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Chapter 1

Base Categories and Modes

In this chapter, we establish the object part of the mode theory for naturality pretype theory and its

model. Modes will be anpolarity masks a⃗ (section 1.1) which will be modelled in presheaf categories

over certain base categories. We propose two families of base categories, parametrized by the mask a⃗,

and both are built using the category JetSet(⃗a) of jet sets over a⃗ (section 1.2).

The more complex but better behaved family of base categories are categories of jet cubes JetCube◊M (f, a⃗)
(section 1.4). While we can get a grasp on jet cubes by characterizing their morphisms using a calculus

(section 1.4.3), this calculus is relatively complex and its soundness and completeness proofs are even

more complex.

For these reasons, we alternatively propose to use categories of jet jewels JetJewel(⃗a) (section 1.3).

These are full subcategories of JetSet(⃗a) on objects that satisfy certain somewhat arbitrary well-behavedness

criteria. The main purpose of the categories of jet jewels is to be workable for most basic purposes without

being as complex as the categories of jet cubes.

Upon a first lecture, readers may choose to omit section 1.4 on jet cubes.

Imomentarily had somedoubt about usability of jet jewels, but I think it’s okay. The calculus
and its soundness proof are used mainly for modalities interacting with the interval. But these
will not be used intensively in the NatPT paper itself.

1.1 Anpolarity Masks

In RelDTT, modes were natural numbers (minus one) expressing the number of available relations. In

NatPT, we will specify for each of these relations whether it is directed or not.

Definition 1.1.0°1. An anpolarity1
is an element of the set A := {c,#}, where c stands for po-

lar/directed and # stands for nonpolar/symmetric. We equip A with the partial order # ⊑ c, corre-

sponding to the intuition that symmetric relations are a subset of directed (i.e. potentially asymmetric)

relations.

An anpolarity mask or just mask is a list a⃗ ∈ ListA of anpolarities. We write len(⃗a) for its length,

and call the numbers 0, . . . , len(⃗a)− 1 degrees. We define ⊑ on masks of equal length pointwise.

Both for anpolarities and for masks of equal length, we denote meets (infima) with ⊓ and joins

(suprema) with ⊔.

1.2 Jet Sets

1.2.1 Definitions

Definition 1.2.1°1. Let a⃗ be a mask. An a⃗-jet-set is a set X equipped with len(⃗a) (proof-irrelevant
2
)

reflexive relations _i where

1
‘An’ is Latin for ‘whether’, as in ‘Nescio an polare sit,’ meaning ‘I do not know whether it is polar’.

2
So these relations are functions X → X → Prop where Prop is a universe of h-propositions [Uni13]. In most applications,

these relations will be decidable, but we do not require this.

3



4 CHAPTER 1. BASE CATEGORIES AND MODES

• 0 ≤ i < len(⃗a) is called the degree,

• _i is called the i-jet relation,

• its opposite ^i is called the opposite i-jet relation,

such that

• when ai = #, then _i is symmetric, in which case we will denote it as ⌢i and call it the i-edge
relation (notwithstanding that we still consider it a special case of a jet relation),

• x _i y implies both x _i+1 y and x ^i+1 y whenever 0 ≤ i < i+ 1 < len(⃗a).

A morphism of a⃗-jet-sets is a function that preserves all the jet and edge relations.

The category of a⃗-jet-sets is called JetSet(⃗a).

Definition 1.2.1°2. A jet set morphism is called full if it reflects all jet relations.

Definition 1.2.1°3. A jet set morphism f : X → Y is called jet-surjective if it is surjective as a function,

and moreover for any y⃗ _j y⃗
′

in Y , there exist x⃗ _j x⃗
′

in X such that f(x⃗) = y⃗ and f(x⃗′) = y⃗′.

Definition 1.2.1°4. A jet set is called transitive if each of the i-jet relations is transitive (i.e. a pre-order

and, if i = #, an equivalence relation).

The following proposition will not really be used directly, but is a nice encouragement:

Proposition 1.2.1°5. Let X be a transitive a⃗-jet-set and 0 ≤ i < j < len(⃗a). Then the double category

whose objects are elements of X , morphisms are (unique) proofs of x _i y, pro-arrows are (unique)

proofs of x _j y and squares are elements of the unit type, is a pro-arrow equipment [nLa20, Woo82,

Woo85].

Proof. It is clearly a double category. The existence of companions and conjoints is trivial.

Definition 1.2.1°6. We define the

• i-equijet relation ]i as the symmetric interior of _i, i.e. x ]i y if and only if x _i y and

x ^i y;

• i-infrajet relation _̂
i as the symmetric closure of _i, i.e. x _̂

i y if and only if x _i y or x ^i y.

It is immediately clear that for nonpolar degrees, the jet/edge, equijet and infrajet relations coincide.

In general, we can observe that x _̂
i y implies x ]j y for i < j. So for mode [c,c,#], we get

_0

�&

_1

�&

_2 ^f

�&
]0

8@

�&

_̂
0

+3 ]1

8@

�&

_̂
1

+3]2

x�

8@

^f

�&

⌢2
+3ks ��

KS

ks +3
KS

��

_̂
2 .

^0

8@

^1

8@

^2

x�

8@

Definition 1.2.1°7. Let a⃗ be a mask, i < len(⃗a) and X ∈ Obj(JetSet(⃗a)). We define the i-opposite
Opi(X) of X as the jet set with the same carrier and relations as X except that the i-jet relation is

reversed: x _Opi(X)
i y if and only if x ^X

i y. This defines a functor Opi(X) : JetSet(⃗a) → JetSet(⃗a).

We have Opi ◦ Opi = Id and if ai = # then Opi = Id.

Definition 1.2.1°8. Write a⃗ <i b⃗ if len(⃗a) = len(⃗b), aj = bj for all j ̸= i, ai = # and bi = c.

If a⃗ <i b⃗, then we write USymi : JetSet(⃗a) → JetSet(⃗b) for the forgetful functor which forgets the

symmetry of _i.
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Proposition 1.2.1°9. The forgetful functor USymi is part of an adjoint triple FSymi ⊣ USymi ⊣ CofSymi

where FSymi andCofSymi take a b⃗-jet-setX to a a⃗-jet-set of the same carrier with the same j-jet relations

for j ̸= i but where

• x ⌢
FSymiX
i y if and only if x _̂X

i y,

• x ⌢
CofSymiX
i y if and only if x ]X

i y.

We have FSymi ◦USymi = CofSymi ◦USymi = Id, so that SymCli := USymi ◦ FSymi is an idempotent

monad and SymInti := USymi ◦ CofSymi is an idempotent comonad.

Definition 1.2.1°10. We extend the definition of SymCli and SymInti to endofunctors on JetSet(⃗b)where

bi can be any anpolarity:

• If bi = c then they are defined as above,

• If bi = # then they are defined as the identity functor.

Either way, they are an idempotent (co)monad and we have SymCli ⊣ SymInti.

1.2.2 Intervals and Prisms

Definition 1.2.2°1. Let a⃗ be a mask and i < len(⃗a).

• The i-jet interval L_iM is defined as the a⃗-jet-set with carrier {0, 1} and relations generated by

0 _i 1.

• The opposite i-jet interval L^iM is defined as the a⃗-jet-set with carrier {0, 1} and relations gen-

erated by 0 ^i 1.

• The i-equijet interval L]iM is defined as the a⃗-jet-set with carrier {0, 1} and relations generated

by 0 ]i 1.

If ai = # then L_iM = L^iM = L]iM =: L⌢iM is called the i-edge interval.

Note that it would be meaningless to define an i-infrajet interval in the same way.

Definition 1.2.2°2. Let a⃗ be a mask, i < len(⃗a) and X ∈ Obj(JetSet(⃗a)). We define the i-twisted-
prism X ⋉ L_iM on X as the a⃗-jet-set with

• carrier X × {0, 1},

• jet relations generated by the following requirements:

– (⌞⌟, 0) : Opi(X) → X ⋉ L_iM is a jet set morphism,

– (⌞⌟, 1) : X → X ⋉ L_iM is a jet set morphism,

– (x, 0) _i (x, 1) for all x ∈ X .

This defines the i-twisted-prism functor ⌞⌟⋉ L_iM : JetSet(⃗a) → JetSet(⃗a).
We define the opposite i-twisted-prism X ⋉ L^iM on X as the jet set of mask a⃗ with

• carrier X × {0, 1},

• jet relations generated by the following requirements:

– (⌞⌟, 0) : X → X ⋉ L^iM is a jet set morphism,

– (⌞⌟, 1) : Opi(X) → X ⋉ L^iM is a jet set morphism,

– (x, 0) ^i (x, 1) for all x ∈ X .

This defines the opposite i-twisted-prism functor ⌞⌟⋉ L_iM : JetSet(⃗a) → JetSet(⃗a).
If ai = #, then we call this simply the i-prism functor ⌞⌟⋉ L⌢iM.

Note that in both instances, we take the opposite at the source-side of the jet interval by which we

multiply. This makes it unclear what a prism functor for the equijet interval L]iM should look like.

Corollary 1.2.2°3. We have ⌞⌟⋉ L^iM = Opi(⌞⌟⋉ L_iM).
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Corollary 1.2.2°4. Let Fi be a functor between jet set categories of any of the following forms: Opi,
FSymi, USymi, CofSymi, ⌞⌟⋉ L_iM, ⌞⌟⋉ L^iM, ⌞⌟⋉ L⌢iM. Let Gj be a functor between jet set categories

also of one of these forms, but for a different degree j. Then Fi and Gj commute, i.e. there is a natural

isomorphism FiGj
∼= GjFi.

Corollary 1.2.2°5. The functor ⌞⌟ ⋉ L⌢iM commutes with itself, i.e. (x, v, w) 7→ (x,w, v) is a natural

automorphism of ⌞⌟⋉ L⌢iM ⋉ L⌢iM.

1.3 Jet Jewels

Write _∗
i for the transitive closure of the _i, and similarly _̂∗

i for the transitive closure of _̂
i. We say

that x and y are i-connected if x _̂∗
i y, and correspondingly define i-connected components.

Definition 1.3.0°1. Let a⃗ be a mask of length n. An a⃗-jet-set X is a jet jewel if:

1. it is (n− 1)-connected, i.e. for any x, y ∈ X we have x _̂∗
n−1 y,

2. for every 0 ≤ i < n, the relation _∗
i is a total pre-order on any connected component of X , i.e. if

x _̂∗
i y, then x _∗

i y or x ^∗
i y. We call this property i-orientability.

The category of jet jewels JetJewel(⃗a) is defined as the full subcategory of JetSet(⃗a) on jet jewels.

Note that i-orientability is vacuous if ai = #.

Proposition 1.3.0°2. Jet jewels are closed under the functorsOpi, FSymi, USymi, CofSymi ̸=n−1, SymCli,
SymInti ̸=n−1, ⌞⌟⋉ L_iM and ⌞⌟⋉ L^iM.

Proof. Opi Trivial.

FSymi This functor clearly preserves (n−1)-connectedness even if i = n−1. Meanwhile, j-orientability

is unaffected for j ̸= i and vacuous for i which is symmetric in the codomain of FSymi.

USymi This functor does not modify the jet set, so the conditions are preserved.

CofSymi ̸=n−1 Since i ̸= n−1, this functor preserves (n−1)-connectedness. Meanwhile, j-orientability

is unaffected for j ̸= i and vacuous for i which is symmetric in the codomain of CofSymi.

SymCli Since SymCli = USymi ◦ FSymi.

SymInti ̸=n−1 Since SymInti = USymi ◦ CofSymi.

⌞⌟⋉ L_iM To see (n− 1)-connectedness, note that:

• All objects of the form (x, 0) are (n− 1)-connected,

• All objects of the form (x, 1) are (n− 1)-connected,

• Since i ≤ n− 1, we always have (x, 0) _̂
i (x, 1).

For j-orientability, we consider 3 situations:

j < i Then for every x, we have (x, 0) ̸_̂j (x, 1). Every j-connected component C ⊆ X produces

two j-connected components {(c, 0) | c ∈ C} and {(c, 1) | c ∈ C}, where totality of _∗
j is

inherited from X .

j > i Then for every x, we have (x, 0) ]j (x, 1). Every j-connected component C ⊆ X produces

one j-connected component {(c, u) | c ∈ C, u ∈ {0, 1}}, where totality of _∗
j is inherited

from X .

j = i Then (x, u) _̂∗
i (y, v) if and only if x _̂∗

i y. By i-orientability of the original jet jewel X , we

have x _∗
i y or x ^∗

i y. Say we have x _∗
i y. Then we have (y, 0) _∗

i (x, 0) _i (x, 1) _∗
i

(y, 1), and thus either (x, u) _∗
i (y, v) or (x, u) ^∗

i (y, v) depending on u and v.

⌞⌟⋉ L^iM By an analogous argument.
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1.4 Jet Cubes

In section 1.4.1, we define a family of cube categories Cube◊M parametrized by a monad M which defines

the available operations on cube dimensions, and a choice ◊ ∈ {2,�} of whether we want our cubes to

be affine (no diagonals) or cartesian.

In section 1.4.2, we define a family of jet cube categories JetCube◊M (ω, a⃗) furthermore parametrized by

a mask a⃗ and an orientation set ω, which determines whether jets can only be forward or also backward

and/or bidirectional.

In section 1.4.3, we characterize morphisms in certain jet cube categories using a calculus.

In section 1.4.4, we shed light on jet cubes from a different corner by introducing the semisymmetric
separated product.

In section 1.4.5 we compare our general class of jet cube categories to existing cube categories in the

literature.

1.4.1 Cube Categories

We introduce a family of cube categories with one flavour of dimension. Fix a monad M on Set.

Example 1.4.1°1. Typically M will be one of the following:

• The ‘exception’ monadPt2 that sends a setX toX⊎{0, 1}, which is the carrier of the free bipointed

set over X ;

• The monad IPt2 that sends a set X to X ⊎ {¬x |x ∈ X} ⊎ {0, 1}, which is the carrier of the free

[bipointed set equipped with an involution ¬ that swaps 0 and 1] over X ;

• The monad DL that sends a set X to the carrier of the free distributive lattice over X ;

• The monad DM that sends a set X to the carrier of the free De Morgan algebra over X ;

• The monad Boo that sends a set X to the carrier of the free boolean algebra over X .

1.4.1 (a) Cartesian Cubes

Definition 1.4.1°2. We construct the (named) category of cartesianM -cubes Cube�
M (and NCube�

M

resp.) stepwise:

• The Kleisli category Kl(M) of M has objects X where X is a set, and its morphisms f : X → Y
are functions f : X → MY .

• Of this, we take the opposite Kl(M)op. (This is the Lawvere theory corresponding to the monad

M .)

• We define NCube�
M as the full subcategory of Kl(M)op on finite sets. (Alternatively, this is the

opposite Kleisli category of the restriction of M to finite sets, either as a monad on FinSet or as a

relative monad FinSet → Set.)
• We define Cube�

M as a designate skeleton of NCubeM , e.g. the full subcategory of NCube�
M on sets

of the form {0, . . . , n− 1} with n ≥ 0.

Objects of NCube�
M will be denoted as tuples of names (i0 : I, . . . , in−1 : I) where I is meaningless

but conveys the intuition that we regard ik as a value ranging over the interval (the cube given by the

singleton object). A morphism φ : (i0 : I, . . . , in−1 : I) → (j0 : I, . . . , jm−1 : I) is then a function

sending each jk to an expression jk⟨φ⟩ ∈ M{i0, . . . , in−1}. The morphism φ will also be denoted as

(j0⟨φ⟩/j0, . . . , jm−1⟨φ⟩/jm−1). The situation in Cube�
M is the same except that we now regard the names

ik as De Bruijn indices.

Corollary 1.4.1°3. The categories Cube�
M and NCube�

M have finite products, given by finite coproducts

of sets.



8 CHAPTER 1. BASE CATEGORIES AND MODES

1.4.1 (b) Affine Cubes

If T is a container monad [Uus17], i.e. a monad whose underlying functor is a container functor [AAG05]

of the form TX = Σ(s : S).(P (s) → X), then we define T#X as the set of affine expressions Σ(s :
S).(P (s) ↪→ X), which is an endofunctor on the category Set↪→ of sets and injective functions. If M is

merely a quotient of a container monad, i.e. M is of the form MX = TX/ ∼X with T as above, then we

define M#X as the set of equivalence classes with an affine representant.

Remark 1.4.1°4. An important source of monads such asM are monads specified by a syntactic algebraic

theory [Man12, ARVL10, Nuy22]. A syntactic algebraic theory specifies a set of operations S0, assigns

to each operation s : S0 an arity P0(s) which is again a set, and subjects these to a set of axioms.
3

The

container (S0, P0) specifies a container functor FX = Σ(s : S0).(P0(s) → X) on Set. A free monad F ∗

over this functor F exists and satisfies the fixpoint equation F ∗X ∼= X ⊎ FF ∗X . We remark that the

free monad F ∗
over a container functor F is again a container functor, i.e. there exists a container (S, P )

such that F ∗X = Σ(s : S).(P (s) → X) specifies the free monad over F . The axioms determine an

equivalence relation ∼X on F ∗X such that MX := F ∗X/ ∼X is again a monad. This situation applies

to each of the monads in example 1.4.1°1.

In fact, often the quotient can be taken already at the level of the container, so that there exists a

container (S′, P ′) such that MX ∼= Σ(s : S′).(P ′(s) → X).

We say that (s, f), (s′, f ′) ∈ T#X are mutually fresh, denoted (s, f) # (s′, f ′), if the images of

f and f ′
are disjoint. Elements of M#X are mutually fresh if they have mutually fresh representants.

We call the monad (T, η, µ) affine if ηX : X → TX lands in T#X for all X and µX : TTX → TX
restricted to (TT )#X (note that container functors are closed under composition) lands in T#X ; and

similar for M .

Definition 1.4.1°5. Let M be a quotient of a container monad, and let it be affine. We construct the

(named) category of affine M -cubes Cube2M (and NCube2M resp.) stepwise:

• The affine Kleisli category Kl#(M) has objects X where X is a set, and its morphisms f : X → Y
are functions f : X → M#Y such that for any x ̸= x′

in X , we have f(x) # f(x′). Identity and

composition are well-defined because M is affine.

• Of this, we take the opposite Kl#(M)op.

• We define NCube2M as the full subcategory of Kl#(M)op on finite sets.

• We define Cube2M as a designate skeleton of NCube2M , e.g. the full subcategory of NCube2M on sets

of the form {0, . . . , n− 1} with n ≥ 0.

Objects will be represented as for the cartesian cube categories.

Corollary 1.4.1°6. The categories Cube2M and NCube2M have a symmetric monoidal structure (⊤, ∗)
given by finite coproducts of sets. The binary operation is called the separated product.

1.4.1 (c) Examples

This way, we get – among others – the following cube categories:

Cube�
Pt2

The cartesian cube category. A morphism φ : V → W sends every dimension j ∈ W to j⟨φ⟩ ∈
V ∪ {0, 1}. Its cubes have diagonals.

Cube2Pt2 The affine cube category [BCH14]. A morphism φ : V → W sends every dimension j ∈ W to

j⟨φ⟩ ∈ V ∪ {0, 1}, such that if j⟨φ⟩ = j′⟨φ⟩ ∈ V then j = j′. Its cubes have no diagonals.

Cube�
IPt2

The symmetric cartesian cube category. We have a negation/involution/symmetry (¬i/j) : (i :
I) → (j : I).

Cube�
DL The cartesian cube category with connections. We have morphisms (i ∨ j/k), (i ∧ j/k) : (i : I, j :

I) → (k : I). There are no symmetries

3
We use ‘syntactic algebraic theory’ to refer to the syntactic presentation as described here, and ‘monad’ and ‘Lawvere theory’

to refer to the less syntactic objects they specify.
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Cube�
DM The CCHM cube category [CCHM15], which combines symmetries and connections. We have

(i ∧ ¬i/j) ̸= (0/j) : (i : I) → (j : I) and (i ∨ ¬i/j) ̸= (1/j) : (i : I) → (j : I).
Cube�

Boo A cube category very similar to the CCHM one, but we have (i ∧ ¬i/j) = (0/j) : (i : I) → (j : I)
and (i ∨ ¬i/j) = (1/j) : (i : I) → (j : I).

We remark that Cube2DM and Cube2Boo should be isomorphic as the additional law of boolean algebras

w.r.t. de Morgan algebras only affects non-affine expressions.

1.4.1 (d) The Endpoint Model

We remarked above that L := Kl(M)op is the Lawvere category of M . It is known then (see e.g. [Nuy22]),

that the Eilenberg-Moore category of M (which is the category of Eilenberg-Moore algebras of M ) is

equivalent category of models of L (which is the category of product-preserving functors L → Set). Such

functors are fully determined by the image of the singleton set (as every set is a coproduct of singletons

and the Kleisli-category retains coproducts) and that image will be exactly the carrier of the corresponding

Eilenberg-Moore algebra.

It is clear that both the cartesian and affine (named) cube categories are subcategories of L. As such,

any M -algebra induces a functor L → Set and hence a functor from either of the M -cube categories to

Set.
The initial algebra of any monad M on Set has carrier M∅, which for each of the monads in exam-

ple 1.4.1°1 equals {0, 1}. Correspondingly, the initial model of L is the functor EP : L → Set sending

(i0 : I, . . . , in−1 : I) to {0, 1}{i0,...,in−1}
. We call this the endpoint model. It is naturally isomorphic (in

fact equal) to HomL((), ⌞⌟) : L → Set, since we have

HomL((), (i0 : I, . . . , in−1 : I)) = HomKl(M)({i0, . . . , in−1},∅) = (M∅){i0,...,in−1} = {0, 1}{i0,...,in−1}.

Recall that a morphism φ : (i0 : I, . . . , in−1 : I) → (j0 : I, . . . , jm−1 : I) assigns to each j a value

j⟨φ⟩ in M{i0, . . . , in−1}, the free M -algebra over {i0, . . . , in−1}. The function EP(φ) is defined by

EP(φ)
(
v{i0,...,in−1}→{0,1}

)
(j) = α(M(v)(j⟨φ⟩)),

where α : M{0, 1} → {0, 1} is the algebra structure on {0, 1}. Using the operation ≫=α : MX →
(X → {0, 1}) → {0, 1} : x̂ 7→ f 7→ α(Mf(x̂)), we can write this as EP(φ)(v)(j) = j⟨φ⟩ ≫=α v.

Proposition 1.4.1°7. The functor EP : Cube�
Boo → Set is fully faithful.

Proof. We need to show that any function f : {0, 1}{i0,...,in−1} → {0, 1}{j0,...,jm−1}
can be obtained as

some EP(φ) with φ : (i0 : I, . . . , in−1 : I) → (j0 : I, . . . , jm−1 : I). We remark that such a function

f in fact consists of m truth tables in n boolean variables. From the full disjunctive normal form, it is

clear that elements of the free boolean algebra are in 1-1 correspondence with truth tables. Concretely,

for each j, define j⟨φ⟩ to be the element of Boo{i0, . . . , in−1} corresponding to the truth table f(⌞⌟, j).
Then j⟨φ⟩ ≫=α v will evaluate j⟨φ⟩ after replacing each variable i with its value v(i), yielding the value

f(v, j) prescribed by the truth table f(⌞⌟, j).

Proposition 1.4.1°8. The obvious functor I : Cube6M → Cube◊N where

• 6,◊ ∈ {2,�} and 6 ≤ ◊ according to the order 2 ≤ �,

• M,N ∈ {Pt2, IPt2,DL,Boo} and M ≤ N according to the partial order

Pt2
≤
//

≤

��

IPt2

≤

�� ≤

��

DL
≤
//

≤ ,,

DM

Boo,

is faithful.
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Proof. In a first step, it is obvious by construction that Cube2M → Cube�
M is faithful.

In a second step, note that we have a monad morphism ι : M → N such that ιX : M(X) → N(X)
is injective for all X . Then the resulting functor between the Kleisli categories, which are opposite to the

cartesian cube categories, is faithful.

Clearly, the functor I : Cube�
DM → Cube�

Boo is not faithful: it sends the morphisms (0/j), (i∧¬i/j) :
(i : I) → (j : I) in Cube�

DM to the same morphism in Cube�
Boo.

Corollary 1.4.1°9. The functor EP : Cube◊M → Set is faithful for each M ∈ {Pt2, IPt2,DL,Boo}.

Proof. Follows by composing proposition 1.4.1°7 and proposition 1.4.1°8.

1.4.2 Jet Cubes

1.4.2 (a) Jet Cube Objects

Definition 1.4.2°1. An orientation set is one of the following sets of formal symbols:
4

f = {_}, fe = {_,]}, fb = {_,^}, fbe = {_,^,]}.

The set of orientation sets will be denoted O = {f, fe, fb, fbe}.

Definition 1.4.2°2. Let a⃗ be a mask and ω an orientation set. We define the set of (ω, a⃗)-jet-cubes as the

set of lists of elements of {Pi |P ∈ ω, 0 ≤ i < len(⃗a)}, where we identify all Pi = Qi =: ⌢i (P,Q ∈ ω)

if ai = #. We denote jet cubes as (i0 : L(P0)i0M, . . . , in−1 : L(Pn−1)in−1
M), thinking of the names ik as

De Bruijn indices.

Definition 1.4.2°3. We call a variable i of an (ω, a⃗)-jet-cube i-symmetric (for a degree 0 ≤ i < len(⃗a))
if any of the following conditions holds:

• i is not of degree i,
• i is an equijet variable, i.e. i : L]jM,
• ai = #.

Otherwise, it is called i-directed. Thus, if i is i-directed, then ai = c and i : L_iM or i : L^iM.

Definition 1.4.2°4. Let a⃗ <i b⃗ and ] ∈ ω. For any (ω, a⃗)-jet-cube W , we define the (ω, b⃗)-jet-cube

USym�
i W by replacing every occurrence of ⌢i with ]i.

Note that a b⃗-jet-cube is uniquely in the image of USym�
i if it does not feature the symbols _i and

^i, i.e. if all variables are i-symmetric.

Definition 1.4.2°5. For any (ω, a⃗)-jet-cube W , we define the a⃗-jet-set JEP(W ) as follows:

JEP(()) = ⊤,
JEP(W, i : L_iM) = JEP(W )⋉ L_iM,
JEP(W, i : L^iM) = JEP(W )⋉ L^iM,
JEP(W, i : L⌢iM) = JEP(W )⋉ L⌢iM,
JEP(W, i : L]iM) = USymi JEP

(
(USym�

i )
−1(W, i : L]iM)

)
if ai = c

= USymi JEP
(
(USym�

i )
−1(W ), i : L⌢iM

)
= USymi

(
JEP

(
(USym�

i )
−1(W )

)
⋉ L⌢iM

)
.

Setting V = (USym�
i )

−1(W ), the last equation can be rephrased as

JEP(USym�
i V, i : L]iM) = JEP(USym�

i (V, i : L⌢iM)) = USymi(JEP(V, i : L⌢iM))
= USymi(JEP(V )⋉ L⌢iM).

4
The letters stand for forward, backward and equijet.
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Definition 1.4.2°6. We define the jet-erasure function ⌊⌞⌟⌋, which sends (ω, a⃗)-jet-cubes to cubes (i.e.

objects of any of the cube categories defined in section 1.4.1), by

⌊()⌋ = (), ⌊(W, i : L_iM)⌋ = ⌊(W, i : L^iM)⌋ = ⌊(W, i : L]iM)⌋ = ⌊(W, i : L⌢iM)⌋ = (⌊W ⌋, i : I).

Corollary 1.4.2°7. For any (ω, a⃗)-jet-cube W , the carrier of JEP(W ) is EP(⌊W ⌋). Thus, every jet cube

determines an object of the following strict pullback of categories:

{(ω, a⃗)-jet-cubes}
JEP

++

⌊⌞⌟⌋

&&

))

Cube◊M ×Set JetSet(⃗a) //

��

JetSet(⃗a)

U

��

Cube◊M EP
// Set,

It is straightforward to see that the function thus obtained is injective.

1.4.2 (b) Jet Cube Categories

Definition 1.4.2°8. Let a⃗ be a mask, ω ∈ O, ◊ ∈ {2,�} and M a monad on Set. We define the

category JetCube◊M (ω, a⃗) of (ω, a⃗)-jet-M -cubes as the full subcategory of Cube◊M ×Set JetSet(⃗a) on

(ω, a⃗)-jet-cubes, as justified by corollary 1.4.2°7. The functions JEP and ⌊⌞⌟⌋ are correspondingly extended

to functors.

Corollary 1.4.2°9. The functor JEP : JetCube◊M (ω, a⃗) → JetSet(⃗a) factors over the inclusion JetJewel(⃗a) ↪→
JetSet(⃗a).

Proof. By induction on the dimension and using proposition 1.3.0°2, it is clear that for any jet cube W ,

the jet set JEP(W ) is a jet jewel, which factors the action on objects. The action on morphisms factors

because JetJewel(⃗a) is a full subcategory of JetSet(⃗a).

We will ultimately only be interested in (f, a⃗)-jet-cubes, but in section 1.4.3, we define an inductive

predicate to determine whether a cube morphism φ : ⌊V ⌋ → ⌊W ⌋ is in fact a jet cube morphism V → W ,

and this predicate’s inference rules make use of (fbe, a⃗)-jet-cubes in their premises. The orientation sets

fe and fb are only introduced for explanatory purposes: we can easily relate jet cubes with and without

^ (proposition 1.4.2°10), and later on
5

we will be able to relate jet cubes with and without ] by inserting

additional symmetric degrees.

Proposition 1.4.2°10. Let (ω, ω′) ∈ {(f, fb), (fe, fbe)}. Then the inclusion

JetCube◊M (ω, a⃗) ↪→ JetCube◊M (ω′, a⃗),

which is fully faithful by definition, is also split essentially surjective and therefore an equivalence.

Proof. One proves, by induction on the length of the jet cube, that any jet cube is equivalent to the jet

cube in which every occurrence of L^iM is replaced with L_iM.

Proposition 1.4.2°11. The following functors on a⃗-jet-sets lift over JEP to functors on (ω, a⃗)-jet-cubes

under the following conditions:

5
Refer
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Opi lifts to Op�
i if ^ ∈ ω

FSymi lifts to FSym�
i

USymi lifts to USym�
i if ] ∈ ω

SymCli lifts to SymCl�i if ] ∈ ω
⌞⌟⋉ L_iM lifts to ⌞⌟⋉ (i : L_iM)
⌞⌟⋉ L⌢iM lifts to ⌞⌟⋉ (i : L⌢iM) if ai = #
⌞⌟⋉ L^iM lifts to ⌞⌟⋉ (i : L^iM) if ^ ∈ ω

We have FSym�
i ⊣ USym�

i and thus an idempotent monad SymCl�i := USym�
i ◦ FSym�

i , whose defini-

tion we extend to masks b⃗ where bi = # as in definition 1.2.1°10.

Proof. The functors FSymi, Opi and USymi have no effect on the carrier, so they certainly lift to Cube◊M ,

hence to the pullback Cube◊M ×Set JetSet(⃗a).

• FSymi lifts to jet cubes by replacing every occurrence of _i, ^i or ]i with ⌢i.

• Opi lifts to jet cubes if ^ ∈ ω by reversing the last occurrence of either _i or ^i (corollary 1.2.2°3),

if present.

• USymi lifts to jet cubes as the operation USym�
i already introduced in definition 1.4.2°4.

To prove FSym� ⊣ USym�
, we need to build unit and co-unit natural transformations. Since the cat-

egories of jet cubes are fully faithful subcategories of the pullback Cube◊M ×Set JetSet(⃗a), it suffices to

build them there. They were already established in JetSet(⃗a) by proposition 1.2.1°9. As they reduce to

the identity unit and co-unit of Id ⊣ Id for the carriers, they trivially lift to Cube◊M .

The various prism functors multiply the carrier with {0, 1} and thus lift over EP to the affine/cartesian

cube category by multiplying with (i : I). Hence, they also lift to the pullback Cube◊M ×Set JetSet(⃗a).
Each of them lifts to jet cubes by appending the symbol concerned (if available).

Proposition 1.4.2°12. Any two functors on jet cubes concerned in proposition 1.4.2°11, instantiated on

different degrees, commute. In other words, the natural transformation given in corollary 1.2.2°4 lifts to

jet cubes when the associated functors lift.

Proof. Since the categories of jet cubes are fully faithful subcategories of the pullbackCube◊M×SetJetSet(⃗a),
it suffices to prove the natural isomorphism there. The isomorphism was already established in JetSet(⃗a)
by corollary 1.2.2°4, and the effect on the carrier is either nothing (when at most one prism functor is

involved) or swapping components (when both functors are prism functors). These isomorphisms lift to

Cube◊M .

Proposition 1.4.2°13. The functor ⌞⌟ ⋉ (i : L⌢iM) commutes with itself, i.e. the natural automorphism

given in corollary 1.2.2°5 lifts to jet cubes as (i/i, j/j) : ⌞⌟⋉(i : L⌢iM)⋉(j : L⌢iM) ∼= ⌞⌟⋉(j : L⌢iM)⋉(i :
L⌢iM).

Proof. Analogous to the proof of proposition 1.4.2°12. The isomorphism was already established in JetSet(⃗a)

by corollary 1.2.2°5, and the effect on the carrier is swapping components, which lifts to Cube◊M .

Remark 1.4.2°14. As of this point we will only be interested in the monads IPt2 and Boo because:

• We need involutions in order to be able to work with the source-side of the twisted prism, ruling

out Pt2 and DL.

• We do not see any advantage of DM over Boo. In particular, we want EP to be faithful (proposi-

tion 1.4.1°8).

Theorem 1.4.2°15. Assuming decidability of the affineness predicate on cube morphisms, then for M ∈
{Pt2, IPt2}, we have isomorphisms of categories

6

JetCube2M (ω, a⃗) ∼= JetCube�
M (ω, a⃗),

which act as the identity on objects.

6
Depending on the formalization, possibly even equalities.



1.4. JET CUBES 13

Proof. We know that JetCube2IPt2(ω, a⃗) is a subcategory of JetCube�
IPt2

(ω, a⃗). So we need to show that

any morphism in JetCube�
IPt2

(fbe, a⃗) is in fact affine. Take such a morphism φ̂ : V → W (write φ = ⌊φ̂⌋)

and assume it is not affine. Since M only has nullary and unary operations, this means that W has

dimensions i and j such that i⟨φ⟩ and j⟨φ⟩ are not mutually fresh, meaning that V has some dimension k
such that i⟨φ⟩, j⟨φ⟩ ∈ {k,¬k}. Then JEP(φ̂) cannot be a jet set morphism as JEP(W ) has no diagonals.

This is a contradiction.

Note that the situation is not so simple for Boo. For example, at symmetric degrees, JetCube�
Boo(f, a⃗)

features the ‘exclusive or’ operation

((i ∨ j) ∧ ¬(i ∧ j)/k) : (i : L⌢iM, j : L⌢iM) → (k : L⌢iM)

which cannot be constructed in JetCube2Boo(f, a⃗). More startlingly, even at directed degrees, we have

operations such as the following:

(i ∧ j/p, j ∧ k/q) : (i : L_iM, j : L_iM,k : L_iM) → (p : L_iM,q : L_iM),

which collapses five consecutive points of the Hamiltonian path and is a legitimate jet cube morphism:

(1, 0, 0) // (1, 0, 1)

yy

��

(0, 0, 0)

ee

// (0, 0, 1)

��

(0, 1, 0)

OO

// (0, 1, 1)

%%

(1, 1, 0)

99

OO

//

7→

(1, 1, 1)

(0, 0) (0, 0)

��

(0, 0) (0, 0)

��

(0, 0) // (0, 1)

%%

(1, 0)

99

OO

// (1, 1).

While the operations ∨ and ∧ in themselves are useful in developing a base category for pro-arrow

equipments in order to extract companion and conjoint squares from an arrow, cube transformations

such as the one above are not assumed in the definition of pro-arrow equipments, so we wish to exclude

these. For this reason, we will no longer be interested in cartesian jet-Boo-cubes. By theorem 1.4.2°15,

we are also no longer interested in cartesian jet-IPt2-cubes. In short then, by remark 1.4.2°14:

Remark 1.4.2°16. We are no longer interested in cartesian jet cubes.
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1.4.3 A Calculus for Jet Cube Morphisms

In this section, we develop a calculus that inductively generates the morphisms of the category JetCube2M (fbe, a⃗)
and therefore also those of its full subcategories JetCube2M (ω, a⃗).

Since the forgetful functor U : JetSet(⃗a) → Set is faithful, so is ⌊⌞⌟⌋ : JetCube2M (ω, a⃗) → Cube2M .

As such, we can regard ‘being a morphism of jet cubes’ as a proof-irrelevant property of morphisms of

cubes, which we will therefore use as preterms. Our calculus will therefore feature a single judgement

⊢ φ : V → W meaning that the morphism φ : ⌊V ⌋ → ⌊W ⌋ is in fact a morphism of jet cubes. Sound-

ness (theorem 1.4.3°4) of the calculus will be the property that the judgement’s meaning actually holds

when the judgement is derivable, whereas completeness (theorem 1.4.3°26) means that the judgement is

derivable when its meaning is true. We do not have to bother with an equational theory, as we can simply

inherit it from Cube2M .

Definition 1.4.3°1. We call a jet cube conventional if each of its dimensions has a degree equal to or

lower than the previous one. We write JetCubeConv◊M (ω, a⃗) for the full subcategory of JetCube◊M (ω, a⃗)
on conventional cubes.

Corollary 1.4.3°2. By proposition 1.4.2°12, the inclusion JetCubeConv◊M (ω, a⃗) ↪→ JetCube◊M (ω, a⃗) is

essentially surjective (in fact split essentially surjective by the existence of sorting algorithms) and thus

an equivalence of categories.

Definition 1.4.3°3. For M ∈ {IPt2,Boo}, any mask a⃗ and for any two objects

V,W ∈ Obj(JetCubeConv2M (fbe, a⃗)),

we define a proof-irrelevant predicate on morphisms φ : ⌊V ⌋ → ⌊W ⌋, denoted ⊢ φ : V → W , induc-

tively generated by the inference rules in fig. 1.1.

We discuss these inference rules one by one; their soundness and completeness will be proven in

theorems 1.4.3°4 and 1.4.3°26. Specializations of these rules for symmetric degrees are given in fig. 1.2,

and some rules are grouped together in fig. 1.3.

The unique morphism to the terminal cube () is a jet cube morphism (terminal).

We can substitute the last variable with an endpoint. If this end point is at the last dimension’s source

side, then the rest of the morphism lands in the i-opposite of W (src:fwd, src:bck), otherwise it lands

in W itself (tgt:fwd, tgt:bck).

We can apply an involution to the last variable, provided that we turn around its direction (inv:fwd,

inv:bck). Doing so means that the source-side is mapped to the source-side and the target-side is mapped

to the target-side, so W remains unaffected.

We can apply the (opposite) i-twisted prism functor to a morphism (prism:fwd, prism:bck).

If the last dimension of our target cube is of the form i : L]iM, then we know that our cube is in the

image of USym�
i , and we can proceed using the adjunction FSym�

i ⊣ USym�
i (symmetrize). This turns

our last dimension into i : L⌢iM which is a special case of both i : L_iM and i : L^iM, so we can proceed

by using the fwd and bck rules of the calculus.

We can weaken w.r.t. the last dimension (wkn) of the source cube, but some caution is required. At

the source-side of the last dimension, we find Op�
i (V ), whereas at the target-side we have V . Thus, φ

needs to be a morphism of jet cubes from Op�
i (V ) → W as well as from V → W . This can be achieved

by asking that φ starts from SymCl�i (V ), which can be thought of as a join of Op�
i (V ) and V . In the case

of an equijet dimension, SymCl�i (V ) = V = Op�
i (V ).

We can exchange variables of the same symmetric degree i (exchange). Note that conventionality

implies that all variables in U1 are also of type L]iM.
We can substitute the last variable with a variable of a weaker (higher) degree in either direction

(or of equijet dimension). Inspired by proposition 1.2.1°5, we choose to use terminology from pro-arrow

equipments and refer to this action as creating a companion when the direction of the arrow remains the

same (P = Q), and a conjoint when it reverses ({P,Q} = {_,^}); we introduce the term concursor
(concursor) as the common generalization of companions, conjoints, and their symmetric counterpart
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terminal

⊢ () : V → ()

src:fwd

⊢ φ : V → Op�
i (W )

⊢ (φ, 0/i) : V → (W, i : L_iM)

src:bck

⊢ φ : V → Op�
i (W )

⊢ (φ, 1/i) : V → (W, i : L^iM)

tgt:fwd

⊢ φ : V → W

⊢ (φ, 1/i) : V → (W, i : L_iM)

tgt:bck

⊢ φ : V → W

⊢ (φ, 0/i) : V → (W, i : L^iM)

inv:fwd

⊢ (φ, t/i) : V → (W, i : L^iM)
⊢ (φ,¬t/i) : V → (W, i : L_iM)

inv:bck

⊢ (φ, t/i) : V → (W, i : L_iM)
⊢ (φ,¬t/i) : V → (W, i : L^iM)

prism:fwd

⊢ φ : V → W

⊢ (φ, i/i) : (V, i : L_iM) → (W, i : L_iM)

prism:bck

⊢ φ : V → W

⊢ (φ, i/i) : (V, i : L^iM) → (W, i : L^iM)

symmetrize

⊢ φ : FSym�
i V → W

⊢ φ : V → USym�
i W

wkn

⊢ φ : SymCl�i (V ) → W R ∈ {_,^,]}
⊢ (φ, i/⊘) : (V, i : LRiM) → W

exchange

⊢ φ : (V, j : L]iM, U1, i : L]iM, U2) → W

⊢ φ : (V, i : L]iM, U1, j : L]iM, U2) → W

concursor

P ∈ {_,^,]} Q ∈ {_,^} j > i
⊢ φ : SymCl�i (SymCl�j U, V ) → W

⊢ (φ, j/i) : (U, j : LPjM, V ) → (W, i : LQiM)

conn:prism:src-neutral

(Q,♢) ∈ {(_,∨), (^,∧)}
⊢ φ : SymCl�i V → W

⊢ (φ, t/i) : Op�
i V → (W, i : LQiM)

⊢ (φ, t♢ i/i) : (V, i : LQiM) → (W, i : LQiM)
Boo

conn:prism:tgt-neutral

(Q,♢) ∈ {(_,∧), (^,∨)}
⊢ φ : SymCl�i V → W

⊢ (φ, t/i) : V → (W, i : LQiM)
⊢ (φ, t♢ i/i) : (V, i : LQiM) → (W, i : LQiM)

Boo

conn:prism-inv:src-neutral

(Q,♢, P ) ∈ {(_,∨,^), (^,∧,_)}
⊢ φ : SymCl�i V → W

⊢ (φ, t/i) : Op�
i V → (W, i : LQiM)

⊢ (φ, t♢ ¬i /i) : (V, i : LPiM ) → (W, i : LQiM)
Boo

conn:prism-inv:tgt-neutral

(Q,♢, P ) ∈ {(_,∧,^), (^,∨,_)}
⊢ φ : SymCl�i V → W

⊢ (φ, t/i) : V → (W, i : LQiM)

⊢ (φ, t♢ ¬i /i) : (V, i : LPiM ) → (W, i : LQiM)
Boo

conn:degree-symmetric

Q ∈ {_,^} ♢ ∈ {∨,∧}
⊢ (φ, s/i) : SymCl�i V → (W, i : LQiM)
⊢ (φ, t/i) : V → (W, i : LQiM)
⊢ (φ, t♢ s/i) : V → (W, i : LQiM)

Boo

Figure 1.1: A calculus of affine fbe-jet-cube morphisms, for the monads IPt2 and Boo. See fig. 1.2 for

specializations of these rules to symmetric degrees and fig. 1.3 for unified versions of the specialized

forward/backward rules.
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endpoint:sym

⊢ φ : V → W c ∈ {0, 1}
⊢ (φ, c/i) : V → (W, i : L⌢iM)

inv:sym

⊢ (φ, t/i) : V → (W, i : L⌢iM)
⊢ (φ,¬t/i) : V → (W, i : L⌢iM)

prism:sym

⊢ φ : V → W

⊢ (φ, i/i) : (V, i : L⌢iM) → (W, i : L⌢iM)

wkn:sym

⊢ φ : V → W

⊢ (φ, i/⊘) : (V, i : L⌢iM) → W

exchange:sym

⊢ φ : (V, j : L⌢iM, U1, i : L⌢iM, U2) → W

⊢ φ : (V, i : L⌢iM, U1, j : L⌢iM, U2) → W

conn:sym

♢ ∈ {∨,∧}
⊢ (φ, s/i) : V → (W, i : L⌢iM)
⊢ (φ, t/i) : V → (W, i : L⌢iM)
⊢ (φ, t♢ s/i) : V → (W, i : L⌢iM)

Boo

Figure 1.2: Symmetric specializations of the rules in fig. 1.1. Note that the rules conn:prism:∗ become

a special case of conn:degree-symmetric. We omit terminal which specifies no degree, concursor

which specifies two, and symmetrize which already places constraints on the anpolarity ai.

src

(Q, c) ∈ {(_, 0), (^, 1)}

⊢ φ : V → Op�
i (W )

⊢ (φ, c/i) : V → (W, i : LQiM)

tgt

(Q, c) ∈ {(_, 1), (^, 0)}
⊢ φ : V → W

⊢ (φ, c/i) : V → (W, i : LQiM)

inv

{P,Q} = {_,^}
⊢ (φ, t/i) : V → (W, i : LPiM)
⊢ (φ,¬t/i) : V → (W, i : LQiM)

prism

⊢ φ : V → W Q ∈ {_,^}
⊢ (φ, i/i) : (V, i : LQiM) → (W, i : LQiM)

Figure 1.3: Unified versions of the specialized forward/backward rules in fig. 1.1.

equiconcursors (P = ]). Some measures of caution need to be taken however, which we consider in

the case of forward companions (P = Q = _), where we wish to derive (φ, j/i) : (U, j : L_jM, V ) →
(W, i : L_iM). First of all, we need to enforce affineness and make sure that φ does not use the variable

j, so we will have φ : (⌊U⌋, ⌊V ⌋) → ⌊W ⌋. Now let us look at what happens when we set i and j to 0 or

to 1:

(Op�
j (U), V )

(0/j)

��

φ
// Op�

i (W )

(0/i)

��

(U, j : L_jM, V )
(φ,j/i)

// (W, i : L_iM)

(U, V )

(1/j)

OO

φ
// W

(1/i)

OO

So φ needs to be both a morphism of jet cubes from (U, V ) to W and from (Op�
j (U), V ) to Op�

i (W ) or

equivalently fromOp�
i (Op

�
j (U), V ) toW . This can be achieved by asking thatφ starts fromSymCli(SymClj(U), V ),

which can be thought of as a join of (U, V ) and Op�
i (Op

�
j (U), V ).

The last five rules involve connections (conjunction and disjunction) and only apply if M = Boo,

as IPt2 does not provide these operations. Due to the twisted nature of the twisted prism functor, it

turns out that we can substitute the last variable of the target cube only with a connection of which one

operand (say the right one) is either (the negation of) the last variable of the source cube, or an expression
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depending only on i-symmetric variables.
7

In either case, it turns out that whether the last term reduces to 0 or 1 on any end point of the source

cube, is sufficiently irregular that i-directed terms in the remainder of φ can only depend on i-symmetric

variables. The promotion of all variables of degree i to equijet variables in the context of φ in at least one

of the premises, precludes their usage in i-directed terms.

In the latter case, we can use conn:degree-symmetric, where s is also checked in the symmetrized

context.

In the former case, we get to apply a rule that combines a connection, possibly an inversion, and the

prism rules. The main point worth remarking upon is that the behaviour of t only matters when the

other operand reduces to the neutral element of the connection at hand. Depending on this, we decide

whether t must be checked in the i-opposite context or not. For example, in conn:prism:src-neutral,

if Q = _ and ♢ = ∨, then the neutral element is 0, so the behaviour of t only matters when the other

operand is 0. This means that we are coming from the source-side of i, i.e. from Op�
i V . This distinction

leads to four different rules (conn:prism:src-neutral, conn:prism:tgt-neutral, conn:prism-inv:src-

neutral, conn:prism-inv:src-neutral).

It is worth pointing out that if ai = #, then conn:degree-symmetric specializes to the rule conn:sym

(fig. 1.2) that is sufficiently general to also subsume the symmetric specializations of the other connection

rules.

1.4.3 (a) Soundness

Theorem 1.4.3°4 (Soundness). If a morphism φ : ⌊V ⌋ → ⌊W ⌋ satisfies the predicate ⊢ φ : V → W
from definition 1.4.3°3, then it actually arises as the image φ = ⌊φ̂⌋ of a morphism φ̂ : V → W .

Remark 1.4.3°5. The derivation rules in our calculus are all natural w.r.t. V and W . Indeed, since ⌊⌞⌟⌋
is faithful, this is simply inherited from the underlying operations on cubes.

Proof. Note that what really needs to be proven is that ⊢ φ : V → W implies that EP(φ), which a priori

is a function from the set EP(⌊V ⌋) = U(JEP(V )) to EP(⌊W ⌋) = U(JEP(W )), is in fact a morphism of

jet sets JEP(V ) → JEP(W ). We prove this, of course, by induction on the derivation of the inductive

predicate.

• For terminal, note that JEP(()) is the terminal jet set.

• For src:fwd, src:bck, tgt:fwd and tgt:bck, this follows immediately from definition 1.2.2°2.

• For inv:fwd, by postcomposition, it suffices to show that ζ : (idW ,¬i/i) : ⌊(W, i : L^iM)⌋ →
⌊(W, i : L_iM)⌋ is a morphism of jet cubes, i.e. that EP(ζ) : (w⃗, u) 7→ (w⃗,¬u) is a morphism of jet

sets JEP(W )⋉ L^iM → JEP(W )⋉ L_iM.
Let (w⃗, u) _j (w⃗′, u′) in JEP(W ) ⋉ L^iM. Then by definition 1.2.2°2 of the opposite i-twisted

prism, there are 3 possibilities:

– We have u = u′ = 0 and w⃗ _j w⃗′
in JEP(W ). In that case, we also have the required jet

between the images (w⃗, 1) _j (w⃗
′, 1) in JEP(W )⋉ L_iM.

– We have u = u′ = 1 and w⃗ _j w⃗′
in Opi(JEP(W )). In that case, we also have the required

jet between the images (w⃗, 0) _j (w⃗
′, 0) in JEP(W )⋉ L_iM.

– We have j = i, u = 1, u′ = 0 and w⃗ = w⃗′
. In that case, we also have the required jet between

the images (w⃗, 0) _i (w⃗, 1) in JEP(W )⋉ L_iM.

The proof of soundness of inv:bck is analogous.

• Soundness of prism:fwd and prism:bck was already established by proposition 1.4.2°11.

• Soundness of symmetrize follows from the adjunction established in proposition 1.4.2°11.

• We prove soundness of wkn by precomposition with a jet cube morphism that erases to (id, i/⊘) :
⌊(V, i : LRiM)⌋ → SymCli⌊V ⌋. Thus, we need to prove that EP(id, i/⊘) : (v⃗, w) 7→ v⃗ is a jet set

morphism JEP(V, i : LRiM) → JEP(SymCl�i (V )). Let (v⃗, w) _j (v⃗
′, w′) in JEP(V, i : LRiM). Then

there are two possibilities:

7
This is formalized in lemma 1.4.3°23.
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– w = w′
and (v⃗, w) _j (v⃗′, w). The latter implies v⃗ _j v⃗′ in JEP(V ) if j ̸= i and v⃗ _̂

i v⃗
′

if

j = i. Moving to JEP(SymCl�i (V )), we get v⃗ _j v⃗
′

in all cases, as required.

– j = i, v⃗ = v⃗′ and w _i w
′
. In this case we have v⃗ _j v⃗ in JEP(SymCl�i (V )) by reflexivity.

• Recalling definition 1.4.2°5, soundness of exchange follows from proposition 1.4.2°13. (Note that,

since we are dealing with conventional cubes, all variables in U1 also have type L]iM.)
• We prove soundness of concursor. Assume thatφ is a jet cube morphismSymCl�i (SymCl�j U, V ) →
W and j > i. We prove that (φ, j/i) is a jet cube morphism (U, j : LPjM, V ) → (W, i : LQiM). Write

f = EP(φ) and g = EP(φ, j/i).
Pick a jet (u⃗, t, v⃗) _k (u⃗′, t′, v⃗′) in JEP(U, j : LPjM, V ). We can assume that this jet is not reflexive.

Let k be the variable where both hands differ. There are three possibilities:

– If k ∈ U , then we have t = t′, v⃗ = v⃗′ and (u⃗, t, v⃗) _k (u⃗′, t, v⃗).

∗ If k ̸= j and k ̸= i, this implies (u⃗, v⃗) _k (u⃗′, v⃗) in JEP(U, V ) and therefore also in

JEP(SymCl�i (SymCl�j U, V )), whence f(u⃗, v⃗) _k f(u⃗′, v⃗), whence g(u⃗, t, v⃗) = (f(u⃗, v⃗), t) _k

(f(u⃗′, v⃗), t) = g(u⃗′, t, v⃗).
∗ If k = i or k = j, this implies (u⃗, v⃗) _̂

k (u⃗′, v⃗) in JEP(U, V ) and therefore (u⃗, v⃗) ]k

(u⃗′, v⃗) in JEP(SymCl�i (SymCl�j U, V )), whence f(u⃗, v⃗) ]k f(u⃗′, v⃗), whence g(u⃗, t, v⃗) =
(f(u⃗, v⃗), t) ]k (f(u⃗′, v⃗), t) = g(u⃗′, t, v⃗).

– If k = j, then we have k = j, u⃗ = u⃗′
, t ̸= t′ and v⃗ = v⃗′. Then g(u⃗, t, v⃗) = (f(u⃗, v⃗), t) _̂

i

(f(u⃗, v⃗), t′) = g(u⃗, t′, v⃗) which implies g(u⃗, t, v⃗) _j g(u⃗, t
′, v⃗) since j > i.

– If k ∈ V , then we have t = t′, u⃗ = u⃗′
and v⃗ _k v⃗′ in JEP(V ).

∗ If k ̸= i, this implies (u⃗, v⃗) _k (u⃗, v⃗′) in JEP(SymCl�i (SymCl�j U, V )), whence f(u⃗, v⃗) _k

f(u⃗, v⃗′), whence g(u⃗, t, v⃗) = (f(u⃗, v⃗), t) _k (f(u⃗, v⃗′), t) = g(u⃗, t, v⃗′).
∗ If k = i, this implies (u⃗, v⃗) ]i (u⃗, v⃗

′) in JEP(SymCl�i (SymCl�j U, V )), whence f(u⃗, v⃗) ]i

f(u⃗, v⃗′), whence g(u⃗, t, v⃗) = (f(u⃗, v⃗), t) ]i (f(u⃗, v⃗
′), t) = g(u⃗, t, v⃗′).

• We prove soundness of conn:prism:src-neutral for the case where Q = _ and ♢ = ∨, the other

case is proven analogously. Assume that φ is a jet cube morphism SymCl�i V → W and (φ, t/i) is

a jet cube morphism Op�
i V → (W, i : L_iM). We prove that (φ, t ∨ i/i) is a jet cube morphism

(V, i : L_iM) → (W, i : L_iM). Write f = EP(φ) and g = EP(φ, t ∨ i/i) and h = EP(φ, t/i).
Pick a non-reflexive jet (v⃗, u) _j (v⃗′, u′) in JEP(V, i : L_iM). Let k be the variable where both

hands defer. There are two possibilities:

– If k = i, then j = i, v⃗ = v⃗′, u = 0 and u′ = 1. In this case, (t ∨ i)⟨v⃗, 1⟩ = 1, so that there is

necessarily an i-jet g(v⃗, 0) = (f(v⃗), (t ∨ i)⟨v⃗, 0⟩) _i (f(v⃗), 1) = g(v⃗, 1).
– If k ∈ V , then u = u′

and (v⃗, u) _j (v⃗′, u). Let l be the variable in (W, i : L_iM) such that

l⟨φ, t ∨ i⟩ depends on k. If there is no such variable, then we are done.

∗ If l = i, then k occurs in t.

· If u = 1, then g(v⃗, 1) = (f(v⃗), 1)
=
_j (f(v⃗

′), 1) = g(v⃗′, 1) as required.

· If u = 0, then we have v⃗ _j v⃗′ in JEP(Op�
i V ). Because (φ, t/i) is a jet cube

morphism Op�
i V → (W, i : L_iM), we get g(v⃗, 0) = h(v⃗) _j h(v⃗′) = g(v⃗′, 0) as

required.

∗ If l ∈ W , then k occurs in φ. Define z = (t ∨ i)⟨v⃗, u⟩ = (t ∨ i)⟨v⃗′, u⟩. We have

g(v⃗, u) = (f(v⃗), z) and g(v⃗′, u) = (f(v⃗′), z).

· If j = i, then we have v⃗ ]i v⃗′ in JEP(SymCl�i V ), whence f(v⃗) ]i f(v⃗′) in

JEP(W ), whence g(v⃗, u) = (f(v⃗), z) _i (f(v⃗
′), z) = g(v⃗′, u) in JEP(W, i : L_iM).

· If j ̸= i, then we have v⃗ _j v⃗′ in JEP(SymCl�i V ), whence f(v⃗) _j f(v⃗′) in

JEP(W ), whence g(v⃗, u) = (f(v⃗), z) _j (f(v⃗
′), z) = g(v⃗′, u) in JEP(W, i : L_iM).

• Soundness of conn:prism:tgt-neutral is proven analogously to that of conn:prism:src-neutral.

• Soundness of conn:prism-inv:src-neutral is proven from soundness of conn:prism:src-neutral

by precomposing the result with (idV ,¬i/i) which is a jet cube morphism (V, i : LPiM) → (V, i :
LQiM).

• Soundness of conn:prism-inv:tgt-neutral is similarly proven from soundness of conn:prism:tgt-

neutral.
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• We prove soundness of conn:degree-symmetric. Assume that

– (φ, s/i) is a jet cube morphism SymCl�i V → (W, i : LQiM),
– (φ, t/i) is a jet cube morphism V → (W, i : LQiM).

We prove that (φ, s♢ t/i) is a jet cube morphism V → (W, i : LQiM). Write

f = EP(φ), g = EP(φ, s/i), h = EP(φ, t/i), d = EP(φ, s♢ t/i).

Pick a non-reflexive jet v⃗ _j v⃗′ in JEP(V ); we prove that d(v⃗) _ d(v⃗′) in JEP(W, i : LQiM). Let

k be the variable of V where v⃗ and v⃗′ differ. There are four possible cases:

– If φ, s and t do not depend on k then the target jet is reflexive.

– If φ or s depends on k, then we have t⟨v⃗⟩ = t⟨v⃗′⟩ =: t0.

∗ If j ̸= i, then we have v⃗ _j v⃗′ in JEP(SymCl�i V ), whence (f(v⃗), s⟨v⃗⟩) = g(v⃗) _j

g(v⃗′) = (f(v⃗′), s⟨v⃗′⟩) in JEP(W, i : LQiM). Taking a connection with t0 does not in-

fluence the direction of the arrows to the left of i, nor of the arrows at i. Hence we get

d(v⃗) = (f(v⃗), s⟨v⃗⟩ ♢ t0) _j (f(v⃗
′), s⟨v⃗′⟩ ♢ t0) = d(v⃗′).

∗ If j = i, then we have v⃗ ]i v⃗′ in JEP(SymCl�i V ), whence (f(v⃗), s⟨v⃗⟩) = g(v⃗) ]i

g(v⃗′) = (f(v⃗′), s⟨v⃗′⟩) in JEP(W, i : LQiM). Hence we get d(v⃗) = (f(v⃗), s⟨v⃗⟩ ♢ t0) ]i

(f(v⃗′), s⟨v⃗′⟩ ♢ t0) = d(v⃗′).

– If t depends on k, then we have f(v⃗) = f(v⃗′) =: f0 and s⟨v⃗⟩ = s⟨v⃗′⟩ =: s0. We get

(f0, t⟨v⃗⟩) = h(v⃗) _j h(v⃗
′) = (f0, t⟨v⃗′⟩). Taking a connection with s0 yields d(v⃗) = (f0, s0♢

t⟨v⃗⟩) _j (f0, s0 ♢ t⟨v⃗′⟩) = d(v⃗′).

1.4.3 (b) Lemmas for Completeness

Proving completeness for the IPt2 monad is fairly straightforward, but for the cases involving connections

(conjunctions and disjunctions), we need a couple of helper lemmas.

Boolean reduction In this section, we establish a normal form for affine boolean terms.

Definition 1.4.3°6. Boolean terms t ∈ Boo(X) are equivalence classes t = [e] of boolean expressions
e ∈ BooE(X), which are defined as abstract syntax trees made up of 0, 1, ∨, ∧, ¬ and elements of X .

Thanks to commutativity and associativity, we regard ∨ and ∧ as having a multiset of operands with at

least two elements. The other operations have the usual arities.

We define a reduction algorithm that reduces an expression e to e′ such that [e] = [e′]:

• push all negations down to the leaves of the syntax tree,

• eliminate negations of constants,

• eliminate double negations,

• eliminate conjunctions/disjunctions with constants,

• remove parentheses of nested conjunctions / nested disjunctions.

We call an expression normal if it is its own reduction, i.e. if it is either a constant or a tree whose nodes

are alternatingly (as we climb the tree) labeled with ∨ and ∧ (the root can have either) and whose leaves

are literals, where a literal is either a variable or its negation.

Definition 1.4.3°7. Let d and e be normal expressions. We say that d is a pruning of e if any of the

following conditions hold (inductively):

• d is a literal occurring in e,

• e has a subexpression e′ which has the same root label ♢ ∈ {∨,∧} as d and such that there exists

a partition of the multiset of operands of d, i.e.

d = D1 ♢ . . .♢Dn where Di = di1 ♢ . . .♢ diki

such that every Di is a pruning of a root operand in e′, and moreover a single operand of e′ cannot

be used more often than its multiplicity in the multiset of root operands of e′.
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Proposition 1.4.3°8. Let e be a normal expression with variables in X and let σ be a bit-assignment

σ : Y → {0, 1} of the variables in Y ⊆ X . Let e[σ] reduce to d. Then d is either a constant or a pruning

of e.

Proof. By induction on e. If e is a constant or a literal, this is immediate. If e is a conjunction or disjunction,

then this follows from the induction hypothesis for the immediate children of e.

Lemma 1.4.3°9. For every t ∈ Boo#(X) and c ∈ {0, 1}, there exists a bit assignment σ : X → {0, 1}
such that t[σ] = c.

Proof. Pick an affine representant e ∈ [t] and assume it is normal (reduce if it is not). Then we can prove

this by induction on the height of e.

Lemma 1.4.3°10. For every normal affine expression e ∈ BooE#(X) mentioning all and only the vari-

ables in Z ⊆ X , and for every Y ⊆ X , there exists a bit assignment σ : X \ Y → {0, 1} such that e[σ]
reduces to a (necessarily normal affine) expression d which mentions all and only the variables in Y ∩Z .

Proof. By induction on e. If e is a leaf (i.e. a constant or a literal), then this is trivial. If e is a node with label

♢ ∈ {∨,∧}, then we invoke the induction hypothesis for all immediate subtrees mentioning variables in

Y , and find assignments for the variables mentioned in those immediate subtrees. For immediate subtrees

not mentioning variables in Y , we use lemma 1.4.3°9 to find an assigment that reduces this subtree to the

neutral element ι♢ of ♢. Combining all assignments yields the required result.

Corollary 1.4.3°11. For every normal affine expression e ∈ BooE#(X) that has a leaf ỹ ∈ {y,¬y}
where y ∈ X , there exists a bit assignment σ : X \ {y} → {0, 1} such that t[σ] = x̃.

Corollary 1.4.3°12. If e is a normal affine expression e ∈ BooE#(X) depending on y, then every ex-

pression representing [e] depends on y. We say that an affine term t ∈ Boo#(X) depends on y ∈ X
if the following equivalent conditions hold:

• All representants of t depend on y.

• All normal affine representants of t depend on y.

• Some normal affine representant of t depends on y.

Definition 1.4.3°13. If e is a normal affine expression e ∈ BooE#(X) depending on x, y ∈ X , then

we say that x and y are in ♢-connection (where ♢ ∈ {∨,∧}; concretely, we call this in disjunc-
tion/conjunction) in e if the closest common parent node of (the negation of) x and (the negation of) y
is labelled with ♢. We also write this as getConne(x, y) = ♢.

Lemma 1.4.3°14. Let d, e ∈ BooE#(X) be normal affine expressions and d a pruning of e. Let d (hence

e) depend on x, y ∈ X . Then x and y are in ♢-connection in d if and only if they are in ♢-connection in

e.

Proof. Take the closest common ancestor of x and y in d. Proving that d is a pruning of e involves, at

some point, that the operands of d mentioning x and y are separated. At that point, a corresponding

node in e was chosen with the same label; call e′ the subtree rooted there. The immediate subtrees of d′

mentioning x and y are prunings of different immediate subtrees of e′, so that the root node of e′ is also

the closest common ancestor of x and y in e.

Lemma 1.4.3°15. An affine boolean expression t ∈ Boo#(X) mentioning exactly two variables x and

y, has only a single normal representant, which is of the form x̃ ♢ ỹ with x̃ and ỹ literals mentioning x
and y, and ♢ ∈ {∨,∧}.

Proof. Since every node has at least two children and there are exactly two leaves, there is exactly one

node. This constrains the form of the normal representant. Next, each one of these forms produces a

different truth table and the truth table is a property of t, so there can be only one normal representant.
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Lemma 1.4.3°16. Let t ∈ Boo#(X) depend on x, y ∈ X , and let ♢ ∈ {∨,∧}. The following conditions

are equivalent:

• x and y are in ♢-connection in some normal affine representant of t,
• x and y are in ♢-connection in all normal affine representants of t,
• x and y are in ♢-connection in t (definition).

We also write this as getConnt(x, y) = ♢.

Proof. Let e and e′ be normal affine representants of t and let x and y be in ♢-connection in e. Pick an

assignment σ such that e[σ] reduces to d which depends exactly on {x, y}. By lemma 1.4.3°15, d is then

the unique normal affine representant of t[σ], so that e′[σ] also reduces to d. Then d is a pruning of both

e and e′, so by lemma 1.4.3°14, x and y are in ♢-connection in e′.

Lemma 1.4.3°17. (Not used.) Let e ∈ BooE#(X) be a normal affine expression depending on x and y
where x ̸= y. The following conditions are equivalent:

• getConne(x, z) = getConne(y, z) for all z ∈ X \ {x, y},

• the literals x̃ and ỹ corresponding to x and y occurring in e are immediate siblings.

Proof. It is clear that the second condition implies the first. To prove the other implication, assume that x̃
and ỹ are not immediate siblings. Let ♢ = getConne(x, y). Then one of them, say ỹ, has a closer relative

z̃ such that getConne(y, z) = ♡ ≠ ♢. This means that e has a pruning of the form d = x̃♢ (ỹ ♡ z̃). But

then we have

getConne(x, z) = getConnd(x, z) = ♢ ≠ ♡ = getConnd(y, z) = getConne(y, z),

violating the assumption.

Lemma 1.4.3°18. Let X1, X2, . . . , Xn ⊆ Z be disjoint and n > 1. Let e ∈ BooE#(Z) be a normal affine

expression depending on all and only on variables in X =
⋃

i Xi. Let {♢,♡} ∈ {∨,∧}. The following

conditions are equivalent:

• both of the following conditions hold:

– getConne(x, y) = ♢ for all x ∈ Xi, y ∈ Xj , i ̸= j,

– each Xi is ♡-connected meaning that no further partition of Xi is possible maintaining the

property above,

• e is of the form e = d1 ♢ d2 ♢ . . .♢ dn with each di depending on all and only on variables in Xi,

and being either a leaf or a tree with root node labelled with ♡.

Proof. It is clear that the second condition implies the first. To prove the other implication, assume that

e is not of this form. There are two possibilities:

• e is of the form e = d1 ♢ d2 ♢ . . . ♢ dm but the dependencies are not as expected. Then we get

a different partition of X by the upward implication which we already proved. But then we can

intersect both partitions, yielding a finer one, which is in contradiction with the assumption that

further partitioning was not possible.

• e is of the form e = d1 ♡ d2 ♡ . . .♡ dm. Then X is ♡-connected meaning that n = 1, violating the

assumptions.

Lemma 1.4.3°19. A non-constant normal affine boolean expression e ∈ BooE#(X) is fully determined

by the set of literals it mentions and getConne(⌞⌟, ⌞⌟).
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Proof. Let e, e′ ∈ BooE#(X) be normal affine boolean expressions mentioning the same literals and such

that getConne(⌞⌟, ⌞⌟) = getConne′(⌞⌟, ⌞⌟). We prove that e = e′ by induction on e. If e is a constant or

a literal, the result is immediate. Otherwise, e is of the form e = d1 ♢ d2 ♢ . . . ♢ dn, where {♢,♡} ∈
{∨,∧}. Then lemma 1.4.3°18 partitions X in ♡-connected components. Then by the other implication of

lemma 1.4.3°18, e′ is of the form e′ = d′1 ♢ d′2 ♢ . . . ♢ d′n, where di and d′i have the same dependencies

Xi. Thus, they must also depend on the same set of literals. Since di is a pruning of e and d′i is a pruning

of e′, we have getConndi
(⌞⌟, ⌞⌟) = getConne(⌞⌟, ⌞⌟) = getConne′(⌞⌟, ⌞⌟) = getConnd′

i
(⌞⌟, ⌞⌟) when

considered on pairs of distinct variables in Xi. From the induction hypothesis, we conclude that di = d′i,
for all i, and hence e = e′.

Theorem 1.4.3°20. Every affine boolean term t ∈ Boo#(Z) has exactly one normal affine representant.

Proof. Let e, e′ ∈ BooE#(X) be normal affine representants of t. By corollary 1.4.3°12, we know that

e and e′ depend on the same set of variables X . By corollary 1.4.3°11, we know moreover that they

mention the same literals. By lemma 1.4.3°16, we know that getConne(⌞⌟, ⌞⌟) = getConne′(⌞⌟, ⌞⌟) =
getConnt(⌞⌟, ⌞⌟). Thus, by lemma 1.4.3°19, we conclude that e = e′.

Understanding jet cube morphisms

Lemma 1.4.3°21. In JetCube2M (fbe, a⃗) with M ∈ {IPt2,Boo}, the following holds: If a cube morphism

φ is a jet cube morphism V = (V0, j : LPjM, V1) → W = (W0, i : LQiM,W1) with P,Q ∈ {_,^,]}
and j > i, and if either of the following conditions hold:

• j appears in i⟨φ⟩,
• j does not appear in φ at all,

then φ is also a jet cube morphism Ṽ := (SymCl�j (V0), j : L]jM, V1) → W .

We remark that this lemma is vacuous if ai = # or P = ].

In words, the lemma says: When a variable of the domain of a jet cube morphism is used at a lower

degree in the codomain, or not at all, then that variable and all variables of the same degree to its left can

be promoted to equijet variables.

Proof. Let W ′
be the cube obtained from W by simply deleting all variables of degree i or lower. Then

the weakening morphism π : W → W ′
is a jet cube morphism. Thanks to affineness, π ◦ φ : V → W ′

does not depend on j. Hence, π ◦ φ ◦ (0/j) = π ◦ φ ◦ (1/j) =: ρ : (⌊V0⌋, ⌊V1⌋) → ⌊W ′⌋. In the category

of jet cubes and cube morphisms between their erasures, we have a commutative diagram

(Op�
j V0, V1)

ρ

&&

(0/j)
// V

φ

��

(V0, V1)

ρ

zz

(1/j)
oo

W

π

��

W ′

where the black arrows are known to be jet cube morphisms, and hence the dotted arrows are also jet cube

morphisms as jet cube morphisms compose. Thus, ρ is both a jet cube morphism (Op�
j V0, V1) → W ′

and

(V0, V1) → W ′
, hence it is a jet cube morphism (SymCl�j V0, V1) → W ′

.

We now show that φ is a jet cube morphism Ṽ → W , i.e. that f := EP(φ) is a jet set morphism

JEP(Ṽ ) → JEP(W ). Pick a non-reflexive jet v⃗ = (v⃗0, u, v⃗1) _k v⃗′ = (v⃗′0, u
′, v⃗′1) in Ṽ ; we show that

f(v⃗) _k f(v⃗′). If k ̸= j, then v⃗ _k v⃗′ is also a jet in V and therefore preserved by f . Thus, we can

assume that k = j. Let k be the unique variable where v⃗ and v⃗′ differ. There are three possibilities
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k ∈ V0 In this case, we have v⃗0 _̂
j v⃗

′
0 in V0, u = u′

, v⃗1 = v⃗′1, v⃗ _̂
j v⃗

′
in V and f(v⃗) _̂

j f(v⃗
′) in W .

If φ does not depend on k, then f(v⃗) = f(v⃗′) and therefore f(v⃗) _j f(v⃗′). So we assume that φ
depends on k; let l be the variable such that l⟨φ⟩ depends on k.

• If l is of degree ℓ ≤ i < j, then f(v⃗) _̂
j f(v⃗

′) is only possible if f(v⃗) _̂
ℓ f(v⃗

′) which implies

f(v⃗) ]j f(v⃗
′).

• If l is of degree ℓ > i, then we have EP(ρ)(v⃗0, v⃗1)
̸=
]j EP(ρ)(v⃗′0, v⃗1) because ρ is a jet cube

morphism (SymCl�j V0, V1) → W ′
. Since EP(ρ) = EP(π)◦EP(φ)◦EP(c/j) for any c ∈ {0, 1}

and the components forgotten by EP(π) are identical, we have f(v⃗) ]j f(v⃗
′).

k = j In this case, we have v⃗0 = v⃗′0, v⃗1 = v⃗′1, and v⃗ _̂
j v⃗′ in V . Therefore we get f(v⃗) _̂

j f(v⃗′) and

these vectors differ at their value for i, which has degree i, so this is only possible if f(v⃗) _̂
i f(v⃗

′),
which implies f(v⃗) ]j f(v⃗

′).

k ∈ V1 Then v⃗ _j v⃗
′

holds in V and is therefore preserved by f = EP(φ).

Lemma 1.4.3°22. In JetCube◊Boo(fbe, a⃗) with ◊ ∈ {2,�}, let V be a jet cube with only i-directed

variables called (from left to right) j1, . . . , jn, and consider φ : V → (i : LPiM) with P ∈ {_,^}. Then

i⟨φ⟩ is either a constant or of the (obviously affine) form

i⟨φ⟩ = (. . . ((¬p1j1 ♢1 ¬p2j2)♢2 ¬p3j3) . . .)♢n−1 ¬pnjn

with pk ∈ {0, 1} and ♢k ∈ {∨,∧,K} where we define x K y := y.

We will only use this lemma when ◊ = 2.

Proof. We assume P = _, the proof for P = ^ is analogous.

We prove this by induction on n. If n = 0 then i⟨φ⟩ is necessarily a constant. Assume n > 0, implying

that ai = c. The jet set JEP(V ) has 2n elements and a unique Hamiltonian path of i-jets. The function

f := JEP(φ) sends this Hamiltonian path to a path in JEP(i : L_iM) = {0 _i 1}. Thus, f is entirely

determined by the step in the Hamiltonian path where the image of f flips from 0 to 1. Write j′k to mean

jk if jk : L_iM and to mean ¬jk if jk : L^iM. There are 5 possible scenarios:

• The entire path is sent to 0. Then i⟨φ⟩ = 1 = K 0.

• The entire path is sent to 1. Then i⟨φ⟩ = 1 = K 1.

• The first half of the path is sent to 0, the second half is sent to 1. Then i⟨φ⟩ = j′n = K j′n.

• The output of f flips somewhere in the first half of the path. Then i⟨φ⟩ = s ∨ j′n for some boolean

expression s depending on j1, . . . , jn−1. Write V = (U, jn : ). Then we have (s/i) : Op�
i U →

(i : L_iM), such that JEP(s/i) is essentially the restriction of f to the first half of the Hamiltonian

path as is evident from the following commutative diagram:

Op�
i U

(s/i)
//

(0/jn) &&

(i : L_iM).

V = (U, jn : )

(s∨jn/i)

77

By the induction hypothesis, s is of the prescribed form, and therefore so is i⟨φ⟩.
• The output of f flips somewhere in the second half of the path. Then i⟨φ⟩ = s∧j′n for some boolean

expression s depending on j1, . . . , jn−1. Write V = (U, jn : ). Then we have (s/i) : U → (i :
L_iM), such that JEP(s/i) is essentially the restriction of f to the second half of the Hamiltonian

path as is evident from the following commutative diagram:

U
(s/i)

//

(1/jn) %%

(i : L_iM).

V = (U, jn : )

(s∧jn/i)

77
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By the induction hypothesis, s is of the prescribed form, and therefore so is i⟨φ⟩.

Lemma 1.4.3°23. In JetCube2Boo(fbe, a⃗) where ai = c, consider φ : V → (i : LPiM) with P ∈ {_,^}.

Write j1, . . . , jn for the i-directed variables of V . Then φ does not depend on variables of degree lower

(stronger) than i, nor on i-equijet variables of V . Moreover, i⟨φ⟩ is of the form

i⟨φ⟩ = hn(hn−1(. . . h3(h2(h1(¬p1j1)♢1 ¬p2j2)♢2 ¬p3j3) . . .)♢n−1 ¬pnjn)

with pk ∈ {0, 1} and ♢k ∈ {∨,∧,K} where we define x K y := y, and every hk is a composition of

functions of the form ⌞⌟♡ t with t any affine boolean expression mentioning only i-symmetric variables

and ♡ ∈ {∨,∧,K}.

Proof. We assume P = _, the proof for P = ^ is analogous.

First of all, the i-equijet relation as well as all ℓ-jet relations for ℓ < i are reflexive in JEP(i : L_iM) =
{0 _i 1}, so that JEP(φ) must be constant on i-equijet- or ℓ-jet-connected components, implying that

φ cannot depend on those variables. Then φ factors over the map χ : V → W that weakens over all

those variables. (JEP(χ) is the map that quotients out the i-equijet relation and therefore also the ℓ-jet

relations for ℓ < i.) Thus, without loss of generality, we can assume that V = W contains no variables

of degree lower than i, and no i-equijet variables. Moreover, applying corollary 1.4.3°2, we can assume

without loss of generality that V is conventional so that the i-directed variables in V are the last ones.

Write U for the i-directed part of V and note that any assignment of bits to all i-symmetric variables

yields a jet cube morphism σ : U → V whose composite with φ necessarily satisfies lemma 1.4.3°22.

By lemma 1.4.3°10, there exists a particular assignment σ0 : U → V such that i⟨φ ◦ σ0⟩ depends on all

i-directed variables that i⟨φ⟩ depends on. The form of lemma 1.4.3°22 then dictates that i⟨φ⟩ depends on

a final segment of the i-directed variables in V . Then φ factors over the map χ : V → W that weakens

over the initial segment of i-directed variables that φ does not depend on, and again, without loss of

generality, we assume that V = W , i.e. that φ uses all i-directed variables in V .

The fact that i⟨φ◦σ0⟩ satisfies lemma 1.4.3°22 and is a pruning of i⟨φ⟩ (by proposition 1.4.3°8), severely

constrains the possible forms that i⟨φ⟩ may take. However, lemma 1.4.3°22 does not require that conjunc-

tion and disjunction appear in alternation, and thus, a priori, by associativity, parentheses could be moved

around before unpruning. Thus, we need to constrain further to obtain the form in the current lemma.

Let e be the unique normal affine representant of i⟨φ⟩ (theorem 1.4.3°20). We proceed by induction

on e. If e is a constant or i-symmetric literal, then it is of the required form. If it is an i-directed literal,

then it is the only one it depends on, hence ¬pnj′n with n = 1, and thus of the required form.

If e is of the form e = d1 ♢ . . . ♢ dm, then we need to prove that either ¬pnjn is a direct operand

of e, or all i-directed variables occur in the same direct operand of e. Suppose that neither is the case.

Then we can assume that d1 depends indirectly on jn and d2 depends on jk . Say d1 = c1 ♣ . . .♣ cℓ with

{♢,♣} = {∨,∧} and c1 depends on jn. There is an assignment σ1 of the i-symmetric dependencies of

d1 that reduces all ci>2 to the absorbing element ∞♣ of ♣, and thus reduces d1 to ∞♣ = ι♢, the neutral

element of ♢. For i > 2, there is an assignment σi of the i-symmetric dependencies of di that preserves

all i-directed dependencies. We combine all these assignments to a single assignment σ : U → V . Then

e[σ] reduces to a normal expression that depends on jk but not jn, which is then a representant of i⟨φ◦σ⟩,
which we know must satisfy lemma 1.4.3°22 and thus cannot depend on jk without also depending on

jn.

Lemma 1.4.3°24. In JetCubeConv2Boo(fbe, a⃗), let φ̂ : V → W be a jet cube morphism and writeφ = ⌊φ̂⌋.

Let W = (W0, i : LQiM) with Q ∈ {_,^} and ai = c. Let e be the normal affine representant of i⟨φ⟩
and let j1, . . . , jn (n ≥ 0) be all the variables of degree i that e depends on, and k1, . . . ,km (m ≥ 0) all

the other variables that e depends on. Assume m + n ≥ 2, so that e necessarily contains a conjunction

or disjunction. By lemma 1.4.3°23, we know that j1, . . . , jn are the last n variables of degree i in V .

Write V = (V0, j1 : LP 1
i M, . . . , jn : LPn

i M, V1) so that (even if n = 0) all variables in V0 have degree

at least (at the strongest) i and all variables in V1 have degree strictly less (stronger) than i. Here, each

P 1, . . . , Pn ∈ {_,^}.
8

Define Ṽ = (SymCl�i V0, j1 : LP 1
i M, . . . , jn : LPn

i M, Vn), i.e. every variable of

degree i to the left of j1 gets promoted to an equijet variable. Then φ is a jet cube morphism Ṽ → W .

8
We could in principle allow ] but it is easy to see that φ being a jet cube morphism (equivalently, EP(φ) being a jet set)

implies P 1, . . . , Pn ∈ {_,^}.
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It is clear that k1, . . . ,km all occur in V0 as they cannot have degree less (stronger) than i.

In words, this lemma says that if the last variable i of W is substituted with an expression e depending

on at least two variables, then all variables in V of same degree as i that e does not depend on, can be

promoted to equijet variables.

Proof. For c ∈ {0, 1}, letAc be the set of all (κ⃗, ζ⃗) ∈ {0, 1}m+n
such that i⟨φ⟩⟨κ⃗/k⃗, ζ⃗/⃗j⟩ = c. LetU be the

(ordinary) cube obtained from ⌊V ⌋ by removing all dependencies of e. Then for any (κ⃗, ζ⃗) ∈ {0, 1}m+n
,

by applying cube opposite functors in all the right places, there is a jet cube U(κ⃗,ζ⃗) such that

⌊
U(κ⃗,ζ⃗)

⌋
= U

and (κ⃗/k⃗, ζ⃗/⃗j) : U(κ⃗,ζ⃗) → V is a jet cube morphism.

Then in the category of jet cubes and cube morphisms between their erasures, for any (κ⃗, ζ⃗) ∈ Ac, we

obtain a commutative diagram

U(κ⃗,ζ⃗)

(κ⃗/k⃗,ζ⃗/⃗j)

��

χ
// (Op�

i )
1−c(W0)

(c/i)

��

V
φ

// W

where all the black lines are jet cube morphisms and the cube morphism χ is defined as (i/⊘) ◦ φ ◦
(κ⃗/k⃗, ζ⃗/⃗j), which thanks to afineness does not depend on our choice of (κ⃗, ζ⃗), nor even on c. Commuta-

tivity of the diagram and the fact that JEP(c/i) is a full jet set morphism, imply that χ, too, is a jet cube

morphism.

We now show that φ is a jet cube morphsim Ṽ → W . Let v⃗ _k v⃗′ in Ṽ . We prove that f(v⃗) _k f(v⃗′)
where f = EP(φ). If v⃗ = v⃗′ then this is trivial, so let l be the variable where they differ. If k ̸= i or l ̸∈ V0

then we have v⃗ _k v⃗′ in V so this is preserved by f .

Assume k = i and l ∈ V0, which implies that l is not a dependency of e. This implies that e⟨v⃗⟩ =
e⟨v⃗′⟩ =: c, or differently put i⟨f(v⃗)⟩ = i⟨f(v⃗′)⟩ = c. We have v⃗ _̂

i v⃗′ in V , say v⃗ Si v⃗′ where

S ∈ {_,^}. This is preserved by f , so f(v⃗) Si f(v⃗
′). Because (c/i) is a full jet set morphism, writing

p = EP(i/⊘), we can conclude that p(f(v⃗)) Si p(f(v⃗
′)) in (Op�

i )
1−c(W0).

Let u⃗ and u⃗′
be bit-assignments to the variables in U obtained by projecting out all bits assigned to

the dependencies of e in the vectors v⃗ and v⃗′, and let ζ⃗ and κ⃗ be the bits thus forgotten (which are the

same for v⃗ and v⃗′). Thus, v⃗ = EP(ζ⃗ /⃗j, κ⃗/k⃗)(u⃗) and similar for v⃗′. Writing g = EP(χ), this implies that

p(f(v⃗)) = g(u⃗) and p(f(v⃗′)) = g(u⃗′). Thus, we have g(u⃗) Si g(u⃗
′) in (Op�

i )
1−c(W0).

If φ does not depend on l, then we have nothing to prove, so let h be the variable of W such that

h⟨φ⟩ depends on l. Note that h ̸= i. We remark that the direction of the jet between g(u⃗) and g(u⃗′) in

(Op�
i )

1−c(W0) flips with c = e⟨v⃗⟩, which is a function of (κ⃗, ζ⃗).

On the other hand, looking at the direction of the jet between u⃗ and u⃗′
in U(κ⃗,ζ⃗), we see that this

flips with the j1 ⊻ . . . ⊻ jn, the exclusive disjunction of all dependencies of e of degree i, which all

appear to the right of l. Now if m + n ≥ 2, then it is impossible that the affine boolean expression

e ∈ Boo#({k1, . . . ,km, j1, . . . , jn}) which is in a reduced state and therefore truly depends on each of

the mentioned variables, yields the exact same (or opposite) truth table as j1 ⊻ . . . ⊻ jn.

Thus, fixing u⃗ and u⃗′
and varying (κ⃗, ζ⃗), we see that there are assignments (κ⃗, ζ⃗) for which the jets

between u⃗ and u⃗′
in U(κ⃗,ζ⃗) on one hand, and between g(u⃗) and g(u⃗′) in (Op�

i )
1−c(W0) are aligned, and

others for which they are opposed. Pick an assignment (κ⃗′, ζ⃗ ′) for which they are opposed. We also know

that χ is a jet cube morphism for any assignment (κ⃗, ζ⃗), and in particular for (κ⃗′, ζ⃗ ′). Thus, χ provides

us the jet pointing the other way, and we can conclude that g(u⃗) ]i g(u⃗
′). Composing with EP(c/i) for

our original c yields f(v⃗) ]i f(v⃗
′).

Corollary 1.4.3°25. In JetCube2Boo(fbe, a⃗), let φ̂ : V → W be a jet cube morphism and write φ = ⌊φ̂⌋.

Let W = (W0, i : LQiM) with Q ∈ {_,^} and ai = c. Let e be the reduction of i⟨φ⟩ and assume e
depends on at least two variables. Then (⊘/i) ◦ φ is a jet cube morphism SymCl�i V → W0.
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Proof. We know from lemma 1.4.3°24 that φ is a jet cube morphism Ṽ → W . We first show that (⊘/i)◦φ
is a jet cube morphism Ṽ → W0. Write f = EP(φ) and p = EP(⊘/i). Pick a non-reflexive jet v⃗ _j v⃗

′
in

Ṽ . We show that p(f(v⃗)) _j p(f(v⃗
′)) in W0. We know that f(v⃗) _j f(v⃗

′) in W . If j ̸= i, it follows that

p(f(v⃗)) _j p(f(v⃗′)) in W0. If j = i, it follows that p(f(v⃗)) _̂
i p(f(v⃗

′)) in W0. But because (⊘/i) ◦ φ
only depends on i-symmetric variables in Ṽ , we can conclude that p(f(v⃗)) ]i p(f(v⃗

′)).
We conclude that (⊘/i) ◦ φ is a jet cube morphism Ṽ → W . Since it only depends on i-symmetric

variables, there is no harm in promoting the ignored variables of degree i to equijet variables, and that is

all that SymCl�i V does.

1.4.3 (c) Completeness

Theorem1.4.3°26 (Completeness). ForM ∈ {IPt2,Boo} and any morphism φ̂ : V → W in JetCubeConv2M (fbe, a⃗),
writing φ = ⌊φ̂⌋, we have ⊢ φ : V → W .

Proof. For each variable k in W , let ek be the normal affine representant of k⟨φ⟩.
We prove completeness by induction on the number of nodes and leaves (added up) in the tuple

(ek)k∈W , plus the number of directed degrees in the mask.

If W = (), then use terminal.

If ai = c and the last variable in W is i : L]iM, then W is of the form USym�
i (U) and we can use

the induction hypothesis for the corresponding morphism FSym�
i (V ) → U and we can use the rule

symmetrize.

In the remaining case, the last variable in W is not an equijet dimension at a directed degree, i.e. it is

of the form i : L_iM or i : L^iM.
If the last variable in V is of degree strictly lower (stronger) than the degree of i, then in order to be

a jet set morphism, JEP(φ̂) cannot depend on that variable, so we can invoke wkn until the last variable

in V is of degree at least i. We do not resort to the induction hypothesis but proceed below.

We proceed by inspecting ei.

• If [i : L_iM and ei = 0] or [i : L^iM and ei = 1], then φ being a jet cube morphism V → W =
(U, i : ) (equivalently: EP(φ) being a jet set morphism JEP(V ) → JEP(W )) is equivalent to

(⊘/i) ◦ φ being a jet cube morphism V → Op�
i (U), so we can apply src:fwd or src:bck.

• If [i : L_iM and ei = 1] or [i : L^iM and ei = 0], then φ being a jet cube morphism V → W =
(U, i : ) (equivalently: EP(φ) being a jet set morphism JEP(V ) → JEP(W )) is equivalent to

(⊘/i) ◦ φ being a jet cube morphism V → U , so we can apply tgt:fwd or tgt:bck.

• If i : L_iM and ei = ¬j, then φ being a jet cube morphism V → W = (U, i : L_iM) is equivalent

to (¬i/i) ◦ φ being a jet cube morphism V → (U, i : L^iM), so we can apply inv:fwd. Similarly, if

i : L^iM and ei = ¬j, we can apply inv:bck.

• If i : L_iM (i : L^iM is handled analogously) and ei = j where V specifies that j has degree j, then

we know that φ = (χ, j/i) is a jet cube morphism V = (V0, j : LRjM, V1) → W = (U, i : L_iM) for

some R ∈ {_,^,]}. We have the following commutative diagram in the category of jet cubes
and cube morphisms between erased jet cubes:

(Op�
j (V0), V1)

(0/j)

��

χ
// Op�

i (U)

(0/i)

��

(V0, j : LRjM, V1)
φ=(χ,j/i)

// (U, i : L_iM)

(V0, V1)

(1/j)

OO

χ
// U

(1/i)

OO

We know that the black arrows are all jet cube morphisms, and the vertical arrows all yield full

jet set morphisms (definition 1.2.1°2). This implies that the dashed arrows also lift to jet set mor-

phisms, i.e. are jet cube morphisms. Then χ is both a jet cube morphism (V0, V1) → U and

Op�
i (Op

�
j (V0), V1) → U .
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– If j = i, then all variables in V1 have degree i and χ is both a jet cube morphism (V0, V1) → U
andOp�

i (Op
�
i V0, V1) → U . This implies thatEP(φ) sends every i-jet of the form (v⃗0, r, v⃗1) _i

(v⃗0, r, v⃗
′
1) in JEP(V0, V1) – which points the other way in JEP(Op�

i (Op
�
i V0, V1)) – to an i-

equijet (EP(χ)(v⃗0, v⃗1), r) ]i (EP(χ)(v⃗0, v⃗
′
1), r) in JEP(U, i : L_iM).

∗ If ai = c, then for any bit-assignment v⃗1 of the variables in V1, we get a jet cube mor-

phism (χ ◦ (v⃗1/V1), j/i) : (Op
�
i )

p(V0, j : LRiM) → (U, i : L_iM), where p is the number

of source constants in v⃗ (i.e. 0 for L_iM and 1 for L^iM). This implies that p is the same

for all assignments v⃗, which is only possible if V1 = (). In that case, it is easy to see that

R = _. Thus, we can apply prism:fwd.

∗ If ai = #, then we can use exchange to create a morphism from (V0, V1, j : L⌢iM)
instead, which can be done using prism:fwd (or equivalently prism:bck).

If j > i, then χ is necessarily a jet cube morphism SymCl�i (SymCl�j (V0), V1) → U , so we

can apply concursor.

• We have now covered all cases for the monad IPt2. In the remaining cases, ei contains connection

(conjunction or disjunction) symbols. If i : L^iM, we apply inv:fwd and push down the introduced

negation, after which we do not resort to the induction hypothesis but proceed below.
9

We now

assume that i : L_iM.

– We first treat the case where ai = #. Let φ = (χ, s ♢ t/i) where ♢ ∈ {∨,∧} and W =
(U, i : L_iM). We claim that if φ is a jet cube morphism V → W = (U, i : L⌢iM), then so are

(χ, s/i) and (χ, t/i), so that we can invoke conn:sym. Write

f = EP(φ), g = EP(χ), p = EP(χ, s/i), q = EP(χ, t/i).

Pick a non-reflexive jet v⃗ _j v⃗′. We prove p(v⃗) _j p(v⃗′); by symmetry of the situation we

do not have to prove the same for q. Let k be the variable of V where v⃗ and v⃗′ differ. There

are four possible situations:

∗ If φ does not depend on k, then we are done.

∗ If χ depends on k, then we have s⟨v⃗⟩ = s⟨v⃗′⟩ =: s0 and t⟨v⃗⟩ = t⟨v⃗′⟩ =: t0.

· If j ̸= i, then from (g(v⃗), s0 ♢ t0) = f(v⃗) _j f(v⃗′) = (g(v⃗′), s0 ♢ t0), it follows

that g(v⃗) _j g(v⃗
′) in JEP(U), whence p(v⃗) = (g(v⃗), s0) _j (g(v⃗

′), s0) = p(v⃗′).
· If j = i, then from (g(v⃗), s0♢ t0) = f(v⃗) ⌢i f(v⃗

′) = (g(v⃗′), s0♢ t0) it follows that

g(v⃗) ⌢i g(v⃗
′) in JEP(U), whence p(v⃗) = (g(v⃗), s0) ⌢i (g(v⃗

′), s0) = p(v⃗′).

∗ If s depends on k, then we have g(v⃗) = g(v⃗′) =: g0 and t⟨v⃗⟩ = t⟨v⃗′⟩ =: t0. Pick a

bit-assignment τ of the dependencies of t such that t⟨τ⟩ reduces to the neutral element

ι♢ of ♢.
10

Define x⃗ and x⃗′
by overwriting v⃗ and v⃗′ with τ . Then g(x⃗) = g(x⃗′) = g0 and

t⟨x⃗⟩ = t⟨x⃗′⟩ = ι♢ and s⟨x⃗⟩ = s⟨v⃗⟩ and s⟨x⃗′⟩ = s⟨v⃗′⟩. We have x⃗ _̂
j x⃗

′
, whence

p(v⃗) = (g0, s⟨v⃗⟩) = (g0, s⟨v⃗⟩ ♢ ι♢) = (g0, s⟨x⃗⟩ ♢ t⟨x⃗⟩) = f(x⃗)
_̂

j

p(v⃗′) = (g0, s⟨v⃗′⟩) = (g0, s⟨v⃗′⟩ ♢ ι♢) = (g0, s⟨x⃗′⟩ ♢ t⟨x⃗′⟩) = f(x⃗′)

in JEP(W, i : L_iM). Now, since these vectors only differ at i, we can deduce equality if

j < i (j is stronger than i) and otherwise that p(v⃗) ⌢i p(v⃗′), which implies p(v⃗) _j

p(v⃗′) since j ≥ i (j is weaker than or equal to i).
∗ If t depends on k, then χ and s do not so p(v⃗) = p(v⃗′) and we are done.

– Now assume that ai = c. Let φ = (χ, t ♢ s/i) where ♢ ∈ {∨,∧} and W = (U, i : L_iM).
Corollary 1.4.3°25 immediately tells us that χ is a jet cube morphism SymCl�V → U . By

lemma 1.4.3°23, we can assume that s is either (the negation of) the last variable of degree i in

V = (V0, i : LPiM) with P ∈ {_,^} or a boolean expression only depending on i-symmetric

variables.

9
Alternatively, we could duplicate and adapt the proof below to the case where i : L^iM.

10
If this were not possible, then t would be a constant, which is in contradiction with the assumption that ei was normal.
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∗ If s = i′ ∈ {i,¬i}, then depending on ♢ we have one of the following commutative

diagrams, where each arrow is a jet cube morphism but labelled with its erasure:

Op�
i V

(0/i)

��

(χ,t/i)

&&

(V, i : L^iM) oo
∼=

(χ,¬i/i)
// (V, i : L_iM)

(χ,t∨i/i)
// (W, i : L_iM)

V

(1/i)

��

(χ,t/i)

''

(V, i : L^iM) oo
∼=

(χ,¬i/i)
// (V, i : L_iM)

(χ,t∧i/i)
// (W, i : L_iM)

Thus, we can invoke one of the rules conn:prism:src-neutral, conn:prism:tgt-neutral,

conn:prism-inv:src-neutral, conn:prism-inv:tgt-neutral.

∗ If s depends only on i-symmetric variables, then the same holds for (χ, s/i). Write

f = EP(φ), g = EP(χ), p = EP(χ, s/i), q = EP(χ, t/i).

We show that

· (χ, s/i) is a jet cube morphism SymCl�i V → (W, i : L_iM),
· (χ, t/i) is a jet cube morphism V → (W, i : L_iM),

so that we can invoke conn:degree-symmetric.

Pick a non-reflexive jet v⃗ _j v⃗′ in JEP(V ). We will prove p(v⃗) _j p(v⃗′) and q(v⃗) _j

q(v⃗′) and, if j = i, even p(v⃗) ]j p(v⃗′), all the time in JEP(W, i : L_iM). Let k be the

variable where v⃗ and v⃗′ differ. There are four possibilities:

· If φ does not depend on k, then we are done.

· If χ depends on k, then s⟨v⃗⟩ = s⟨v⃗′⟩ =: s0 and t⟨v⃗⟩ = t⟨v⃗′⟩ =: t0.

· If j = i, then g(v⃗) ]i g(v⃗
′) and hence p(v⃗) = (g(v⃗), s0) ]i (g(v⃗

′), s0) = p(v⃗′)
and q(v⃗) = (g(v⃗), t0) ]i (g(v⃗

′), t0) = q(v⃗′) as required.

· If j ̸= i, then g(v⃗) _j g(v⃗′) and hence p(v⃗) = (g(v⃗), s0) _j (g(v⃗′), s0) = p(v⃗′)
and q(v⃗) = (g(v⃗), t0) _j (g(v⃗

′), t0) = q(v⃗′) as required.

· If s depends on k, then g(v⃗) = g(v⃗′) =: g0 and t⟨v⃗⟩ = t⟨v⃗′⟩ =: t0, so q(v⃗) = q(v⃗′).
We pick τ and define x⃗ and x⃗′

in the same way as we did when ai = # and all

other circumstances were the same. Then we have x⃗ _̂
j x⃗′

in JEP(V ), whence

p(v⃗) = f(x⃗) _̂
j f(x⃗′) = p(v⃗′). Now, since these vectors only differ at i, we can

deduce equality if j < i (j is stronger than i) and otherwise that p(v⃗) _̂
i p(v⃗′).

But since s and χ only depend on i-symmetric variables, it must be the case that

p(v⃗) ]i p(v⃗
′), as required if i = j, and implying p(v⃗) _j p(v⃗

′) if j > i.
· If t depends on k, then g(v⃗) = g(v⃗′) =: g0 and s⟨v⃗⟩ = s⟨v⃗′⟩ =: s0, so p(v⃗) = p(v⃗′).

Pick an assignment σ of the dependencies of s such that s⟨σ⟩ reduces to the neutral

element ι♢ of ♢. Define y⃗ and y⃗′ by overwriting v⃗ and v⃗′ with σ. Then g(y⃗) =
g(y⃗′) = g0 and s⟨y⃗⟩ = s⟨y⃗′⟩ = ι♢ and t⟨y⃗⟩ = t⟨v⃗⟩ and t⟨y⃗′⟩ = t⟨v⃗′⟩. We have

y⃗ _̂
j y⃗

′
but, since all dependencies of s are i-symmetric, they come to the left of all

i-directed variables, so if i = j we actually still have y⃗ _i y⃗
′
. Now we have

q(v⃗) = (g0, t⟨v⃗⟩) = (g0, ι♢ ♢ t⟨v⃗⟩) = (g0, s⟨y⃗⟩ ♢ t⟨y⃗⟩) = f(y⃗)
_̂

j

q(v⃗′) = (g0, t⟨v⃗′⟩) = (g0, ι♢ ♢ t⟨v⃗′⟩) = (g0, s⟨y⃗′⟩ ♢ t⟨y⃗′⟩) = f(y⃗′)

and q(v⃗) _i q(v⃗
′) if j = i. Thus, the case j = i has been handled. Since q(v⃗) and

q(v⃗′) can only differ at i which has degree i, we can deduce equality if j < i (j is

stronger than i) and otherwise that q(v⃗) _̂
i q(v⃗

′) which implies q(v⃗) _j q(v⃗′) as

required.
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1.4.4 The Semisymmetric Separated Product

Definition 1.4.4°1. We define the separated product functor

⌞⌟ ∗ ⌞⌟ : JetSet(⃗a)× JetSet(⃗a) → JetSet(⃗a)

by letting X ∗ Y be the jet set with carrier UX × UY such that (x, y) _j (x
′, y′) if either

• x _j x
′

and y = y′,
• x = x′

and y _j y
′
.

The action on morphisms is of course faithfully inherited from the cartesian product functor on Set, which

indeed produces jet set morphisms between separated products.

Definition 1.4.4°2. Given masks a⃗ and b⃗ of equal length, if a⃗ ⊓ b⃗ = #⃗, i.e. if for every i we have ai = #
and/or bi = #, then we define the semisymmetric separated product (SSS-product) functor

⌞⌟ § ⌞⌟ : JetCubeConv◊M (fbe, a⃗)× JetCubeConv◊M
(
fbe, b⃗

)
→ JetCubeConv◊M

(
fbe, a⃗ ⊔ b⃗

)
as follows:

• The variables of a pair of objects (V,W ) are zipped on a per-degree basis:

– If ai = bi = #, then we list all variables of degree i of V , followed by all variables of degree

i of W , all of them typed as L⌢iM,
– If ai = c and bi = #, then we list all variables of degree i of W , retyped as L]iM, followed

by all variables of degree i of V with their original types,

– If ai = # and bi = c, then we list all variables of degree i of V , retyped as L]iM, followed by

all variables of degree i of W with their original types.

Corollary 1.4.4°3. In Cube◊M , we have

⌊V §W ⌋ ∼= ⌊V ⌋ ∗ ⌊W ⌋ if ◊ = 2,

⌊V §W ⌋ ∼= ⌊V ⌋ × ⌊W ⌋ if ◊ = �.

Corollary 1.4.4°4. In JetSet(⃗a ⊔ b⃗), we have

JEP(V §W ) ∼= USyma⃗⊑a⃗⊔⃗b(V ) ∗ USymb⃗⊑a⃗⊔⃗b(W ),

where USymx⃗⊑y⃗ : JetSet(x⃗) → JetSet(y⃗) is the forgetful functor.

• Recalling definition 1.4.2°8, the action of morphisms is established as follows:

– At the level of Cube◊M , by relying on functoriality of the separated/cartesian product,

– At the level of JetSet(⃗a ⊔ b⃗), by relying on functoriality of the separated product,

– At the level of Set, both of these approaches reduce to functoriality of the cartesian product.

By corollary 1.4.3°2, the SSS-product extends to non-conventional jet cubes.

Definition 1.4.4°5. Given a fixed length ℓ, which we assume clear from the context, and a degree 0 ≤
i < ℓ, we define the punch mask δ⃗i by δ⃗ij = # if i ̸= j and δ⃗ii = c.

Thus,

⊔
i δ⃗

i = c⃗, and more generally a⃗ =
⊔

i(δ⃗
i ⊓ a⃗).

Theorem 1.4.4°6 (SSS-factorization). Let a⃗ be a mask of length ℓ. For any jet cube morphism φ̂ : V → W

in JetCubeConv2M (fbe, a⃗), define jet cubes (Vi)0≤i<ℓ and (Wi)0≤i<ℓ of mask a⃗ ⊓ δ⃗i by

• Wi consists of all variables of W of degree i, with their original typing,
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• Vi as the jet cube consisting of all variables j of Vi such that there is a variable i ∈ Wi such that i⟨φ⟩
depends on j. Variables of degree i are kept with their original typing, unless a variable of the same

degree to their right has been used at a lower (stronger) degree or is not used at all, in which case

they are retyped as L]iM. Variables of higher (weaker) degree j > i are retyped as L⌢jM. Variables

of lower degree cannot occur.

Then there are jet cube morphisms φi : Vi → Wi and jet cube morphisms ρ0 and ρ1 that erase to cube

renamings
11

, such that φ factorizes as:

V
ρ0 //

∏§
i Vi

∏§
i φi

//
∏§

i Wi
ρ1

∼=
// W,

where

∏§
denotes a semisymmetric separated product.

Proof. It is immediately clear that

∏§
i Wi

∼= W by an isomorphism ρ1 that erases to a renaming.
12

We then define ρ0 as the cube morphism that discards all variables unused by φ, and φi as the cube

morphism such that i⟨φi ◦ ρ0⟩ = i⟨φ⟩ for every variable i in Wi. It is then immediately clear that

φ = ρ1 ◦
(∏§

i φi

)
◦ ρ0. What remains to be proven is that ρ0 and φi are jet cube morphisms.

In the case of ρ0, this is relatively trivial: we are promoting an initial segment of the variables of every

degree to equijet variables of the same degree, and then projecting away some of these.

In the case of φi, this follows essentially from lemma 1.4.3°21.

1.4.5 Comparison to the Literature

1.4.5 (a) Point category

Proposition 1.4.5°1. The point category (terminal category) is isomorphic to JetCube◊M (ω, []).

Proof. It is clear that () is the only object. The only endomorphism of () in Cube◊M is the identity, and

⌊⌞⌟⌋ is faithful, so there is only one morphism.

1.4.5 (b) Affine Symmetric Cubes

I am unsure whether the category of affine symmetric cubes Cube2IPt2 appears anywhere.

Proposition 1.4.5°2. The categoryCube2IPt2 is isomorphic to JetCube2IPt2(ω, [#]) and JetCube�
IPt2

(ω, [#]).

Proof. The orientation set ω does not matter as all degrees are symmetric. The latter two categories are

isomorphic by theorem 1.4.2°15. It is clear that ⌊⌞⌟⌋ : JetCube2IPt2(ω, [#]) → Cube2IPt2 is bijective on

objects. It is faithful, because U : JetSet([#]) → Set is faithful. It is full, because any morphism can be

derived in the calculus (fig. 1.1), as can be shown by induction on the length of the codomain.

1.4.5 (c) Affine Cubes

The category of affine cubes Cube2Pt2 appears in a cubical model of HoTT [BCH14] and its unary analogue

in a cubical model of parametricity [BCM15].

Proposition 1.4.5°3. The category Cube2Pt2 is isomorphic to JetCube2Pt2(ω, [#]) and JetCube�
Pt2

(ω, [#]).

Proof. Each time, the category for Pt2 is the wide
13

subcategory of the corresponding one for IPt2 on

morphisms that do not mention ¬, so the result follows from proposition 1.4.5°2.

11
Morphisms in Kl(M) that come from Set, i.e. are not effectful or do not use the constants and operators provided by M .

12
In fact ρ1 is the identity because we are working with conventional cubes.

13
Containing all objects.
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1.4.5 (d) Cartesian Cubes

One might hope to retrieve other existing categories as follows:

• De Morgan cubes Cube�
DM [CCHM15] as JetCube�

DM(f, [#]),
• Cartesian cubes Cube�

Pt2
as JetCube�

DM(f, [#]),

• Depth n cubes [ND18, Nuy18] as JetCube�
Pt2

(f, [#]n), where x⃗n
denotes the n-fold repetition of

the list x⃗,

• . . .

However, one cannot:

Proposition 1.4.5°4. The morphism (i/j, i/k) : (i : I) → (j : I,k : I) in Cube�
M is not the erasure of

any jet cube morphism.

Proof. Jet sets obtained from JEP do not have diagonals.

1.4.5 (e) Affine Depth n Cubes

Definition 1.4.5°5. The category DCube◊M (n) has:

• As objects lists of the form W = (i1 : Lk1M, . . . , im : LkmM) where the ii are regarded as bound de

Bruijn indices and the ki are in {0, . . . , n− 1}. We define its erasure as ⌊W ⌋ = (i1 : I, . . . , im : I).
• As morphisms φ̂ : V → W , morphisms φ : ⌊V ⌋ → ⌊W ⌋ such that for each i : LkM in W , the

expression i⟨φ⟩ mentions only variables j : LℓM in V such that ℓ ≥ k.

Clearly this category comes with a faithful functor ⌊⌞⌟⌋ : DCube◊M (n) → Cube◊M .

The categories DCube�
Pt2

(n) appear in the model of Degrees of Relatedness [ND18, Nuy18].

Proposition 1.4.5°6. The category DCube2IPt2(n) is isomorphic to the category JetCube◊IPt2(f, [#]n) for

◊ ∈ {�,2}.

Proof. By theorem 1.4.2°15, the value of ◊ does not matter, so let us set ◊ = 2. We construct a functor

F : JetCube2IPt2(f, [#]n) → DCube2IPt2(n) such that ⌊⌞⌟⌋ ◦ F = ⌊⌞⌟⌋:

• F (i1 : L⌢k1
M, . . . , im : L⌢km

M) = (i1 : Lk1M, . . . , im : LkmM),
• For the action on morphisms, we have nothing to choose, we can only verify that it exists. This is

done by induction on the derivation in the calculus (fig. 1.1).

It is clear that F is bijective on objects, and faithful. Fullness is proven by proving by induction on

the length of the codomain that every morphism of depth n cubes can be derived in the calculus.

Proposition 1.4.5°7. The category DCube2Pt2(n) is isomorphic to the category JetCube◊Pt2(f, [#]n) for

◊ ∈ {�,2}.

Proof. Each time, the category for Pt2 is the wide subcategory of the corresponding one for IPt2 on

morphisms that do not mention ¬, so the result follows from proposition 1.4.5°6.

1.4.5 (f) Comparison to Pinyo and Kraus’s Twisted Cube Category

In this section, we relate jet cubes to Pinyo and Kraus’s twisted cubes [PK19] when a⃗ = [c]. JetSet([c]) is

the category of proof-irrelevant reflexive graphs. Pinyo and Kraus use arbitrary proof-irrelevant graphs,

but since⊤ is reflexive and the twisted prism functor [PK19, def. 4] restricts to reflexive graphs, all twisted

cubes are reflexive graphs anyway.

Two twisted cube categories appear (up to isomorphism) in [PK19], and we show that we can recover

both.
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Definition 1.4.5°8. [PK19, def. 25] The category TwCubegraph has as objects [c]-jet-cubes (i.e. natural

numbers) and as morphisms V → W all jet set morphisms (i.e. graph morphisms) JEP(V ) → JEP(W ).

Proposition 1.4.5°9. TwCubegraph is isomorphic to JetCube�
Boo(f, [c]).

Proof. Clearly, the objects correspond. The morphisms V → W of JetCube�
Boo(f, [c]) are morphisms

f : JEP(V ) → JEP(W ) such that Uf : EP(⌊V ⌋) → EP(⌊W ⌋) lifts to a morphism of cubes, which it

always does by proposition 1.4.1°7.

We thoroughly rephrase Pinyo and Kraus’s ternary twisted cube category:

Definition 1.4.5°10. [PK19, def. 34] The category TwCubetri has as objects [c]-jet-cubes (i.e. natural

numbers) and as morphisms V → W all jet set morphisms (i.e. graph morphisms) JEP(V ) → JEP(W )
or, equivalently by the previous proposition, all jet cube morphisms V → W in JetCube�

Boo(f, [c]),
generated by the rules terminal, [src:fwd immediately below inv:bck], tgt:fwd and prism:fwd in

fig. 1.1.

The shared reader may object that Pinyo and Kraus define the morphisms ofTwCubetri by constructing
them inductively, rather than by selecting them inductively as we do above. However:

Corollary 1.4.5°11. Any morphism ofTwCubetri as defined here, has a unique derivation using the given

rules.

Proposition 1.4.5°12. TwCubetri is isomorphic to JetCube2IPt2(f, [c]).

Proof. Since the rules mentioned in definition 1.4.5°10 pertain to the calculus of JetCube2IPt2(fbe, [c]) and

in fact always yield premises/conclusions about f-jet-cubes for conclusions/premises about f-jet-cubes,

and since JetCube2IPt2(f, [c]) is a faithful subcategory of JetCube�
Boo(f, [c]) by proposition 1.4.1°8, it is

clear that the identity-on-objects functor TwCubetri → JetCube2IPt2(f, [c]) is faithful, i.e. we can think of

TwCubetri as a wide subcategory of JetCube2IPt2(f, [c]).
To show fullness, we note the following facts about the calculus for JetCube2IPt2(fbe, [c]):

1. No rule (read bottom-up) introduces equijets in the codomain.

2. In absence of equijets in the codomain, no rule changes the mask (except symmetrize applied to

the terminal codomain, but then apply terminal instead).

• In particular, symmetrize is useless.

3. Equijet variables can only be used at strictly stronger (lower) degrees, or at the current degree i if

ai = #. Since we have only one directed degree, equijet variables cannot be used.

• Hence wkn can only be used to derive constant morphisms, which can instead be derived by

[src:fwd after inv:bck] and tgt:fwd.

• Hence exchange is useless.

4. At mask [c], the rule concursor cannot be used as there is only one degree.

5. Since inv:fwd and inv:bck are mutually inverse, they can together be freely inserted everywhere.

Hence, we can replace the rule src:fwd with [src:fwd after inv:bck].

6. inv:fwd and inv:bck can be pushed up through any of the remaining rules except prism:fwd and

prism:bck. Thus, we only involute right before using a variable. All other rules (still read bottom-

up) do not turn an f-codomain into an fbe-codomain, i.e. they do not introduce opposite jets. Thus,

we can assume the codomain is a forward jet cube until we encounter ¬i.
7. This means that until we encounter ¬i, we only need the rules terminal, [src:fwd after inv:bck],

tgt:fwd and prism:fwd. These do not turn an f-codomain into an fbe-codomain. Thus, until we

encounter ¬i, we can assume the domain is an f-jet-cube.

8. If both domain and codomain are forward, we cannot encounter ¬i.

This means we can always rewrite a derivation tree in the calculus for JetCube2IPt2(fbe, [c]) of a morphism

in JetCube2IPt2(f, [c]) to use only the prescribed rules.
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Chapter 3

Paths and Bridges

Remark 3.0.0°1. Move this remark
We note that it is always possible to restrict our mode theory, by discarding modes but keeping the same

modalities and 2-cells between remaining modes. We could decide to restrict to any of the following

subsets of modes:

• Modes of the form [c]∗, i.e. where all degrees are polar,

• Modes of the form ([#]|[#,c])∗, i.e. where we think of a level as containing a path relation and

optionally a weaker jet relation,

– Modes of the form [#,c]∗ where the presence of a jet relation at each level is required,

• Modes of the form ([#]|[c,#])∗, i.e. where we think of a level as containing a bridge relation and

optionally a stronger jet relation,

– Modes of the form [c,#]∗ where the presence of a jet relation at each level is required,

• Modes of the form ([#,#]|[#,c,#])∗, i.e. where we think of a level as containing a path relation

and a weaker bridge relation and optionally, in between, a jet relation,

– Modes of the form [#,c,#]∗ where the presence of a jet relation at each level is required.

We will occasionally discuss these subtheories. By considering all of ListA in the current paper, we

maintain generality.

Relate cubes with and without equijets.
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Chapter 4

Transpension

Does Tw : sSet→ sSet have a transp type? (Yes if it’s Tw!)
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Appendix A

Version history

v0.1 Wrote chapter 1.

v0.1.1 Changed title.

Proofread chapter 1.

Added missing clause for concursor in proof of theorem 1.4.3°4.

Cleaned up affine boolean normalization lemmas in section 1.4.3 (b).

Introduced orientation sets (definition 1.4.2°1).

Introduced conventional cubes (definition 1.4.3°1).

General cleanup.
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