore

laws, 31
composition

of morphisms, 21
of natural transformations, 22

computation
rule, see rule, computation

Conduché, 224
conjunction, see logical conjunction
connection-free, 192
constructive, 97
constructor, 85
context, 78

empty, 79
extension, 80, 82, 84
restriction, 159
shape, see shape context
split, 152

contextually fibrant, see fibrant, contextu-
ally, see fibrant, degenerately

continuous
modality, 266

contramodality, 275
copointed functor, see functor, copointed

algebra, see coalgebra for a copointed
functor

coprod, 89
coprod:elim, 89
coprod:inl, 89
coprod:inl:beta, 89
coprod:inr, 89
coprod:inr:beta, 89
coproduct, 25

type, 89
coreplacement

left, see left coreplacement
coslice category, 28
ctx-ext, 80
ctx-ext:eta, 80
ctx-ext:intro, 80
ctx-ext:var, 80
ctx-ext:var:beta, 80
ctx-ext:wkn, 80
ctx-ext:wkn:beta, 80
ctx-modext, 135
ctx-modext:eta, 135
ctx-modext:intro, 135
ctx-modext:var, 135
ctx-modext:var:2cell, 135
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ctx-modext:var:bare, 136
ctx-modext:var:beta, 135
ctx-modext:wkn, 135
ctx-modext:wkn:beta, 135
ctx-modrestr, 177
ctx-modrestr:eta, 177
ctx-modrestr:intro, 177
ctx-modrestr:var, 177
ctx-modrestr:wkn, 177
ctx-modrestr:wkn:beta, 177
ctx-restr, 159
ctx-restr:eta, 159
ctx-restr:intro, 159
ctx-restr:var, 159
ctx-restr:wkn, 159
ctx-restr:wkn:beta, 159
cube, see also cubical set

twisted, 195
cubical set

affine, 42
bridge/path, 43
cartesian, 41
CCHM, 42
depth, 43

CwF, see category with families
morphism, 82, 113

damped
arrow

category, see arrow category,
damped

walking, see walking arrow,
damped

data type, see type, data
DDTT, see directed dependent type

theory
decoding

of a type, 95
definitional

equality, see equality, judgemental
degeneracy axiom, see axiom, degeneracy
degeneracy map, 40
democratic, 83
dependent

co-end, see co-end, dependent
co-Yoneda lemma, see Yoneda, co-

Yoneda lemma, dependent
end, see end, dependent
function, see function, dependent
naturality, 116
pair, see pair, dependent
right adjoint, 123, 132

weak, 134, 143

type
theory, 78

Yoneda lemma, see Yoneda lemma,
dependent

depth, 274, 281
cubical set, see cubical set, depth

destructor, 85
diagram, 24
dimensionally split, 193
directed

dependent type theory, 1, 3
type theory, 283

discrete, 10, 53, 54, 68, 69, 215, 216, 218,
222, 223, 233, 251

category, see category, discrete
replacement, 12

disjunction, see logical disjunction
division, left, see left division
dlc:extend, 242
dlc:extend:assoc, 242
dlc:extend:eta, 242
dlc:extend:mult, 242
dlc:extend:nat:cod, 242
dlc:extend:nat:dom, 242
dlc:extend:rcounit, 242
dlc:extend:unit, 242
double

negation, see negation, double
DRA, see depedent right adjoint
dra, 123
dra:beta, 123
dra:elim, 123
dra:elim:sub, 123
dra:eta, 123
dra:intro, 123
dra:intro:sub, 123
dra:sub, 123
drr, 239
drr:assoc, 239
drr:elim, 245
drr:fmap, 239
drr:fmap:comp, 239
drr:fmap:id, 239
drr:lunit, 239
drr:mult, 239
drr:mult:beta, 245
drr:mult:nat, 239
drr:runit, 239
drr:unit, 239
drr:unit:beta, 245
drr:unit:nat, 239
DTT, see dependent type theory
duality, 21
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duplication
comonadic, 31

E, see also extensionality, 157
Eilenberg-Moore

algebra, see algebra, Eilenberg-
Moore

category, see category, Eilenberg-
Moore

coalgebra, see coalgebra, Eilenberg-
Moore

elimination rule, see rule, elimination
eliminator, 85
empty

context, see context, empty
empty, 90
empty-ctx, 80
empty-ctx:eta, 80
empty-ctx:intro, 80
empty:elim, 90
encoding

of a type, 95
end, 25

dependent, 27
epi, see epimorphism
epimorphism, 22, 46

split, 22, 46
eq, 164
eq:beta, 164
eq:j, 164
eq:red, 164
eq:reflection, 164
equality, 97

definitional, see equality, judgemen-
tal

judgement, see judgement, equality
judgemental, 90
proof, 90
propositional, 90

equalizer, 25
equifibred, see cartesian natural transfor-

mation
equipment, 284
equivalence

weak, see weak equivalence
η-expansion, see rule, η
η-rule, see rule, η
excluded middle, 97
existential quantification, see quantifica-

tion, existential
expansion

rule, see rule, η
extension

of a context, see context extension
type, 168

extension, 168
extension:beta, 168
extension:elim, 168
extension:eta, 168
extension:intro, 168
extension:strict, 168
extensionality, 92, 157

function, see function extensionality

face map, 40
factorization system

orthogonal, 53
weak, 55, 56

algebraic, 55
functorial, 55, 57
natural, 55, 60, 228
natural, Grandis-Tholen, 62, 229

faithful, 23
fully, see fully faithful

false, see also logical falsehood
falsehood, see logical falsehood
falsehood, 162
falsehood:elim, 162
falsehood:eta, 162
family

of types, see type family
fibrant, 215

contextually, 228
degenerately, 228
replacement, 217

fibration, 56
field, see eliminator, see type, codata
filler, 52
final

object, see terminal object
Fitch-style, 131, 152
formation rule, see rule, formation
fresh

weakening, 192
modality, 197

ftr:comp:ctx, 114
ftr:comp:sub, 114
ftr:comp:tm, 114
ftr:comp:ty, 114
ftr:ctx, 114
ftr:ctx-ext, 114
ftr:ctx-ext:intro, 114
ftr:ctx-ext:var, 114
ftr:ctx-ext:wkn, 114
ftr:empty-ctx, 114
ftr:empty-ctx:intro, 114
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ftr:id:ctx, 114
ftr:id:sub, 114
ftr:id:tm, 114
ftr:id:ty, 114
ftr:sub, 114
ftr:sub:comp, 114
ftr:sub:id, 114
ftr:tm, 114
ftr:ty, 114
full, 23

subcategory, 23
fully faithful, 23
function

anonymous, see abstraction
application, see application
dependent, 86, 247

modal, 137
extensionality, 93
non-dependent, 87

functor, 21, 113
algebra, see algebra for a functor
applicative, 139, 146, 147
category, 22
coalgebra, see coalgebra for a functor
contravariant, 21
copointed, 31
covariant, 21
opposite, see opposite functor
pointed, 31

functor, 2-, see 2-functor
functor, pro-, see profunctor
functor, pseudo-, see pseudofunctor
functorial

weak factorization system, see factor-
ization system, weak, functorial

FWFS, see factorization system, weak,
algebraic

GAT, see generalized algebraic theory
generalized

algebraic theory, 71
generalized, algebraic theory, 76
generating

left map, see left map, generating
glue, 171
glue type, 169, 211, 249
glue:beta, 171
glue:elim, 171
glue:elim:strict, 171
glue:eta, 171
glue:fib, 249
glue:intro, 171
glue:strict, 171

glue:strict:beta, 171
gluing, 130, 142
Grandis-Tholen

NWFS, see factorization system,
weak, natural, Grandis-Tholen

graph
reflexive, see reflexive graph

Grothendieck universe, 20
group, 21, 74
guarded recursion, 146

HDPM, see higher-dimensional pattern
matching

heterogeneous, see also homogeneous, 215,
217

higher dimensional
pattern matching, 188

Hofmann-Streicher universe, see universe,
Hofmann-Streicher

homogeneous, see also heterogeneous, 216,
217

homotopy
type theory, 3, 41, 93

HoTT, see homotopy type theory

I, see also intensionality, 157
id, 91
id:eta, 91
id:fib, 248
id:intro, 91
id:j, 91
id:j:beta, 91
id:reflection, 91
id:uip, 91
idempotent, 35
identity

extension, 258, 259, 260, 263, 265,
272, 277, 280, 281

morphism, 21
type, 90, 248

IEL, see identity extension
img:ctx-ext:eta, 114
img:ctx-ext:intro, 114
img:ctx-ext:var:beta, 114
img:ctx-ext:wkn:beta, 114
img:empty-ctx:eta, 114
img:empty-ctx:intro, 114
implication, see logical implication
index

of a type family, 92
inductive type, see type, data
inhabited, 215, 217, 222
initial
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object, 25
injective

presheaf morphism, 46
intensionality, 92, 157
internal

auto-, see auto-internal
meta-, see meta-internal

introduction rule, see rule, introduction
irrelevance

modality, 267
isomorphic, see isomorphism
isomorphism, 95

J-rule, see rule, J
jud:assert, 159
jud:ctx, 79
jud:prop, 159
jud:sub, 79
jud:tm, 80
jud:ty, 80
judgement, 77

equality, 77
form, 77

judgemental
equality, see equality, judgemental

Kan, 70, 217, 219, 224
contextually, 225

kan, 234, 251
contextually, 221, 234, 252

label, 20
λ-abstraction, see abstraction
λ-calculus

simply typed, 77
untyped, 74

large
in set theory, 20

law
adjunction, see adjunction laws
comonad, see comonad laws
monad, see monad laws
of excluded middle, see excluded

middle
Lawvere theory, see theory, Lawvere
lc:extend, 241
lc:extend:assoc, 241
lc:extend:eta, 241
lc:extend:mult, 241
lc:extend:nat:cod, 241
lc:extend:nat:dom, 241
lc:extend:rcounit, 241
lc:extend:unit, 241

left
adjoint, 29
coreplacement, 57
division, 152
generated NWFS, 64, 229
lifting, see lifting, left
lifting property, see lifting property,

see lifting property
map, 53, 56

generating, 64, 229
level, see size
lifting, 52

central, 49
left, 49
problem, 52
property, 55, 226
right, 49

limit, 24
linear

algebra, see vector space
map, see vector space

Löb induction, 148
lock, 135
lock, 135
lock:comp, 135
lock:comp:fmap, 135
lock:fmap, 135
lock:fmap:comp, 135
lock:fmap:id, 135
lock:id, 135
lock:id:fmap, 135
loeb, 148
loeb:beta, 148
logical

conjunction, 96, 161
disjunction, 96, 163
falsehood, 96, 161
implication, 96
negation, 97
truth, 96, 161

LSR, see [LSR17]

meridian, 204
meta-internal, 185
metacontext

of an algebraic theory, 76
metavariable, 165
middle

excluded, see excluded middle
mill, 211
modality, 129, 192

contra-, see contramodality
mode, 129, 192
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theory, 129, 192
model

category, 56
natural, see natural model
of an algebraic theory, 73, 75, 76
structure, 56

modpi, 138
modpi:beta, 138
modpi:elim, 138
modpi:eta, 138
modpi:intro, 138
monad, 31

algebra, see algebra, Eilenberg-
Moore

laws, 31
mono, see monomorphism
monoid, 4
monomorphism, 22, 46

split, 22
morphism, 21

of CwFs, see CwF morphism
MTT, 126
multimode, 10, 112
multiplication

monadic, 31
multiplier, 192
multisorted

algebraic theory, see theory, alge-
braic, multisorted

nat:elim, 94
nattrans:comp:ctx, 116
nattrans:comp:ty, 116
nattrans:ctx, 116
nattrans:id:ctx, 116
nattrans:id:ty, 116
nattrans:sub, 116
nattrans:tm, 116
nattrans:ty, 116
nattrans:ty:coend, 116
nattrans:ty:sub, 116
nattrans:whisker:ctx, 116
nattrans:whisker:ty, 116
natural, 22

dependent naturality, see dependent
naturality

isomorphism, 22
model, 84
transformation, 22, 115

pseudo-, see pseudonatural trans-
formation

weak factorization system, see factor-
ization system, weak, natural

natural numbers
in type theory, 94

negation, see logical negation
double, 97

nominal set, 194
non-dependent, see also weakening

function, see function, non-
dependent

pair, see pair, non-dependent
NWFS, see factorization system, weak,

natural

object
final, see terminal object
initial, see initial object
of a category, 21
terminal, see terminal object

OFS, see factorization system, orthogonal
operator

of an algebraic theory, 73, 75, 76
opposite

category, 21
functor, 21

or, see also logical disjunction
or, 162
or:elim, 162
or:eta, 162
or:inl:beta, 162
or:inr:beta, 162
or:red:inl, 162
or:red:inr, 162
orthogonal, 52

factorization system, see factoriza-
tion system, orthogonal

over category, see slice category

pair
dependent, 88, 248
non-dependent, 88

ParamDTT, see also [NVD17a], 257
ParamDTTµ, 271
parameter

of a type family, 92
parametric

modality, 267, 275
quantifiers, 9, 265

parametricity, 9, 265
ParamMTT, 269
partial, 158
path, 10, 265
pattern, 90
pattern matching

higher dimensional, see higher-
dimensional pattern matching
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phi, 207
phi:boundary, 207
phi:section, 207
pi, 87
Π-type, see function, dependent
pi:beta, 87
pi:elim, 87
pi:eta, 87
pi:fib, 247
pi:funext, 91
pi:intro, 87
pi:unlambda, 87
pi:unlambda:beta, 87
pi:unlambda:eta, 87
point

of a presheaf, 38
pointed functor, see functor, pointed

algebra, see algebra for a pointed
functor

pointwise
modality, 265

pole, 204
premise, 77
presheaf, 37, 288

category, 37
pro-arrow, 284
product

cartesian, 24
profunctor, 37
proof

irrelevant, 92
type, 167

proof, 167
proof:elim, 167
proof:eta, 167
proof:intro, 167
prop:sub, 159
propdra, 177
propdra:elim, 177
propdra:intro, 177
propdra:red, 177
propositional

equality, see equality, propositional
propuni, 160
propuni:beta, 160
propuni:elim, 160
propuni:eta, 160
propuni:intro, 160
pseudofunctor, 37
pseudonatural transformation, 37
pseudotype, 160
psi, 209
psi:beta, 209

psi:boundary, 209
psi:elim, 209
psi:eta, 209
psi:intro, 209
psi:intro:boundary, 209
pullback, 25

base, 48
pushout, 25
pushout, 172
pushout:elim, 172
pushout:inl, 172
pushout:inl:beta, 172
pushout:inr, 172
pushout:inr:beta, 172
pushout:tip, 172

quantifiable, 192
quantification

existential, 97
universal, 97

record type, see type, codata
reduction

rule, see rule, β
reflection

rule, see rule, reflection
reflexive

graph, 39
RelDTT, see also [ND18a], 257
RelDTTµ, 277
RelMTT, 275
replacement

discrete, see discrete replacement
fibrant, see fibrant replacement
left co-, see left coreplacement
right, see right replacement

representable
morphism of presheaves, 48, 84
presheaf, 38

restriction
of a context, see context restriction
of a presheaf cell, 38

retraction, 22
right

adjoint, 29, 124
amazing, see amazing right ad-

joint
dependent, see dependent right

adjoint
lifting, see lifting, right
lifting property, see lifting property,

see lifting property
map, 53, 56
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replacement, 57
robust, 232
rr, 238
rr:assoc, 238
rr:elim, 246
rr:fmap, 238
rr:fmap:comp, 238
rr:fmap:id, 238
rr:lunit, 238
rr:mult, 238
rr:mult:beta, 246
rr:mult:nat, 238
rr:runit, 238
rr:unit, 238
rr:unit:beta, 246
rr:unit:nat, 238
rule

β, 86
computation, see also rule, β
elimination, 85
η, 86
η, 86
expansion, see rule, η
formation, 85
introduction, 85
J, 91, 164
reduction, see rule, β
reflection, 92, 164

Schanuel topos, 194
section, 22
Segal, 69, 217, 219, 224

contextually, 225
segal, 234, 251

contextually, 221, 234
semicartesian

multiplier, 192
set

nominal, see nominal set
setoid, 93
shape, 192

context, 191
of a presheaf cell, 37

shape-irrelevance
modality, 267

Sierpiński topos, 43
sigma, 88
Σ-type, see pair, dependent
sigma:eta, 88
sigma:fib, 248
sigma:fst, 88
sigma:fst:beta, 88
sigma:intro, 88

sigma:snd, 88
sigma:snd:beta, 88
simple

algebraic theory, see theory, alge-
braic, simple

simplex, see also simplicial set, 40
category, see category, simplex

simplicial set, 40
simply typed λ-calculus, see λ-calculus,

simply typed
simultaneous substitution, see substitu-

tion
singleton

type, see unit type/constructor
SIP, see structure identity principle
size, 85

in set theory, 20
preserving, 115

slice category, 28
small

in set theory, 20
object argument, 64, 229

solution, 52
sort

of an algebraic theory, 75, 76
split

context, see context, split
dimensionally, see dimensionally

split
split epimorphism, see epimorphism, split
split monomorphism, see monomorphism,

split
spooky, 193
stable

NWFS, 231
STLC, see λ-calculus, simply typed
stream, 148
strict

CwF morphism, see CwF morphism
strict, 170
strict type, see strictness type
strict:beta, 170
strict:elim, 170
strict:eta, 170
strict:fib, 249
strict:intro, 170
strict:iso, 170
strict:iso:strict, 170
strict:strict, 170
strictness axiom, see strictness type
strictness type, 169, 249
structural

modality, 275



316 INDEX

structure identity principle, 6
sub:assoc, 79
sub:comp, 79
sub:id, 79
sub:lunit, 79
sub:runit, 79
subcategory, 23

full, see full subcategory
subobject, 36

classifier, 36
subsingleton, 215, 217, 222
substitution, 78, 79

in an algebraic theory, 76
modality, 196

surjective
presheaf morphism, 46

syntax
of an algebraic theory, 73, 75, 76

System F, 259
System Fω, 260

term, 79
of an algebraic theory, 73, 75, 76
substitution, see substitution

terminal
object, 25

theory
algebraic

generalized, see generalized alge-
braic theory

multisorted, 75
simple, 73

category, see category theory
dependent type, see dependent type

theory
Lawvere, 74
type

dependent, see dependent type
theory

homotopy, see homotopy type
theory

tick, 133
tm:sub, 80
topos

Schanuel, see Schanuel topos
topos of trees, 43
total, 158
transp:elim, 205
transp:elim:pole, 205
transp:elim:section, 205
transpension

modality, 197
transpensive, 210

transpose, 120
transpose:cancel, 120
transpose:coend, 120
transpose:def, 120
transpose:sub, 120
transposition

w.r.t. an adjunction, 29, 119
tree, see also topos of trees
triangle

identities, see adjunction laws
trivial

(co)fibration, 56
true, see also logical truth
truth, see logical truth
truth, 162
truth:intro, 162
twisted

cube, see cube, twisted
twisted arrow category, 23
ty:sub, 80
type, 79

co-inductive, see type, codata
codata, 86
coproduct, see coproduct type
data, 86, 90
extension, see extension type
family, 92
function, see function
identity, see identity type
inductive, see type, data
of proofs, see proof type
pair, see also pair
pseudo-, see pseudotype
record, see type, codata
substitution, see substitution

type former, 85
typing rule, 77

UIP, see uniqueness of identity proofs
under category, see coslice category
uni, 94
uni:beta, 94
uni:elim, 94
uni:eta, 94
uni:intro, 94
uniqueness

of identity proofs, 90
unit

of a monad, 31
of an adjunction, 29
type/constructor, 88

unit, 89
unit:eta, 89
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unit:intro, 89
universal quantification, see quantification,

universal
universe

axiom, see axiom of universes
Grothendieck, see Grothendieck uni-

verse
Hofmann-Streicher, 106
in type theory, 95
level, see size

untranspose, 120
untranspose:cancel, 120
untranspose:coend, 120
untranspose:def, 120
untranspose:sub, 120
untyped λ-calculus, see λ-calculus, un-

typed
ut, 162

variable, 79
vector space, 21

walking
arrow, 23

damped, 226
wdra, 136
wdra:beta, 136
wdra:elim, 136
wdra:intro, 136
weak

CwF morphism, see CwF morphism
DRA, see dependent right adjoint,

weak

equivalence, 56
factorization system, see factoriza-

tion system, weak
weakening, 79

fresh, see fresh weakening
modality, 196

weld, 174
weld type, 169, 211
weld:beta, 174
weld:elim, 174
weld:intro, 174
weld:intro:strict, 174
weld:strict, 174
weld:strict:beta, 174
WFS, see factorization system, weak
where, see List of Mathematical Symbols
whiskering

of morphism and natural transforma-
tion, 22

of natural transformations, 22

XTT, 93

Yoneda
co-Yoneda lemma, 44

dependent, 45
embedding, 38, 46
lemma, 43

dependent, 44

ZFC, 20
zigzag, 26
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