Homepage

Some of my Favorite Papers

Parametricity

πŸ“„ Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A Relationally Parametric Model of Dependent Type Theory. In Principles of Programming Languages. DOI: https://doi.org/10.1145/2535838.2535852

πŸ“„ Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015. A Presheaf Model of Parametric Type Theory. Electron. Notes in Theor. Comput. Sci. 319, (2015), 67–82. DOI: http://dx.doi.org/10.1016/j.entcs.2015.12.006

πŸ“• Guilhem Moulin. 2016. Internalizing Parametricity. phdthesis. Chalmers University of Technology, Sweden. Retrieved from https://publications.lib.chalmers.se/records/fulltext/235758/235758.pdf

πŸ“„ Evan Cavallo and Robert Harper. 2021. Internal Parametricity for Cubical Type Theory. Log. Methods Comput. Sci. 17, 4 (2021). DOI: https://doi.org/10.46298/lmcs-17(4:5)2021

πŸ“„ Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In LICS ’01, 221–230. DOI: https://doi.org/10.1109/LICS.2001.932499

πŸ“„ Michael Shulman. 2023. Semantics of multimodal adjoint type theory. In Proceedings of the 39th Conference on the Mathematical Foundations of Programming Semantics, MFPS XXXIX, Indiana University, Bloomington, IN, USA, June 21-23, 2023 (EPTICS), EpiSciences. DOI: https://doi.org/10.46298/ENTICS.12300

Homotopy Type Theory

πŸ“• Simon Huber. 2016. Cubical Interpretations of Type Theory. phdthesis. University of Gothenburg, Sweden. Retrieved from https://gupea.ub.gu.se/handle/2077/48890

πŸ“ Simon Boulier and Nicolas Tabareau. 2017. Model structure on the universe in a two level type theory. Retrieved from https://hal.archives-ouvertes.fr/hal-01579822

Normalization and Conversion

πŸ“„ Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical Reconstruction of a Reduction Free Normalization Proof. In Category Theory and Computer Science, 6th International Conference, CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings (Lecture Notes in Computer Science), Springer, 182–199. DOI: https://doi.org/10.1007/3-540-60164-3\_27

πŸ“ NathanaΓ«lle Courant and Xavier Leroy. 2025. A Lazy, Concurrent Convertibility Checker. Retrieved from https://arxiv.org/abs/2510.18418

Universal Algebra / Generic Programming Languages Theory

πŸ“„ Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. 2021. A type- and scope-safe universe of syntaxes with binding: their semantics and proofs. J. Funct. Program. 31, (2021), e22. DOI: https://doi.org/10.1017/S0956796820000076

πŸ“„ Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal metatheory of second-order abstract syntax. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. DOI: https://doi.org/10.1145/3498715

πŸ“• AndrΓ‘s KovΓ‘cs. 2022. Type-Theoretic Signatures for Algebraic Theories and Inductive Types. phdthesis. EΓΆtvΓΆs LorΓ‘nd University, Budapest, Hungary. Retrieved from https://andraskovacs.github.io/pdfs/phdthesis_compact.pdf

Fixpoints in Type Theory

πŸ“„ S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra. 2016. A Lazy Language Needs a Lazy Type System: Introducing Polymorphic Contexts. In Proceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages (IFL 2016), Association for Computing Machinery, Leuven, Belgium. DOI: https://doi.org/10.1145/3064899.3064906